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In “�e ‘structure’ of physics: a case study,” (Journal of Philosophy 106: 57–88) Jill North argues
that when faced with with competing physical hypotheses, other things being equal, we should be-
lieve the one that imputes less structure to the world.1 Such arguments have a distinguished pedigree;
both contemporary and historical interpreters of physics have famously used Ockhamist principles
to draw conclusions about the ontology of spacetime. North’s paper gives a more generalized ac-
count ofOckham’s razor inspired by contemporary structural realism, and applies it not to spacetime
structure, but statespace structure. As a case in point, she argues that the Hamiltonian formulation
of classical mechanics requires less statespace structure than the Lagrangian formulation, and that
we should therefore believe the former theory rather than the latter.2

In this comment, we question North’s conclusion about classical mechanics and point out some
general challenges involved in comparing amounts of structure postulated by physical theories.
North crucially relies on symmetry criteria to quantify and compare amounts of theoretical struc-
ture. Our criticism of her argument is twofold. First, the di�erent criteria she employs are neither
conceptually nor mathematically precise. We clarify them and discuss some subtleties involved in
their application to the case of Hamiltonian and Lagrangian mechanics. Second, in order to apply
∗Department of Philosophy, Princeton University
1“It is not that, other things being equal, we should go with the fewest entities, but that we should go with the least

structure.” (North p. 64)
2�is argument makes two crucial assumptions which we will not directly address here. �e �rst is that any ad-

ditional structure (e.g. dynamical vector �elds, spacetime structure) posited by the two theories is roughly equal or
similarly weighted in favor of Lagrangian mechanics. �e second is that statespace structure actually corresponds to
some kind of real, physical structure. Many physicists and philosophers of science view statespace as a formal tool for
e�ciently encoding certain modal commitments of scienti�c theories, an aid for making calculations and predictions,
but not part of the theory’s ontology. North’s position presupposes some form of statespace realism, although she leaves
its exact contours �exible:

Whether to say that statespace exists as a concrete thing; or that all there is, fundamentally is statespace
and its structure; or an altogether less radical view, is le� open here. What’s not open is that we should
take statespace seriously, where this simply means that statespace has a de�nite, natural structure, which
we can be right or wrong about depending on the way the world is, and which we should try tominimize.
(North p. 33)

Even if one thinks that statespace has an important explanatory role in physics, and is not merely a formal tool, it is far
from clear that statespace structure needs to be minimized. As we will see later on, however, even with this premise in
place, great care must be taken to accurately assess the connection between the mathematics and the physics.
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such criteria it is essential to correctly identify the symmetries of the models used by competing
theories to describe the world. We argue that North’s analysis fails to do this. Lacking such a char-
acterization, we conclude that at present none of the proposed (mathematically precise) accounts of
symmetry is adequate to support an argument that Hamiltonian mechanics imputes less structure
to the classical world.

Does Hamiltonian statespace have less structure than its Lagrangian counterpart (as North con-
tends)? Initially, this seems like a question best le� to physicists and mathematicians to settle. But
it is here that we �nd a host of unexpected philosophical challenges. What interpretive principles
should we use to ascertain a theory’s structural commitments? Can we read these commitments
o� from the mathematical structure of the theory? And how then do we compare the amounts of
structure imputed by di�erent theories?

In regards to this last question, North provides a helpful suggestion — amount of structure is
inversely related to size of symmetry groups. She observes the following:

�e geometric structure of a mathematical space is given by quantities that remain in-
tact under changes in coordinates. �ere is a di�erence, then, between the features
ascribed to a space by the coordinate system being used, and the intrinsic features of
the space itself.�ere is a di�erence between (genuine) structure and (mere) description
of that structure. (p. 62)

According to a standard interpretation of symmetries which North heavily relies upon, the sym-
metries of a mathematical space correspond directly to possible coordinate transformations on the
space. �ey represent mere changes in description. Symmetries therefore give us an abstract way of
characterizing the intrinsic structure of the space. Intuitively, the more symmetries a space has, the
less mathematical structure there is.

