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Preface

I first learned about category theory about 20 years ago from Yuri I. Manin’s course on algebraic
geometry [180] when I was preparing my dissertation on Euclid’s Elements and was focused
on studying Greek mathematics and classical Greek philosophy. Then I convinced myself that
the mathematical category theory is philosophically relevant not only because of its name but
also because of its content and because of its special role in the contemporary mathematics,
which I privately compared to the role of the notion of figure in Euclid’s geometry. Today I
have more to say about these matters. The broad historical and philosophical context, in which
I studied category theory, is made explicit throughout the present book. My interest to the
Axiomatic Method stems from my work on Euclid and extends through Hilbert and axiomatic
set theories to Lawvere’s axiomatic topos theory to the Univalent Foundations of mathematics
recently proposed by Vladimir Voevodsky. This explains what the two subjects appearing in the

title of this book share in common.

The next crucial biographical episode took place in 1999 when I was a young scholar visiting
Columbia University on the Fulbright grant working on ontology of events under the supervision
of Achille Varzi. As a part of my Fulbright program I had to make a presentation in a different
American university, and I decided to use this opportunity for talking about the philosophical
significance of category theory (I cannot now remember how exactly I married then this subject
with the event ontology). Achille Varzi kindly arranged for me the invitation from Barry Smith
to give a talk at his seminar on formal ontology in the SUNY in Buffalo. When I sent to
Barry Smith my abstract he replied that nobody except probably Bill Lawvere will be able to
understand my paper, and suggested to make the paper more accessible to the general audience.
By that time I had already read some of Lawvere’s papers but was wholly unaware about the
fact that Lawvere worked in the same university and could attend my planned talk. So I took
Smith’s words for a joke. When I realized that this was not a joke I was very excited and, as

it turned out, not without a reason because my meeting with Lawvere during this visit indeed



determined the direction of my research for many years to come. This book is a summary of

what I have achieved so far working in this direction.
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Introduction

Logical and mathematical concepts must
no longer produce instruments for
building a metaphysical “world of
thought”: their proper function and their
proper application is only within the

empirical science.

Ernest Cassirer

Mathematics is a part of physics. It is a
part of physics where experiments are
cheap. [..] In the middle of the 20th
century there were attempts to separate
mathematics from physics. The results

turned to be catastrophic.

Viadimir Arnold

The main motivation of writing this book is to develop the view on mathematics described in
the above epigraphs. Some 200 years ago this view used to be by far more common and easier to
justify than today. It is sufficient to say that it made part of Kant’s view on mathematics, and
that Kant’s view on mathematics remained extremely influential until the very end of the 19th
century. When Cassirer defended this Kantian view in the beginning of the 20th century it was
already polemical. When Arnold defended it in the end of the 20th century and in the beginning
of this current century it already sounded as an intellectual provocation, and so his words sound
today. Kant, Cassirer and Arnold do not speak about the same mathematics: each speaks about
mathematics of his own time. So the growing polemical attitude to their shared view reflects
not only a change of the common opinion about the subject but a change of this subject itself.

It is a common place that the modern mathematics is more abstract and more detached from
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physical experience than it used to be in Euclid’s times and in Kant’s times. When I say that I
nevertheless want to defend the view on mathematics as a part of physics this means that I also
want to contribute to changing the character of current mathematics, but not only to changing

the common views about it.

The above is a motivation behind this book but not its purpose. The purpose is much more
limited. In order to justify the view on mathematics as part of physics I would need to write at
least as much about physics as about mathematics. But this book is mainly about mathematics
and about logic; physics is mentioned in it only occasionally. Yet more specifically I shall focus
on the Axiomatic Method and Category Theory (including the categorical logic, which is a part

of modern logic using category-theoretic methods). Let me explain why.

When Arnold talks about recent attempts to separate mathematics from physics he has in mind
Elements of Mathematics by Nicolas Bourbaki [23] that aims at developing the whole of mathe-
matics systematically from the first principles, i.e., on an axiomatic basis. Bourbaki’s Elements
continue the long tradition of presenting renewed foundations of mathematics in the form of
Elements: this tradition begins with Euclid’s Elements (and earlier versions of Greek Elements
that have been lost) and continues through the whole history of mathematics until today. (I say
a bit more about this tradition in the introductory part of Part I). Arnold sees the key to the
problem in Bourbaki’s Axiomatic Method, and takes a notoriously hostile attitude towards the
Axiomatic Method in general. I observe on my part that the problem of separating mathematics
from physics concerns the specific form of the Axiomatic Method used by Bourbaki rather the
the Axiomatic Method in general. It is clear, in particular, that Euclid’s method does not pro-
duce the same effect. And I further observe that Bourbaki’s Axiomatic Method is a version of
Hilbert’s Axiomatic Method presented in Hilbert’s Foundations of Geometry of 1899 [109], which
is another example of renewed mathematical Elements playing a more special but perhaps even
more important role in the 20th century mathematics than Bourbaki’s Elements. So I conclude
that the origin of Arnold’s problem should be traced back at least to the beginning rather than
only to the middle of the 20th century. This explains my focus on Axiomatic Method and its

history.

Why Category Theory? The mathematical notion of category (which has no immediate relation
to the philosophical notion widely known under this name) was invented in 1945 by Eilenberg
and Mac Lane [48] for general purposes, some of which I explain in Chapter 8, see also [137] for
details. In his thesis defended in 1963 [145] and a series of papers based on this thesis [146], [147],

[148], [149] Lawvere put forward a program of categorical (i.e., category-theoretic) foundations of
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mathematics and opened a new research field known today under the name of categorical logic, see
[182] for the most recent historical account. Although Lawvere and other people who pursued the
program of categorical foundations have never explicitly challenged Hilbert’s Axiomatic Method
(albeit they did and do challenge some special applications of this method, most importantly
its applications in the standard axiomatic set theories) I shall try to show in this book that
some recent works in categorical logic and new foundations of mathematics effectively modify
Hilbert’s Axiomatic Method and develop it in a wholly new direction. As it always happens in
the intellectual history this new development continue some earlier developments, which I shall
also take into account. In the last Chapter of this book I generalize upon these tendencies and
describe a hypothetical New Axiomatic Method, which admittedly does not yet exist in the form
of precise logical and mathematical procedure. I hope that my proposed general philosophical
vision of this new method will contribute to its future technical development and also help to

use it outside the pure mathematics and its philosophy.

As the reader shall see the New Axiomatic Method establishes closer relationships between math-
ematics and physics and so suggests a solution of Arnold’s problem. Although I cannot fully
justify this claim in this book (because I am not going to discuss physics systematically) I do
prepare a philosophical background for such a justification. The issue of relationships between
mathematics and physics is a hardcore philosophical issue, and I believe that Arnold’s problem
cannot be solved without taking this philosophical issue seriously. Another hardcore philosoph-
ical issue that comes into the play as soon as one discusses the use of Axiomatic Method in
mathematics is the relationships between mathematics and logic. This latter philosophical issue
unlike the former is in the focus of this book. The main philosophical dilemma that I consider
is, roughly, this: either (i) logic is fundamental in the sense that it gives us an independent
access to an ideal space of logical possibilities where the actual world exists side-by-side with
plenty of other possible worlds, which can be explored only mathematically, or as Cassirer insists
in the above epigraph, (ii) logic and mathematics must stick to the actual world as we know it
through empirical sciences, and by all means must avoid producing possible “metaphysical worlds
of thought” even if these appear more logically coherent and more mathematical beautiful than
our actual world. With many important reservations that this rough formulation requires I shall
defend the latter view. The former view (which also obviously needs a more precise formulation)
I call logicism, and when it is applied to mathematics I call it mathematical logicism. Beware
that this meaning of “mathematical logicism” is broader than Russell’s radical version of math-

ematical logicism according to which mathematics is logic [212]. So a central purpose of this
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book is to refute mathematical logicism and defend an alternative way of thinking about logic

and mathematics.

Talking about these philosophical issues I would like to stress that I study primarily their im-
plementation in mathematics. When in the beginning of the 20th century Cassirer, Russell and
other people discussed hot philosophical issues concerning mathematics and logic they not only
made general philosophical arguments but also referred to the actual state of affairs in their con-
temporary science and to the history of these subjects. They also often contributed themselves
to the ongoing research in mathematics and logic. In this book I follow the same pattern of
philosophical discussion paying a lot of attention to some recent mathematical works and to the

history of the subject but without trying to make any mathematical contribution.

Before I summarize the content of this book chapter by chapter let me say a few more words about
its style and its methodology. I stick to the traditional idea according to which philosophy and its
history naturally combine together. When this view is applied to the philosophy of science and
mathematics the result is sometimes called the historical epistemology [203]. So what I am doing
in this book can be described as a historical epistemology of logic and mathematics. However one
important reservation is here in order. In my understanding the past history, the present state
of affairs and the anticipated future of a given discipline are parts of the same whole. This whole
can be described as the current state of affairs in a broader sense of the word, which includes
both the historical reflection upon the past and the projection towards the future of the given
discipline. When I talk in this book about mathematics and its philosophy I think about these
subjects in this way. When such a view is called historical this should mean the attention to

development of the given discipline but not the exclusive attention to its past.

Although I write about logic and mathematics I don’t use myself any formal logical or other
mathematical means for expressing and justifying my arguments. A century ago this point
would be hardly worth mentioning but since using formal methods in philosophy in general and
in philosophy of mathematics in particular is nowadays popular (particularly in the philosophical
school that calls itself Analytic philosophy) this point requires some explanations. Without
going into a long discussion on this sensitive issue let me boldly express my believe that the
natural language and the philosophical prose remain so far the best instruments for historical
and philosophical work, or at least for the kind of such work that I want to do. The clarity and
the exactness that formal methods bring to philosophy come with a price, which for my purposes
is unacceptable. This price amounts to certain philosophical assumptions, without which these

formal methods cannot work. I am not prepared to pay this price until I can see clearly these



assumptions and thus know the price exactly. A philosophical and historical analysis of the
notion of logical formalization is a part of my present project (see particularly Chapters 2 and
9). Even if a formal theory of formalization is possible I cannot see that it can be useful for this
purpose. I shall not return to the question of using formal methods in philosophy in what follows
but the reader will see that my analysis of the idea of logical formalization hardly supports the

idea of using it as an universal instrument for philosophizing.

Although I am not going to use formal methods for philosophical purposes the reader will find
below a lot of rudimentary mathematics. Since this book is about mathematics, and a part of this
book is about very recent mathematics, which still remains a work in progress (see 6.9 - 6.10),
this is not surprising. So let me explain my strategy of presenting the relevant mathematical
content and mention some mathematical prerequisites for reading this book. My intention is to
make this book readable both for a working mathematician interested in philosophy and history of
this discipline and for a philosopher like myself, who studies (or wants to study) mathematics and
its history, and finds a broad philosophical inspiration in this discipline. To present a fragment
of modern mathematics to a wider audience is a very challenging task, which normally should
not be combined with any philosophical agenda. I certainly do have a philosophical agenda,
which T have already outlined earlier in this Introduction. This is why writing this book I have
tried to reduce the burden of explaining mathematics to minimum. At the same time I tried
to avoid any metaphoric talk about mathematical concepts - even if some people would argue
that any talk about mathematics outside the pure mathematics is doomed to be metaphoric. So
I could not avoid the burden of explaining some mathematics completely but tried to use the
most elementary examples and also tried to use some existing introductory expositions when
such were available. In each particular case I refer to the existing mathematical literature and

chose this literature accordingly to my specific purpose.

For the first superficial reading the given book is self-sustained and, as I hope, it gives a right idea
of what I am after. A more attentive critical reading is by far more demanding. The ideal judge
of this book is a working mathematician who is also a working philosopher and working historian
of mathematics having some broader philosophical and scientific interests, which include some
interest in physics, its history and its philosophy. I know several people who at some degree
of approximation fit this description but I rather imagine an average reader of this book as a
person like myself who during these recent years has learnt some philosophy, some mathematics
and some history of both subjects, and who tries to make these ends meet. I shall say more about

the mathematical prerequisites and give some suggestions for reading (in addition to references
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found in the main text) in the following summary of the Chapters.

Part T of this book treats the history of Axiomatic Method. As I have already explained this
history is not only about the past. Only Chapter 1 on Euclid concerns what is indeed in the past
(albeit in 1.5 I show that even in this case the past continues to live in the present); Chapter
2 on Hilbert treats (in the original historical context) what remains today the standard notion
of Axiomatic Method; Chapter 4 on Lawvere treats what I suggest as a conceptual basis of the
New Axiomatic Method. So these three Chapters of this book present, roughy, the past, the
present and the anticipated future of the Axiomatic Method. Chapter 3 is reserved for studying

the fate of Hilbert’s Axiomatic Method in the 20th century mathematics.