�e same idea applies to physical theories. �eories describe the world using mathematical
models. �ese models are invariant under certain symmetry transformations, which in turn char-
acterize the intrinsic physical structure of the model. Only those mathematical structures that are
invariant under allowed changes in description are interpreted as being physically signi�cant. North
proposes that given two rival theories, we can compare the amount of structure they posit by com-
paring the symmetries of their respective models — one model has less structure than another if
it admits a larger group of symmetries.3 But what is the relevant notion of size here? How are we
supposed to count and compare numbers of symmetries?

Some of North’s arguments suggest that dimensionmight play this role. For example, she notes
that if ⟨V , p⟩ is an n-dimensional inner-product space, then its group Aut(⟨V , p⟩) of automor-
phisms has dimension 2n2 − 2; in contrast, if ⟨V ,ω⟩ is an n-dimensional symplectic vector space,
then Aut(⟨V ,ω⟩) has dimension 2n2 + 2. She concludes from these facts that a symplectic form has
less structure than a metric.4 So, we might rephrase North’s symmetry principle as follows:

(SYM) Given models X and Y , if the dimension of Aut(X) is greater than the dimension of
Aut(Y), then X has less structure than Y .

3“[An inner product on a vector space V ] is a stronger structure [than a symplectic form on V ], in that it admits a
smaller group of symmetries.” (North p. 87)

4ibid, p. 87.
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But this criterion has serious defects. First, it only applies to symmetry groups that have a dimension
— e.g. symmetry groups that are themselves manifolds— and there are many interesting symmetry
groups to which this concept does not apply.5 Second, this criterion yields obviously wrong verdicts
in numerous cases. For example, if V andW are inner product spaces with dimV ≥ 2 and dimW ≥

2, then dim[Aut(V⊗W)] > dim[Aut(V)]. Hence it entails that a systemwhose state space isV⊗W
has less structure than a system whose state space is V . It would follow, in particular, that a pair of
electrons has less structure than one electron!

A more promising alternative employs subset inclusion as a measure of relative size:

(SYM⋆) If Aut(X) properly contains Aut(Y) then X has less structure than Y .

Intuitively, if for every allowable coordinate transformation on Y , there is a corresponding trans-
formation on X, but not vice versa, there must be additional structure on Y that is not preserved by
the extra transformations on X. In certain situations, this intuition can be made more precise using
the connection between symmetries and de�nability provided by the Beth-Svenonius de�nability
theorem:

LetL ⊆ L+ be �rst order languages, with R a relation symbol inL+. Let T be a complete
theory stated in L+. R is explicitly de�nable in T in terms of L i� for every model
M ⊧ T , the subset RM is invariant under all automorphisms of M∣L, the structure
obtained from M by omitting all relations and operations not contained in L.6

�e Beth-Svenonius theorem provides a handy tool for showing when one theory T+ imputes more
structure than another theory T (supposing that the vocabulary of T is a subset of the vocabulary of
T+): just show that there are symmetries of T-models that do not leave all the T+-imputed structure
invariant. Although North never explicitly mentions this theorem, it is plausible to think that she
has something like it in mind when she claims that symmetries are inversely related to “levels of
structure” (North p. 65). For example, it is something like (SYM⋆) that seems to underlie her claim
that a metric cannot be de�ned in terms of a symplectic form: “So long as a transformation leaves
the symplectic structure intact, it can alter any metric structure” (North p. 74).

�us, (SYM⋆) receives justi�cation from the analogy to the �rst-order case (the Beth-Svenonius
theorem). Nonetheless, this criterion is of limited applicability for comparing the state spaces of
physical theories: X has more structure than Y only in cases where X and Y are structures on a
common base set S, for example X = ⟨S , R1, . . . , Rn⟩ and Y = ⟨S , R′1, . . . , R′m⟩, where the Ri and
R′j are relations on the set S. In the context of comparing models of Hamiltonian and Lagrangian
mechanics, (SYM⋆) can therefore only be employed if there exists a suitable translation between
the underlying set of states in each model (a fact which will prove important later on). We will
employ (SYM⋆) as a precisi�cation of North’s symmetry criterion throughout the remainder of our
comment.

We now turn to North’s main argument that Lagrangian mechanics imputes more structure
than Hamiltonian mechanics. She begins with the claim that Lagrangian statespace always has the

5See, for example, Doplicher and Piacitelli, “Any compact group is a gauge group,” Reviews of Mathematical Physics
14 (2002): pp. 873–886.

6see W. Hodges,Model�eory, (Springer, 1993): p. 516.
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structure of a Riemannian manifold, whereas Hamiltonian statespace always takes the form of a
symplectic manifold. It is well known that a symplectic form de�nes a volume element, but does
not de�ne a metric. Based on these facts, North argues as follows:

�e thing is, as far as we can tell, we need only symplectic structure to do classical me-
chanics. �is structure su�ces for the theory; it does not “leave anything out.” And
there is a clear sense in which a space with a metric structure has more structure than
one with just a volume element. Metric structure comes with, or determines, or pre-
supposes, a volume structure, but not the other way around. (In the same way that a
metric space comes with, or determines, or presupposes, a topology, and not the other
way around.) Intuitively, knowing the distances between the points in a space will give
you the volumes of the regions, but the volumes will not determine the distances. Met-
ric structure adds a further level of structure. (North pp. 74–75)

�is argument is supposed to show that a metric has more structure than a symplectic form. But
a symplectic form is not the same thing as a volume element (a fact which can be quickly seen by
noting that an odd-dimensional manifold can have a volume measure, but can have no symplectic
form). In general, both a metric and a symplectic form de�ne corresponding volume measures; but
a volume measure de�nes neither a metric, nor a symplectic form.7

Although this argument is a red herring, North’s subsequent comments partially close the gap.
She notes that given a manifold with both a symplectic form and a metric, there are symmetries of
the symplectic form that do not preserve the metric; symplectic structure does not de�ne metric
structure. �is indicates that if Aut(M , g) ⊆ Aut(M ,ω), it will be a proper subset; however, North
never provides an argument for the antecedent. In fact, it is false. Given any Riemannian manifold
(M , g) that admits a symplectic form ω, there is a symmetry J of (M , g) that does not preserve ω.8
In particular, isometries can reverse orientation while symplectomorphisms must preserve orienta-
tion. �us, metric structure does not de�ne symplectic structure either. Symplectic manifolds and
Riemannian manifolds each possess a piece of structure the other lacks, hence it does not follow
that Lagrangian mechanics imputes more statespace structure than Hamiltonian mechanics. But
unless these physical theories are identical to the theories of Riemannian and symplectic geometry,
we should be wary of drawing any de�nite conclusions from these considerations. Indeed, there are
two glaring problems with the preceding analysis.

First, North’s initial assumption about the structure of Lagrangian statespace is suspect. Models
of both Lagrangian and Hamiltonian mechanics can be found which posit a metric on statespace.
�e crucial di�erence, according to North is that the Lagrangian dynamics require such a metric
whereas theHamiltonian dynamics do not. But this is false. Inwhat is arguably its best, most general
formulation, Lagrangian mechanics does not make use of a metric at all.9 Even when a metric is

7What is more, given a manifold with both a symplectic form and a metric, the volume measures de�ned by these
two di�erent structures do not necessarily agree. If they coincide, the space is said to possess Kähler structure.

8Let {e1 , e2} be an orthonormal basis, and de�ne J ∶ V → V by setting Je1 = e2 and Je2 = e1 and extending linearly.
Clearly J is an isometry, but J does not preserve the symplectic form since ω(Je1 , Je2) = ω(e2 , e1) ≠ ω(e1 , e2).