Instead of trying to reconstruct a general history of Axiomatic Method, I decided to chose these
three key figures and look at the relevant parts of their work more attentively. Although a
historical discussion on Euclid found in Chapter 1 may appear out of place in a book about
today’s mathematics it is important for me for several reasons. According to a common view
(supported by Hilbert himself at some occasions), Hilbert’s Axiomatic Method improves upon
Euclid’s method in terms of logical rigor and logical clarity. Of course, in such a general formu-
lation this view can hardly be challenged. However in order to see how exactly this improvement
on rigor and clarity has been achieved in the 20th century we need first to study Euclid’s method
on its own rights. This requires some special hermeneutical techniques, which are well-known
to historian of mathematics but are less familiar to logicians, mathematicians and philosophers
who also write about this subject. We shall see that in some respects Euclid’s and Hilbert’s
method are different in principle, so that the difference between these methods does not reduce
to differences in degrees of continuous magnitudes like rigor and clarity. In addition to my at-
tempt to reconstruct Euclid’s mathematical reasoning in its proper terms (and in some terms
borrowed from Greek philosophy) I explain in this Chapter the relevance of Euclid’s geometry
to Kant’s philosophy of mathematics. In the end of this Chapter I point to some Euclidean
patterns of reasoning in the recent mathematics. The main textual reference in this Chapter
is obviously Euclid’s Elements, which is now available in a new English translation [51]. An
interested reader who would like to study the history of Greek mathematics more broadly and
would like to better understand Euclid’s special place in this history (this is an important subject
that T wholly skip in this book) is advised to begin with [88], [89] and then study more recent

secondary literature.

Chapter 2 on Hilbert is also written in a historical style and contains extended quotes from

Hilbert’s writings. Although I leave outside the scope of my discussion most of the contemporary

xii



context of Hilbert’s work I follow the development of Hilbert’s own ideas rather closely and
distinguish in it several stages. In its narrow historical aspect my treatment of Hilbert’s work
contains nothing original. However I also make an attempt to reconstruct the history of some
relevant notions (or at least to keep track of their changing meaning) including the notion of being
formal. This historical discussion is combined with an explanation of Hilbert’s Formal Axiomatic
Method, which can be used by a non-mathematical reader for the first acquaintance with this
basic method of modern mathematical reasoning. Someone well acquainted with this method will
find here an analysis of certain assumptions required by this method, which remain tacit when
this method becomes an intellectual habit and is used automatically. I shall pay a lot of attention
to philosophical remarks made by Hilbert in his presentations of Axiomatic Method trying to
reconstruct Hilbert’s thinking and its philosophical motivation. I also discuss in this Chapter
some related subjects including the notion of logicality, diagrammatic and symbolic thinking and
some others. This Chapter presents (in its historical original form) the core notion of modern
Formal Axiomatic Method, which I contrast in what follows to more traditional Euclid’s method,
on the one hand, and to some later versions of Axiomatic Method including the anticipated New

Axiomatic Method, on the other hand.

The main suggested reading for Chapter 2 is Hilbert’s Foundations of Geometry, which exist
in multiple editions including the English edition [99] and some later English editions. I highly
recommend this reading also to a non-mathematical reader of this book because the real subject-
matter of this short masterpiece is the Axiomatic Method itself rather than geometry, and so
this short book can be used as a shortcut to the modern style of mathematical thinking. For a
later more developed systematic presentation of Formal Axiomatic Method and its underlying
philosophy I refer the reader to Tarski’s textbook [233]. This textbook presents in a very clear

form a philosophical view on logic and mathematics that I discuss in my present book.

In Chapter 3 I talk about applications of Hilbert’s Axiomatic Method in the 20th century math-
ematics and stress the fact that it has hardly ever been used in its original form and for its
originally intended purpose. I discuss from this point view some formal studies of axiomatic
set theories, Bourbaki’s Flements of Mathematics Bourbaki:1939-1988 and more specifically an
unpublished Bourbaki’s draft [22]. My main observation amounts to saying that both the mod-
ern set theory and Bourbaki’s structural mathematics can be described in Hilbert’s terms as a
metatheory or in Tarski’s terms as a model theory of certain Hilbert-style axiomatic theory or,
more typically, of a number of such theories. Since this metatheory or model theory itself is

developed by some other means (i.e., not axiomatically in Hilbert’s sense) one can say that the
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mainstream mathematics widely applies Hilbert’s Formal Axiomatic Method only with a pinch
of salt. In the mainstream structural mathematics of the 20th century this method serves as a
method of definition and constructing new concepts rather than method of building deductive
theories. On the basis of this observations I criticize Hilbert’s Axiomatic Method arguing that
it is not apt to support mathematical theories useful in the modern physics. Finally I consider
in this Chapter Tarski’s topological model of intuitionistic propositional logic [234] and stress its
unusual character: although, technically speaking, there is no big difference between modeling
a given formal theory and modeling a given logical calculus, philosophically it makes a huge
difference and requires a rethinking of the whole idea of Axiomatic Method. Although Tarski
himself does not draw from this work such far-reaching conclusions I use this example in the

following Chapter as a historical prototype of the New Axiomatic Method.

In addition to the literature referred to in Chapter 3 I suggest reading the classical introduction
[1] to the modern axiomatic set theory including its last philosophical chapter, and Galileo’s Two
New Sciences [69] where the author stresses the constructive experimental character of the New

Science against the background of the earlier Scholastic patterns of doing science.

Chapter 4 plays a central role in this book because here I first introduce the notion of category
and discuss a new notion of Axiomatic Method, which emerges in category theory and, more
specifically, in categorical logic. Although categorical logic is already a well established subject
(see [182] for a historical introduction) I decided to follow here the pattern of the first two
Chapters and focus my attention on the work of one particular person, namely Lawvere, who
founded this discipline in 1960-ies; as before I combine here a historical and a systematic orders of
presentation and pay a minute attention to Lawvere’s philosophical comments found throughout
his writings. After presenting Lawvere’s categorical axiomatization of (the category of) sets [146]
and of the category of categories [147], which gives the first idea of using the category theory
for axiomatization, I turn to Lawvere’s critique of the standard Formal Axiomatic Method as
“subjective” and explain his idea of objective conceptual logic realized by category-theoretic
means. [ begin this latter discussion by considering two Lawvere’s papers [148], [149] that
mark the birth of the categorical logic, and in the same context explain Lawvere’s notion of
quantifiers as adjoint functors to the substitution functor. Then I make a digression on Curry’s
combinatorial logic, type theory and the so-called Curry-Howard correspondence, and show how
these conceptual developments combine in Lawvere’s notion of Cartesian closed category. Then
after a brief discussion on Lawvere’s notions of hyperdoctrine (that conceptually connects to the

discussion on homotopy type theory found in 6.9) and functorial semantics (further discussed in
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9.2) I turn to philosophical issues and discuss the role of Hegel’s dialectical logic in Lawvere’s
thinking, which Lawvere stresses himself at many instances. Here I provide a philosophical
reconstruction of Hegel’s distinction between the objective and the subjective logic and then
describe how this philosophical distinction is realized by Lawvere with the technical means of
categorical logic. This discussion helps me then for interpreting the groundbreaking paper [153]
where Lawvere suggests his axiomatization of topos theory and demonstrates the strength of his
notion of internal logic of a given category. In the last Chapter 9 I use Lawvere’s axiomatization
of topos theory as a basic example of the new axiomatic approach, which I try to describe in

general terms under the title of New Axiomatic Method.