9Instead it employs the naturally de�ned almost-tangent structure of Lagrangian statespace to frame the Euler La-
grange equations. See de Leon and Rodrigues, Methods of Di�erential Geometry in Analytical Mechanics, (North Hol-
land, 1989): Ch. 2 & 7 for details. North discusses this formulation brie�y in her appendices (pp. 83–88), arguing that
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present in the Lagrangian (or the Hamiltonian) framework, its physicality is dubious. Generally, the
statespacemetric is induced by ametric on the underlying con�guration space representing the total
kinetic energy of the system; dynamically possible solutions are geodesics, paths of extremal kinetic
energy. But neither the total kinetic energy nor the metric are invariant under constant velocity
boosts, so-called Galilean transformations, which are among the symmetries of classical spacetime.
It appears that inmany cases ametric is simply a useful calculational tool, precisely the kind of thing
that North thinks should not have deep ontological signi�cance.

Despite this unresolved issue, there is a second, deeper problem which takes precedence. A
speci�c Hamiltonian system involves both a statespace (M ,ω) as well as a Hamiltonian function
H ∶ M → R, and symmetries of that system will have to preserve some data speci�c to the Hamil-
tonian function. Similarly, a speci�c Lagrangian system includes not only a statespace TQ (which
is required to be the tangent bundle of an underlying con�guration space manifold, Q) but also a
Lagrangian function L ∶ TQ → R. �e addition of a Hamiltonian or Lagrangian function not only
speci�es the dynamics, but also allows for the de�nition of a number of auxiliary geometric struc-
tures.10 When asking questions about what kinds of structure can be de�ned on statespace we must
avail ourselves of the resources of the entire physical theory, not just mathematical subtheories. It
might still be possible to use symmetry criteria to compare the structure of Lagrangian and Hamil-
tonian mechanics, but more care must be taken to identify the models and symmetries of the two
theories.

We recall that, according to standard accounts, the symmetries of aHamiltonianmodel (M ,ω,H)

are the “canonical transformations,” which is just a synonym for “symplectomorphisms” of (M ,ω).11
In contrast, the symmetries of a Lagrangian model (TQ , L) are usually required to be “point trans-
formations.” A point transformation φ ∶ TQ → TQ is a di�eomorphism of the form T f , where
f ∶ Q → Q is a di�eomorphism.12 (Here T f is the pushforward map of tangent vectors.) Canonical
transformations preserve the form of Hamilton’s equations of motion whereas point transforma-
tions preserve the form of the Euler-Lagrange equations of motion (although neither are required
to preserve the exact form of the Hamiltonian or Lagrangian function). At the end of her second
appendix, North makes the following observation “whereas all point transformations are canonical
transformations — point transformations form a subgroup of the set of all canonical transforma-
tions” (p. 88), citing Abraham andMarsden.13 Deploying this fact, we should be able to use (SYM⋆)
to conclude that Hamiltonian mechanics has less structure than Lagrangian mechanics.

But something is not quite right with this argument: a Lagrangian symmetry is an automor-
phism of a tangent bundle TQ, and a canonical transformation is an automorphism of a symplectic
manifold (M ,ω). Without a suitable mapping of the states in TQ to the states in M, comparing

even in this more general case there will be a di�erence in structure between the two theories. Much of the force of
this argument rests on her identi�cation of canonical and point transformations as the symmetries of Hamiltonian and
Lagrangian mechanics. As we will go on to see, this assumption is problematic.

10For example, once a Lagrangian function is speci�ed, it is possible to de�ne a symplectic form on TQ along with
an almost-complex and an almost-Kähler structure.

11see Defn. 3.2.5 in R. Abraham and J.E. Marsden, Foundations of Mechanics: 2nd Edition, (American Mathematical
Society, 2008): p. 177.

12ibid, p. 181.
13“the point transformations clearly form a subgroup of the set of all canonical transformations,” ibid, p. 181.
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the symmetry group of a Lagrangian system to the symmetry group of a Hamiltonian system is like
comparing apples to oranges.

�e key to resolving this impasse is to note that Abraham andMarsden’s claim is about point and
canonical transformations on the cotangent manifold T∗Q, with its canonical symplectic form ω.
�e uncontroversial fact which they point out is that any pullback di�eomorphism T∗ f ∶ T∗Q →
T∗Q preserves the canonical symplectic form ω. If we consider a Hamiltonian statespace T∗Q
as isomorphic (via the Legendre transformation) to the Lagrangian statespace TQ, then we can
interpret point transformations on T∗Q as corresponding to point transformations on TQ. But
if we consider T∗Q as a bare symplectic manifold — ignoring its relation to TQ — then we have
a larger group of symmetries, namely all symplectomorphisms of (T∗Q ,ω). Here the Legendre
transform plays the role of a suitable translation between the states of the two systems, allowing for
the application of (SYM⋆). It is important to note, however, that the Legendre transformwill only be
a statespace isomorphism if the two systems are hyperregular.14 Weonly claim that this is a su�cient
condition for comparing twomodels using (SYM⋆). In other cases, weakermappingsmight serve as
a suitable translation. �is question requires further study, however it is clear that any comparison
requires some translation scheme, a point not made clear by North’s explanation.

�us there is a precise sense in which for certain well-behaved systems, the passage from a La-
grangian description to a Hamiltonian one involves expanding a group of symmetries. Following
North, we could take this as evidence for a corresponding reduction in the amount of postulated
structure. But are these the right symmetries? Recall the original motivation for (SYM⋆): symme-
tries are identi�ed with coordinate transformations (changes in description) of a given theoretical
model. �e structure of the world, according to the theory, corresponds to the symmetry-invariant
structure of the model. When we turn our attentions to particular models of Hamiltonian and
Lagrangian mechanics, we �nd that canonical and point transformations do preserve important
physical structures (e.g. the equations of motion), but we also �nd exceptions. �ere are models of
Hamiltonian mechanics with canonical transformations that do not represent mere changes in de-
scription, but rathermap physically distinct solutions of the equations ofmotion onto each other. In
Lagrangian mechanics, there are many models with additional symmetries that cannot be classi�ed
as point transformations. �ese facts dramatically call into question North’s assumption that point
and canonical transformations accurately characterize the structural commitments of each theory.

We illustrate this point with two examples. �e �rst comes from the classical Kepler problem.
Consider two bodies in 3-dimensional space interacting via a central force that is proportional to
the inverse square of the distance between them (e.g. Newtonian Gravity). �e Hamiltonian equa-
tions of motion governing the time evolution of the system are invariant under spatial translations,
spatial rotations, and time translations, leading to conservation of momentum, angular momen-
tum, and energy via Noether’s �eorem. Interestingly, there is a fourth, somewhat mysterious
conserved quantity called the Laplace-Runge-Lenz vector.15 In the system’s statespace (which has

14see Abraham and Marsden, pp. 218-223.
15�e expression for the LRL vector is given by:

A ≡ p × L −mk
r
∣r∣
, (1)

where p is the system’s total momentum, L the total angular momentum, m the reduced mass, r the position vector
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6-dimensions), the canonical transformation that generates the LRL vector continuously maps so-
lutions of the equations of motion representing orbits with the same total energy but di�erent ec-
centricity onto one another. Such solutions correspond to great circles constrained to lie on a 4-
dimensional sphere in statespace; the LRL transformation rotates these circles around the sphere.
While these solutions are, in a sense, geometrically isomorphic in statespace, they project down onto
physically inequivalent orbits in spacetime. To see this, note that the eccentricity vector measures
how elliptical a particular orbit is. �e orbits linked by the LRL symmetry have the same energy
(hence the same semi-major axis), but di�erent eccentricities, and thus have di�erent intrinsic ge-
ometries in spacetime (as well as di�erent angular momenta). If we retain a realist view towards
spacetime or spatio-temporal relations, then the LRL transformation cannot be symmetry of the
full Hamiltonian model of the 2-body system even though it is a canonical transformation.16