For a better understanding of Chapter 4 it would be useful if the reader get some knowledge of
basic category theory beforehand (albeit this is not an absolutely necessary requirement and the
reader can also follow references during the reading). For a non-mathematical reader or a reader
with a modest mathematical background I recommend [164] and [163] co-authored by Lawvere
as a very accessible introduction into the subject. For a mathematical reader not familiar with
categorical logic I recommend [177] that covers most of the mathematical material that I discuss
in this Chapter (but unfortunately skips hyperdoctrines). There is a huge gap in terms of required
mathematical skills between these two suggested readings and by the present day this gap has
not been yet filled in spite of many very valuable attempts such as [140]. I believe that there is
a principle and not only technical and pedagogical difficulty involved with the project of writing
a fairly elementary introduction to category, topos theory and categorical logic. The problem is
that the elementary introductions like [164], [163] and [140] begin with considering the category
of finite sets, which are first introduced naively as bags of dots and then are treated in terms
of their maps. Although such an introduction is geometrical in its character the basic geometry
reduces here to the geometry of bags of dots, which is a geometry of a very special sort. A
genuine continuous geometry appears then only at the much more advanced level and in a much
more abstract form of Grothendieck topology and Grothendieck topos, which are systematically
treated in [177] and other books of the same advanced level. So it still remains, in my view,
a challenging task to follow Hilbert’s example and rewrite Euclidean or other simple intuitive
geometry in new categorical terms. Voevodsky Univalent Foundations discussed in 6.10 appear

to be a step in this direction.

Talking about elementary introductions to category theory and topos theory I would like also
to mention [185] by McLarty. The expression “elementary’ theory” in the title does not stand

for being easy to grasp by a beginner but is used in the technical sense of being a first-order
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theory in the sense of modern logic and the standard Formal Axiomatic Method. This book is a
systematic presentation of category and topos theory which fully complies with the requirement
of Formal Axiomatic Method and at the same time treats the internal logic of a given topos and
the idea of internal description of a given topos with its internal language. So for a logically-
minded philosopher habituated to formal methods this book may also serve as an introduction
into the subject. I would like to stress however that since in the present book I discuss specific
features of Lawvere’s axiomatic thinking, which fall apart from the standard Formal Axiomatic
Method, studying McLarty’s book does not replace studying Lawvere’s original works even if,

formally speaking, McLarty’s book fully covers the same subject.

Part IT is devoted to the notion of identity (in mathematics). This may appear as a side subject
with respect to the general theme of this book but it is actually not. A mathematical logicist
argues like this: in order to build a mathematical theory in an axiomatic form one needs first to
fix some basic logical notions like that of being the same (or being equal). Unless this is done
beforehand and quite independently from the content of any particular mathematical theory, so
the argument goes, no axiomatic construction of mathematical theories is possible. A similar
point can be made, of course, about other logical notions including logical connectives “and”,
“or”, the notion of logical inference, of truth-value, etc. This standard logicist argument does
not go through in the case of categorical logical, or at least it does not go through immediately,
because the categorical logic internalizes the logical notions, i.e., reconstructs them in terms of
a given mathematical theory (see 4.9 and 9.3). This applies to logical connectives, the relation
of inference, quantifiers, truth-values and to some other logical notions. It also applies to the
logical identity relation but this case turns to be both more difficult and more mathematically and
philosophically interesting than other cases. So I treat it systematically in the two consequent

Chapters making the Part IT.

In Chapter 5 I consider the question of identity /equality in mathematics in general beginning
with some naive observations and historical examples. In particular, I briefly consider Plato’s
view according to which the mathematical equality is a weak form of strict identity: while the
latter applies only the ideal world of Forms the former applies in the world of mathematics, which
takes an intermediate position between the world of immutable Forms and the world of changing
material beings. Plato’s theory is an echo of the modern mathematical structuralism discussed
later in Chapter 8 In Chapter 5 I also show the significance of discussions about identity in
mathematics in Frege’s and Russell’s works for establishing the logicist view on mathematics

in the end of the 19th and the beginning of the 20th century. Then I turn to more theoretical
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subjects including a discussion on classes and individuals, and a discussion of the distinction
between logical extension and logical intension. This Chapter resumes with a discussion on
Martin-Lof’s intuitionistic type theory [183] that provides a theory of identity types, which is
very non-trivial in the intensional case. I compare Martin-Lo6f’s approach to identity with Frege’s
approach and reconsider Frege’s famous Venus example through the optics of Martin-Lof’s type

theory.

Chapter 6 continues to treat the issue of identity but this time with new approaches coming from
category theory and some related fields. In the beginning of this Chapter I stress the conceptual
similarity and the conceptual difference between the logical notion of relation and geometrical
notion of transformation aka mapping or simply map. On this basis I re-introduce the notion of
category with a naive geometrical example, stress the geometrical origin of categorical thinking
and the relationships between category theory and Klein’s Erlangen Program. (I come back to
this topic in 8.6). Then I turn to more advanced geometrically motivated categories and show
how they realize the idea of identity as a map (rather than a relation). In particular, I consider
Bénabou’s fibered categories [16] and higher categories (aka m-categories) - first in an abstract
form and then in the geometrical form of homotopy categories. So I approach the hot subject of
homotopy type theory, which brings together identity types of Martin-Lof’s type theory and the
geometrical approaches to identity and the homotopical higher category theory. When I began
to study these two subjects about ten years ago the precise mathematical connection between
them was not yet established and the mathematical discipline of homotopy type theory did not
yet exist. So it was for me a great relief to learn that these ideas combine not only at the level of
speculative philosophy but also in precise mathematical terms. I conclude this Chapter with a
presentation of Voevodsky’s new foundations of mathematics that he calls Univalent Foundations
[245],246]. In Chapter 9 I refer to the Univalent Foundations as an example of a new form of

axiomatic presentation along with the example of Lawvere’s axiomatic topos theory.

As a general mathematical reading for Part IT I recommend Leinster’s book [167] on higher
category-theory, which has great pedagogical advantages, Granstrom’s book [79] on type theory,
which also provides a philosophical perspective on this theory, Jacob’s book [123] that stresses
the link between categorical logic and type theory. The homotopy type theory has been not yet

exposed in textbooks but there are very clear expository papers [9] and [7].

Last Part III of the book treats two different subjects, which fall under the scope of Hegel-
Lawvere’s distinction between objective and subjective features of logic and mathematics. In

Chapter 7 I discuss the issue of mathematical intuition from a historical perspective and argue

xvii



using some historical examples that mathematical intuitions change through the historical time
at least as rapidly as do mathematical concepts. The main purpose of this Chapter is to re-
fute the popular view according to which mathematics always develops by increasing its degree
of abstractness and according to which the highly abstract character of modern mathematical
concepts does not allow for a faithful intuitive representation in principle. I suggest an alterna-
tive picture of the historical development of mathematics where concepts and intuitions develop
side-by-side but sometimes the conceptual development takes over the intuitive development and

sometimes, on the contrary, the intuitive development takes over the conceptual one.