�e second example is one that we have already encountered. Consider any Lagrangian system
whose equations of motion �t the form of Newton’s second law. �ese equations of motion are in-
variant under Galilean boosts. Although such boosts are widely viewed as symmetries of classical
spacetime, they are not point transformations. By de�nition point transformations do not alter the
velocity coordinates on TQ, therefore any velocity-dependent spacetime symmetry cannot be rep-
resented as a point transformation in the Lagrangian framework. �is suggests that in a wide range
of interesting cases, point transformations do not exhaust the symmetries of Lagrangian systems.
�us neither canonical transformations nor point transformations appear to accurately represent
the symmetries of Hamiltonian and Lagrangian systems— the former are too permissive, the latter
too restrictive.

A skeptical reader will have noticed a potentially troubling circularity in the style of reasoning
that has been employed thus far: the symmetries of a physical model determine what its intrinsic
structure is, but it is precisely this structure that determines which transformations count as sym-
metries in the �rst place. �is is not a vicious circle, but it does mean that care must be exercised in
order to fruitfully employ (SYM⋆) and other symmetry criteria. In some instances wemight have an
antecedent understanding of the physically signi�cant structure in both models. �e correspond-
ing symmetry groups then serve as a convenient means of abstractly characterizing and comparing
this physical structure. In other cases, we might have an independent procedure for determining a
model’s symmetries, allowing us to settle open interpretational questions about themodel’s descrip-
tion of the world. Of course, the majority of cases will likely lie between these two poles, requiring
the interpreter to bring general theoretical constraints and guiding symmetry principles into re�ec-
tive equilibrium with physical intuition.

North’s arguments eschew analysis of individual models entirely. She believes that in general we
do have an independent procedure for determining the symmetries of a theory. �e method she
invokes exploits symmetries of the theory’s laws, and has been widely applied in debates about the

between the two bodies, and k a force-speci�c constant.
16�ere are additional examples of canonical transformations that are not full symmetries of Hamiltonian mod-

els, although, since such transformations are system-speci�c and their behavior subtle, they have received little atten-
tion among philosophers and even physicists. Another interesting example is given by symmetry associated with the
quadrupole moment of the harmonic oscillator. In “Symmetry and Equivalence” forthcoming in�e Oxford Handbook
of Philosophy of Physics, Gordon Belot raises a number of similar concerns regarding symmetry arguments in classical
physics including a discussion of the LRL vector and the harmonic oscillator.
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structure of spacetime. One begins by looking for transformations of the independent and depen-
dent variables of the theory that leave the mathematical form of the fundamental laws unchanged.
Such transformations map dynamical solutions of these equations onto other dynamical solutions
which are nomologically indistinguishable. Ontological parsimony dictates that, ceteris paribus,
one only has reason to infer the minimum amount of physical structure required to formulate the
fundamental dynamical laws. Hence, symmetry-linked solutions are interpreted as merely di�erent
descriptions of a single solution. In other words, symmetries in the laws (mappings of solutions of
dynamical equations onto solutions) are taken to indicate symmetries in the complete theoretical
model (mappings of the model onto itself).

North suggests that we take this same procedure and use it to help interpret the structure of
statespace. She asserts that “the Lagrangian equations of motion are invariant under the set of point
transformations; the Hamiltonian, under the canonical transformations” (pp. 87–88), and therefore,
these transformations indicate “which coordinate changes the [theories respectively take] to bemere
arbitrary changes in description” (p. 73). But as we have seen, this inference leads to trouble in
speci�c cases. �ere are a number of possible reasons why.