I expect that a phenomenologically-minded philosophical reader may object that what I discuss
is not the strict philosophical notion of intuition but rather a commonsensical meaning of the
word “intuition” as a bunch of helpful analogies borrowed from the everyday life or elsewhere. I
argue in this Chapter that the changing mathematical intuition that I describe qualifies at least
as intuition in Kant’s sense of the term. The lack of discussion of Husserl’s views is indeed a

significant lacuna of this Chapter that I cannot easily fix. So I leave it for a future work.

Although I wholly share Lawvere’s Hegelian view concerning the objective character of scientific
logic (which perfectly squares with Cassirer’s view on the place and the role of mathematics and
logic expressed in the above epigraph) I also stress the role of the subjective intuition because
it provides the necessary link that connects the pure mathematics to the individual sensual
experience to the scientific empirical methods to the whole body of empirical science. Without
such a link Hegel’s objective dialectical logic too easily turns into a new form of speculative
dogmatic metaphysics wholly detached from reality. One may suggest that since the dogmatic
dialectics is an obvious oxymoron it cannot refer to anything real. But the dialectical logic quite
rightly protects one from such naive conclusions made on abstract logical grounds: as a matter

of painful historical fact the examples of dogmatic misuse of philosophical dialectics are abound

1

In Chapter 8 I discuss structuralism including its mathematical variety. Considering structural-
ism as a suggestive idea rather than a system of stable philosophical views I argue against the
received view according to which category theory brings about a new variety of structuralism and
provides a new framework for developing structural mathematics. I recognize the role of struc-
tural thinking in the development of category theory and describe this role in this Chapter. In

particular, I elaborate on Eilenberg and Mac Lane’s idea of category theory as a continuation of

1Unlike the older forms of dogmatism the more recent dialectical dogmatism does not use any fixed system
of beliefs but enforces a permanent organized change of one’s beliefs on changing pragmatic grounds (political,
economical, etc.).
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Klein’s Erlangen Program [48]. This very analogy allows me to specify the crucial difference be-
tween Klein’s structural thinking and new categorical thinking: when groups are generalized up
to categories the notion of invariant structure is replaced by the notion of covariant or contravari-
ant functor. I argue that the structuralist thinking about functoriality in terms of preservation of
invariant structures is, generally, inappropriate; then I suggest a different philosophical view (or
rather another suggestive idea) where the notion of functoriality (i.e., of co- and contravariance)
becomes central. Although this conceptual development begins with a mere generalization of the
structuralist Erlangen Program it brings about a new view, which is very unlike the structuralist
view. In the end of this Chapter (8.8) I suggest a purely geometrical way of thinking about
categories alternative to the more convenient way of thinking about categories as categories of
structures. The basic idea here is thinking of geometrical objects as maps from types (of geo-
metrical objects) to spaces. I demonstrate this approach with some elementary examples from
the 19th century geometry. Thus in my suggested post-structuralist picture the notion of object

(this time understood as a map) becomes once again central.

The conceptual change described in Chapter 8 affects not only the choice of structures explored
with the Formal Axiomatic Method but also this method itself. So in the concluding Chapter 9
I make the long-promised attempt to describe the New Axiomatic Method more systematically.
I first describe the two basic functions of Axiomatic Method, which Lawvere calls the unification
and the concentration. Here I contrast the unificatory strategy of the New Method to the more
traditional unificatory strategy of Formal Axiomatic Method, which has a structuralist and a
logicist underpinning. Then I describe the concentration part, which turns to be more traditional
and in a new form reproduces some features of Euclid’s Axiomatic Method. The most original
part of the New Axiomatic Method is, of course, its logical part, which involves the notion of
internal logic. Generalizing on works of Lawvere and Voevodsky I describe here in general terms a
way of using the internal logic of some given category (which is construed in intuitive geometrical
terms at the first step of the axiomatic construction) for improving upon the construction of this
very category and providing it with some deductive structure. This way of using logic for building
mathematical theories suggests a new way of thinking about the role of logic in mathematical

theories, which is very unlike Hilbert’s and Tarski’s.

In my suggested approach logic is designed along with the rest of conceptual construction rather
than used as a ready-made foundation for making further mathematical constructions. One may
think that the freedom of making up logical calculi added to the freedom of making up new

axiomatic mathematical theories (assured already by Hilbert) only reinforce the inflation of the
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“metaphysical world of thought”. In fact the New Axiomatic Method prevents this inflation in
two different ways. First, by taking into account the objective meaning of the category of interest
(which can be, for example, a spatiotemporal category used in physics) and, second, by requiring
the relevant logic to be the internal logic of this given category. While the former feature is at
some degree also compatible with the standard Formal Axiomatic Method the latter feature is
a genuinely original contribution of the New Method.The New Method no longer reduces the
function of logical formalization to a logical censorship; instead logic is used here as a flexible

tool for the internal conceptual reconstruction.

An important part of my argument consists of pointing to Lawvere’s and Voevodsky’s works
as applications of this New Method, and stressing the fact that in both cases it allows for
a remarkable conceptual simplification and clarification of otherwise difficult and conceptually
problematic theories. Since in both cases the relevant logic is internal with respect to its base
category this logic inherits the objective meaning of this base category. This allows me to
suggest that the New Axiomatic Method may help to bridge the gap between mathematics and
physics created and justified by the standard Formal Axiomatic Method and by the logicist
view on mathematics that underpins this standard method. Notwithstanding my critique of
Hilbert’s version of Axiomatic Method developed throughout in this book, I believe (contra
Arnold) that Hilbert was perfectly right when he described this method as “the basic instrument
of all research” ([100], p. 467) and when he said that “[tJo proceed axiomatically means [..]

nothing else than to think with consciousness” ([102] p. 1120)
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Part 1

A Brief History of the Axiomatic

Method






In his famous address “Axiomatic Thought” delivered before the Swiss Mathematical Society in

Zurich in 1917 Hilbert says:

If we consider a particular theory more closely, we always see that a few distinguished
propositions of the field of knowledge underlie the construction of the framework of
concepts, and these propositions then suffice by themselves for the construction, in
accordance with logical principles, of the entire framework. [..] These fundamental
propositions can be regarded [..] as the axioms of the individual fields of knowledge :
the progressive development of the individual field of knowledge then lies solely in the
further logical construction of the already mentioned framework of concepts. This
standpoint is especially predominant in pure mathematics. [.. A]nything at all that
can be the object of scientific thought becomes dependent on the axiomatic method,

an thereby indirectly on mathematics. ([101], p. 1108-1115)
In a different paper the author makes a further epistemological claim:

The axiomatic method is and remains the indispensable tool, appropriate to our
minds, for all exact research in any field whatsoever: it is logically incontestable and
at the same time fruitful. [..] To proceed axiomatically means in this sense nothing

else than to think with consciousness. ([102] p. 1120)

Although Hilbert’s enthusiasm about the Axiomatic Method and his high esteem of the role of this
method in science may be not universally accepted today, the modern notion of axiomatic theory
remains shaped by Hilbert’s works; his Grundlagen der Geometrie (Foundations of Geometry)
first published in 1899 [109] still serves as a paradigm of axiomatic mathematical theory. As
soon as this method is understood in the above general terms one may think that it has been
practiced by mathematicians since the early days of their discipline. Indeed in the Introduction

to his Foundations of Geometry of 1899 [109] Hilbert states the following:

Geometry, like arithmetic, requires for its logical development only a small number of
simple, fundamental principles. These fundamental principles are called the axioms
of geometry. The choice of the axioms and the investigation of their relations to
one another is a problem which, since the time of Euclid, has been discussed in
numerous excellent memoirs to be found in the mathematical literature. This problem
is tantamount to the logical analysis of our intuition of space. (Hereafter [109] is

quoted in English translation [99])

Notice Euclid’s name is the above quote. Evidently Hilbert had in mind Euclid’s FElements



when he prepared his Foundations of Geometry for publication. Hilbert aims at developing
Euclidean geometry on a wholly new conceptual basis. 2 In this sense Hilbert’s Foundations
of 1899 qualifies as a fairly revolutionary work. However one should not forget that rewriting
geometrical chapters of Euclid’s Elements in new terms is itself an old and well-establish tradition
in the history of mathematical thought. Hilbert’s Foundations of Geometry (as well as Bourbaki’s
open-ended Elements of Mathematics [23] produced later in the 20th century) make part of this
long-term tradition and can be compared with such groundbreaking works of earlier generations
as, for example, Restored Fuclid by Borelli (1658) [21], New Elements of Geometry by Arnauld
(1667)[5] and Euclid Freed from All Flaws by Saccheri (1733)[76]. Thus the Hilbertian revolution
that still strongly influences today’s mathematical practice is certainly not the first revolution

of this sort and hopefully not the last one.

Hilbert thinks of his new version of Axiomatic Method as a development of and improvement
over Euclid’s method of theory-building. Surely Hilbert is aware about the fact that his method
is not the same as Euclid’s; we shall see that Hilbert in fact quite precisely points to the key
difference (see 2.6). The purpose of Chapter 1 is to describe this difference more precisely and
more systematically. In Chapter 2, I focus on Hilbert’s work and compare Hilbert’s approach
to Euclid’s. In Chapter 3, I consider applications of Hilbert’s Axiomatic Method in the 20th
century mathematics and, in particular, in Bourbaki. In Chapter 4, I discuss Lawvere’s work
and show how some basic features of Euclid’s approach deliberately ignored by Hilbert get a new

life in today’s categorical logic.

2T agree with David Rowe when he says that “The reform of geometry that [Hilbert] envisaged in Grundlagen
der Geometrie was primarily conceived as a renewal of the fundamental structures of classical Euclidean geometry.”
([209], p.71)



Chapter 1

Euclid: Doing and Showing

Reading older mathematical texts always involves a hermeneutical dilemma: in order to make
sense of the mathematical content of a given old text one wants to interpret it in modern terms;
in order to see the difference between the modern mathematical thinking and older ways of
mathematical thinking one wants to avoid anachronisms and understand the old text in its own
terms [238]. Any scholar studying older mathematics needs to find a way between the Scylla
of “antiquarianism” that seeks the scholar’s conversion into a person living during a different
historical epoch, and the Charybdis of radical “presentism” that finds in older texts nothing
but a minor part of today’s standard mathematical curricula and wholly ignores the historical
change of basic patterns of mathematical thinking ! . My way through the channel is the
following. I read Euclid’s text verbatim (relying on Heiberg’s edition of the original Greek
[52] and using Fitzpatrick’s new English translation [51]), consider its most important modern
interpretations (including overtly anachronistic ones), criticize some of these interpretations on
the basis of textual evidences, and finally suggest some alternative interpretations. In order to
prevent the risk of losing the main argument behind the following historical details I formulate
now my general conclusion. Contrary to popular opinion Euclid’s geometry is not a system of
propositions some of which have a special status of axioms while some other are derived from the
axioms according to certain rules of logical inference. It can be rather described after Friedman
as “a form of rational argument” ([68], p. 94) 2, where some non-propositional content (including

non-propositional first principles) is indispensable. Precipitating what follows (see particularly

1Being between Scylla and Charybdis is an idiom deriving from Greek mythology. Scylla and Charybdis were
mythical sea monsters noted by Homer. Scylla was rationalized as a rock shoal (described as a six-headed sea
monster) on the Italian side of the strait and Charybdis was a whirlpool off the coast of Sicily. They were
regarded as a sea hazard located close enough to each other that they posed an inescapable threat to passing
sailors; avoiding Charybdis meant passing too close to Scylla and vice versa. (after WikipediA)

2See the full quote from Friedman in the end of Section 2.5.



2.6) let me mention that certain non-propositional principles also make part of modern formal
theories in the form of syntactic rules. As we shall now see in Euclid the non-propositional aspect

of mathematical reasoning plays a more prominent role.

1.1 Demonstration and “Monstration”

All Propositions of Euclid’s Elements (with few easily understandable exceptions) fit into the

scheme described by Proclus in his Commentary [196] as follows:

Every Problem and every Theorem that is furnished with all its parts should contain
the following elements: an enunciation, an exposition, a specification, a construction, a
proof, and a conclusion. Of these enunciation states what is given and what is being
sought from it, a perfect enunciation consists of both these parts. The exposition
takes separately what is given and prepares it in advance for use in the investigation.
The specification takes separately the thing that is sought and makes clear precisely
what it is. The construction adds what is lacking in the given for finding what is
sought. The proof draws the proposed inference by reasoning scientifically from the
propositions that have been admitted. The conclusion reverts to the enunciation,

confirming what has been proved. ([196], p.203, italic is mine)

It is appropriate to notice here that the term “proposition”, which is traditionally used in trans-
lations as a common name of Euclid’s problems and theorems, is not found in the original text
of the Elements: Euclid numerates these things throughout each Book without naming them by
any common name. (The reader will shortly see why this detail is important.) The difference be-
tween problems and theorems is explained in 1.4 below. Let me now show how Proclus’ scheme
applies to Proposition 5 of the First Book (Theorem 1.5), which is a well-known theorem about
angles of the isosceles triangle. References in square brackets are added by the translator; some of
them will be discussed later on. Words in round brackets are added by the translator for stylistic
reason. Words in angle brackets are borrowed from the above Proclus’ quote. Throughout this

Chapter I write these words in italic when I use them in Proclus’ specific sense.