First, the antecedent of North’s claim, while true, is misleading; canonical and point transforma-
tions do not perfectly classify the symmetries of Hamiltonian and Lagrangian equations of motion.
�ere are symmetries of Hamilton’s equations that are not canonical, and there are even more sym-
metries of the Euler-Lagrange equations that are not point transformations. Interestingly, many of
these additional Lagrangian symmetries correspond to canonical transformations when the mod-
els are translated into the Hamiltonian framework. For example, Galilean boosts always preserve
the symplectic form on Hamiltonian statespace (for Newtonian systems), and are thus examples of
canonical transformations. Similarly, the canonical LRL transformation can be represented in the
Lagrangian framework as a particular velocity-dependent transformation that preserves the Euler-
Lagrange equations for the Kepler problem. Even if North is right, and Galilean boosts and LRL
transformations are symmetries of certain Hamiltonian models, but not of their Lagrangian coun-
terparts, it cannot be for the reason North claims. �e equations of motion are invariant under such
transformations in both theories.

Second, it is not clear that the statespace equations of motion always play the role of truly funda-
mental laws. In the spacetime cases cited by North as exemplars, interpreters look for symmetries
of Newton’s second law, its special relativistic cousin, or the Einstein �eld equations. �ese laws
have a wide modal scope, applying to a range of di�erent physically possible worlds. As a result,
symmetries of these laws are stable under changes to physically contingent aspects of the systems
being described. �is suggests that these nomological symmetries re�ect facts about the funda-
mental structure of spacetime shared by models of the theory. In contrast, statespace equations of
motion frequently apply only to a single, precisely de�ned system. As a result, symmetries in these
equations can be sensitive to slight perturbations in the system. For example, in the Kepler problem,
if a third interacting body is added or the central force otherwise deviates from its 1/r2 form, the
LRL symmetry fails to hold. Assuming this perturbation is small, the LRL vector will continue to
be approximately conserved; however the perfect symmetry is broken — solutions corresponding
to orbits with di�erent eccentricity will be distinguishable solely based on their intrinsic shape in
statespace. Because of this sensitivity, physicists frequently refer to the LRL transformation as an
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“accidental” symmetry, one that holds due to contingent facts about the arrangement andmotion of
matter in a particular physical system, not necessary facts about the fundamental kinematic struc-
ture of the classical world. An interpreter who uncritically projects symmetries of the statespace
equations of motion onto the world runs the risk of misclassifying such accidental symmetries as
true symmetries.

�ird, Hamiltonian and Lagrangian models do not consist solely of a statespace with an ac-
companying dynamical vector �eld de�ned on it. �ere are also mappings from this structure into
spacetime which, as illustrated by the Kepler 2-body example, can encode important physical infor-
mation. In ignoring this fact, North fails to realize that symmetries of particularmodels usuallymust
preserve certain relations between statespace and spacetime. �is serves as a constraint on which
symmetries of the equations of motion should be interpreted as symmetries of the full model, al-
tering many of our initial judgments about which statespace structures are physically signi�cant.
For example, in many cases (including the Kepler problem) Hamiltonian statespace is not simply a
symplectic manifold, but the cotangent bundle, T∗Q, of a con�guration space manifold, Q. North
interprets this structure as physically insigni�cant because it is not preserved under canonical trans-
formations. But if we have reasons to doubt that canonical transformations are always symmetries
of Hamiltonian models, then we cannot simply dismiss this structure as North does.