[enunciation:]

For isosceles triangles, the angles at the base are equal to one another, and if the
equal straight lines are produced then the angles under the base will be equal to one

another.



[exposition]:

Let ABC be an isosceles triangle having the side AB equal to the side AC; and let
the straight lines BD and C'E have been produced further in a straight line with AB

and AC (respectively). [Post. 2].

Fig. 1.1

[specification:]

I say that the angle ABC is equal to ACB, and (angle) CBD to BCE.

[construction:]

For let a point F' be taken somewhere on BD, and let AG have been cut off from the
greater AF, equal to the lesser AF [Prop. 1.3]. Also, let the straight lines FC, GB

have been joined. [Post. 1]

[proof |

In fact, since AF' is equal to AG, and AB to AC, the two (straight lines) FA, AC
are equal to the two (straight lines) GA, AB, respectively. They also encompass a
common angle FAG. Thus, the base FC is equal to the base GB, and the triangle

AFC will be equal to the triangle AGB, and the remaining angles subtended by the
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equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. (That
is) ACF to ABG, and AFC to AGB. And since the whole of AF is equal to the
whole of AG, within which AB is equal to AC, the remainder BF' is thus equal to
the remainder CG [Ax.3]. But F'C was also shown (to be) equal to GB. So the two
(straight lines) BF, F'C are equal to the two (straight lines) CG, GB respectively,
and the angle BFC (is) equal to the angle CGB, while the base BC' is common to
them. Thus the triangle BFC will be equal to the triangle CGB, and the remaining
angles subtended by the equal sides will be equal to the corresponding remaining
angles [Prop. 1.4]. Thus FBC is equal to GCB, and BCF to CBG. Therefore,
since the whole angle ABG was shown (to be) equal to the whole angle AC'F, within
which CBG is equal to BCF, the remainder ABC is thus equal to the remainder
ACB [Ax. 3]. And they are at the base of triangle ABC. And F'BC was also shown
(to be) equal to GCB. And they are under the base.

[conclusion:]

Thus, for isosceles triangles, the angles at the base are equal to one another, and
if the equal sides are produced then the angles under the base will be equal to one

another. (Which is) the very thing it was required to show.

An obvious difference between Proclus’ analysis of the above theorem and its usual modern analy-
sis is the following. For a modern reader the proof of this theorem begins with Proclus’ ezposition
and includes Proclus’ specification, construction and proof. Thus for Proclus the proof is only a
part of what we call today the proof of this theorem. Also notice that Euclid’s theorems conclude
with the words “which ... was required to show” (as correctly translates Fitzpatrick) but not with
the words “what it was required to prove” (as inaccurately translates Heath [86]). The standard
Latin translation of this Euclid’s formula as quod erat demonstrandum is also inaccurate. These
inaccurate translations conflate two different Greek verbs: “apodeiknumi” (English “to prove”,
Latin “demonstrare”) and “deiknumi” (English “to show”, Latin “monstrare”). The difference
between the two verbs can be clearly seen in the two Aristotle’s Analytics: Aristotle uses the
verb “apodeiknumi” and the derived noun “apodeixis” (proof) as technical terms in his syllogistic
logic, and he uses the verb “deiknumi” in a broader and more informal sense when he discusses
epistemological issues (mostly in the Second Analytics). Without trying to trace here the history
of Greek logical and mathematical terminology and speculate about possible influences of some

Greek writers on some other writers, I would like to stress the remarkable fact that Aristotle’s



use of verbs “deiknumi” and “apodeiknumi” agrees with Euclid’s and Proclus’. In my view this
fact alone is sufficient for taking seriously the difference between the two verbs and distinguishing

between proof and “showing” (or otherwise between demonstration and monstration)3.

One may think that the difference between the current meaning of the word “proof” in today’s
mathematics and logic and the meaning of Proclus’ proof (Greek “apodeixis”) is a merely ter-
minological issue, which is due to difficulties of translation from Greek to English. I shall try
now to show that this terminological difference points on a deeper problem, which is not merely
linguistic. In today’s logic the word “proof” stands for a logical inference of certain conclusion
from some given premises. In fact this is what by and large was meant by proof also by Aristotle
and Proclus. Indeed, looking at the proof (in Proclus’ sense) of Euclids Theorem 1.5 we see
that it also qualifies as a proof in the modern sense: we have here a number of premises (which
I make explicit in the next Section) and certain conclusions derived from those premises. It
is irrelevant now whether or not this particular inference is valid according to today’s logical
standards; what I want to stress here is only the general setting that involves some premises,
an inference (probably invalid) and some conclusions. This core meaning of the word “proof”

(Greek “apodeixis”) hardly changed since Proclus’ times.

So we get a problem, which is clearly not only terminological: Is it indeed justified to describe
the exposition, the specification and the construction as elements of the proof or one should
rather follow Proclus and consider these things as independent constituents of a mathematical

theorem?

The question of logical significance of the exposition, the specification and the construction in
Euclid’s geometry has been discussed in the literature; in what follows I shall briefly describe
some tentative answers to it. However before doing this I would like to stress that this question
may be ill-posed to begin with. As far as one assumes, first, that the theory of Euclid’s Elements
is (by and large) sound and, second, that any sound mathematical theory is an axiomatic theory
in the modern sense, then, in order to make these two assumptions mutually compatible, one
has to describe the exposition, the specification and the construction of each Euclid’s theorem as
parts of the proof of this theorem and specify their logical role and their logical status. I shall not
challenge the usual assumption according to which Euclid’s mathematics is by and large sound. (I

say “by and large” in order to leave some room for possible revisions and corrections of Euclid’s

3As far as mutual influences are concerned two things are certain: (i) Proclus read Aristotle and (ii) Aristotle
had at least a basic knowledge of the mathematical tradition, on which Euclid later elaborated in his Elements
(as Aristotle’s mathematical examples clearly show [87]). It remains unclear whether Aristotle’s work could
influence Euclid. In my view this is unlikely. However Aristotle’s logic certainly played an important role in later
interpretations and revisions of Euclid’s Flements. I leave this interesting issue outside of the scope of this book.



arguments and thus avoid controversies about the question whether a given interpretation of
Euclid is authentic or not. Although I pay more attention to textual details than it is usually
done in modern logical reconstructions of Euclid’s reasoning, I am not going to criticize these
reconstructions by pointing to their anachronistic character.) However I shall challenge the other
assumption according to which any sound mathematical theory is an axiomatic theory in the
modern sense. Since I do not take this latter assumption for granted I do not assume from the
outset that the problematic elements of Euclid’s reasoning (the exposition, the specification and
the construction) play some logical role, which only needs to be made explicit and appropriately
understood. In what follows I try to describe how these elements work without making about
them any additional assumptions and only then decide whether the role of these elements qualifies

as logical or not.