Part of the di�culty in making broad structural comparisons the way North does, is that nei-
ther Hamiltonian nor Lagrangian mechanics purports to be a complete description of the world. A
complete physical model is generated only once particular forces and dynamical laws are speci�ed,
along with how the statespace description of these structures maps onto spacetime. By focusing her
attention on the two theories abstractly, and not on particular, fully detailed models, North’s anal-
ysis only captures the features of a generic model, the structure that every model of Hamiltonian
or Lagrangian mechanics has in common. But most models have more structure, and much of this
structure appears, on a natural interpretation, to be physically important. �e interpretive ques-
tion which motivates the structuralist razor is not, “which of these two theories posits less common
structure between its models,” but rather “which of these two theories posits less total structure on
the world.” It doesn’t help to know that the generic Hamiltonian dynamics only require statespace
to be a symplectic manifold if additional structure must be posited on a model-by-model basis in
order to illuminate how this statespace description relates to structures in spacetime.17

17One might resist the pull of these considerations by adopting a more radical form of statespace realism, such as
the statespace monist view espoused by David Albert in his paper “Elementary Quantum Metaphysics” (in Bohmian
Mechanics and Quantum�eory: An Appraisal, ed by A. Fine et al., (Kluwer, 1996): pp. 277-284). According to the view,
statespace itself is taken to be the fundamental arena in which physics unfolds. A single world-particle moves through
this space governed by a Hamiltonian. All additional physical facts supervene on the position of the world-particle
in statespace. For instance, facts about the number of ordinary particles and their spatio-temporal positions will only
obtain if the Hamiltonian contains suitably detailed “interaction” terms.
Whether or not this is a viable interpretation of classical mechanics is an interesting question that needs to be ex-

plored. Seeking a solution to the measurement problem, Albert originally proposed the view in order to explicate the
ontology of quantummechanics. �e same motivating factors do not apply in the classical case. Furthermore, there are
a number of interpretational oddities that plague the classical version of the view that do not arise in the quantum case.
�ese questions aside, North’s arguments were not supposed to presuppose any substantive form of statespace realism.
Moreover, adopting such a radical view might undermine the reasons for adhering to a form of statespace realism in
the �rst place. Her arguments for statespace realism crucially rely on analogies with spacetime. Summarizing them, she
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Finally, it should be noted that there is an additional source of �exibility hidden in the La-
grangian framework that has been overlooked thus far. �ere exist symmetries of the equations of
motion which are generated by subtle transformations of the Lagrangian function itself, and which
(in general) cannot be represented as simple changes of coordinates on statespace. Any Lagrangian,
L, can be replaced by L′ = L + θ̂, where θ̂ represents the function on TQ de�ned by an arbitrary
closed 1-form, θ, on Q.18 �e resulting variational problem produces the same dynamical vector
�eld on TQ. (In contrast, the Hamiltonian is �xed up to an additive constant.) How these extra
Lagrangian symmetries should be interpreted is an intriguing open question, especially in light of
the considerations raised above. Nonetheless, their existence points to yet another way in which
there is greater descriptive freedom in the Lagrangian framework than North presupposes.19

Our arguments do not preclude the possibility that a more re�ned set of symmetry considera-
tions might allow for the implementation of (SYM⋆), although they do show that one must tread
carefully in this domain. �e successful application of symmetry arguments will hinge on how
we interpret particular models of Hamiltonian and Lagrangian mechanics. �is project turns on a
number of interesting subtleties, including those discussed here. At present, there does not appear
to be an exhaustive, independent criterion for identifying the symmetries of classical Hamiltonian
and Lagrangian systems.20 As such, wemust exercise caution in using general symmetry arguments
to support structural Ockhamist claims.
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concludes “the claim is just this: that phase space is as much a part of the representational content of classical mechanics
as the theory’s spacetime is” (p. 29).

18See de Leon and Rodrigues, p. 395. A 1-form on con�guration space de�nes a function on the tangent bundle in a
natural way: θ̂(q, q̇) ≡ θq(q̇). �at is, the value of the function θ̂ at point (q, q̇) ∈ TQ, is given by the contravection of
the 1-form with the tangent vector q̇ at q ∈ Q.

19We thank Erik Curiel for bringing this point to our attention.
20An opinion shared by Belot in his forthcoming work, op. cit.
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