1.2 Are Euclid’s Proofs Logical?

Let’s look at Euclid’s Theorem 1.5 more attentively. I begin its analysis with its proof. Among
the premisses of this proof, one may easily identify Axiom (Common Notion) 3 according to

which

(Ax.3): If equal things are subtracted from equal things then the remainders are

equal
and the preceding Theorem 1.4 according to which

(Prop.1.4): If two triangles have two corresponding sides equal, and have the angles
enclosed by the equal sides equal, then they will also have equal bases, and the two
triangles will be equal, and the remaining angles subtended by the equal sides will

be equal to the corresponding remaining angles.

I shall not comment on the role Theorem 1.4 in this proof (which seems to be clear) but say few

things about the role of the Axiom 3.

Here is how exactly the Axiom (Common Notion) 3 is used in the above Euclid’s proof. First,

by construction we have
Conl: BF = AF — AB and Con2: CG = AG — AC

which is tantamount to saying that point B lays between points A, F' and point C' lays between

points A, G). Second, by hypothesis we have
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Hyp: AB = AC
and once again by construction
Con3: AF = AG

Now we see that we have got the situation described in Ax.3: equal things are subtracted from

equal things. Using this Axiom we conclude that BF = CG.

Notice that Ax.3 applies to all “things” (mathematical objects), for which the relation of equality
and the operation of subtraction make sense. In Euclid’s mathematics this relation and this
operation apply not only to straight segments and numbers but also to geometrical objects of
various sorts including figures, angles and solids. Since Euclid’s equality is not interchangeable
with identity I use for the two relations two different symbols: namely I use the usual symbol
for Euclid’s equality (even if this equality is not quite usual), and use symbol = for identity. My

use of symbols + and — is self-explanatory?.

The other four Euclid’s Axioms (not to be confused with Postulates!) have the same character.
This makes Fuclid’s Axioms in general, and Ax.3 in particular, very unlike premises like Con1-3
and Hyp, so one may wonder whether the very idea of treating these things on equal footing (as
different premises of the same inference) makes sense. More precisely we have here the following

choice. One option is to interpret Ax.3 as the following implication:
{la=b-c)&(d=e— fl&b=d)&(c=f)} = (a=1D)

and then use it along with Con1-3 and Hyp for getting the desired conclusion through modus
ponens and other appropriate rules. This standard analysis involves a fundamental distinction
between premises and conclusion, on the one hand, and rules of inference, on the other hand.
It assumes that in spite of the fact that Euclid (as most of other mathematicians of all times)
remains silent about logic, his reasoning nevertheless follows some implicit logical rules. The
purpose of logical analysis in this case is to make this “underlying logic“ (as some philosophers

like to call it) explicit.

The other option that I have in mind is to interpret Ax.3 itself as a rule rather than as a premiss.

Following this rule, which can be pictures as follows:

(a=b—2c),(d=e—f),(b=4d),(c=f)

4The difference A — B of two figures A, B is a figure obtained through “cutting” B out of A; the sum A+ B
is the result of concatenation of A and B. These operations are not defined up to congruence of figures (for there
are, generally speaking, many possible ways, in which one may cut out one figure from another) but, according to
Euclid’s Axioms, these operations are defined up to Euclid’s equality. This shows that Euclid’s equality is weaker
than congruence: according to Axiom 4 congruent objects are equal but, generally, the converse does not hold.
In the case of (plane) figures Euclid’s equality is equivalent to the equality (in the modern sense) of their air.
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(Ax.3)

one derives from Conl-3 and Hyp the desired conclusion. So interpreted Ax.3 hardly qualifies
as a logical rule because it applies only to propositions of a particular sort (namely, of the
form X =Y where X,Y are some mathematical objects of appropriate types). This Axiom
cannot help one to prove that Socrates is mortal. Nevertheless the domain of application of
this rule is quite vast and covers the whole of Euclid’s mathematics. An important advantage
of this analysis is that it doesn’t require one to make any assumption about hidden features of
Euclid’s thinking: unlike the distinction between logical rules and instances of applications of
these rules the distinction between axioms and premises like Conl-3 and Hyp is explicit in

Euclid’s Elements.

There is also a historical reason to prefer the latter reading of Euclid’s Common Notions. Aris-
totle uses the word “axiom” interchangeably with the expressions “common notions”, “common
opinions” or simply “commons” for what we call today logical laws or logical principles but not
for what we call today axioms. Moreover in this context he systematically draws an analogy
between mathematical common notions and his proposed logical principles (laws of logic). This
among other things provides an important historical justification for calling Euclid’s Common
Notions by the name of Axioms. It is obvious that mathematics in general and mathematical
common notions (axioms) in particular serve for Aristotle as an important source for developing
the very idea of logic. Roughly speaking Aristotle’s thinking, as I understand it, is this: behind
the basic principles of mathematical reasoning spelled out through mathematical common no-
tions (axioms) there are other yet more general principles relevant to reasoning about all sorts of
beings and not only about mathematical objects. The fact that Euclid, according to the estab-
lished chronology, is younger than Aristotle by some 25 years (Euclid’s dates unlike Aristotle’s
are only approximate) shouldn’t confuse one. While there is no strong evidence of the influence
of Aristotle’s work on Euclid, the influence on Aristotle of the same mathematical tradition, on
which Euclid elaborated, is clearly documented in Aristotle’s writings themselves. In particu-
lar, Aristotle quotes Euclid’s Ax.3 (which, of course, Aristotle could know from another source)

almost verbatim °.

5Here are some quotes:

By first principles of proof [as distinguished from first principles in general] I mean the common
opinions on which all men base their demonstrations, e.g. that one of two contradictories must be
true, that it is impossible for the same thing both be and not to be, and all other propositions of
this kind. (Met. 996b27-32, Heath’s translation, corrected)

Here Aristotle refers to a logical principle as “common opinion”. In the next quote he compares mathematical
and logical axioms:

We have now to say whether it is up to the same science or to different sciences to inquire into what
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However important Aristotle’s argument in the history of Western thought may be, there is no
reason to take it for granted every time when we try today to interpret Euclid’s Elements or
any other old mathematical text. Whatever is one’s philosophical stance concerning the place of
logical principles in human reasoning one can see what kind of harm can be made if Aristotle’s
assumption about the primacy of logical and ontological principles is taken straightforwardly and
uncritically: one treats Euclid’s Axioms on equal footing with premisses like Con1-3 and Hyp
and so misses the law-like character of the Axioms. Missing this feature doesn’t allow one to see

the relationships between Greek logic and Greek mathematics, which I just sketched.

Having said that I would like to repeat that Euclid’s proof (apodeixis) is the part of Euclid’s
theorems, which more resembles what we today call proof (in logic) than other parts Euclid’s
theorems. For this reason in what follows I shall call inferences in Fuclid’s proofs, which are based
on Axioms, protological inferences and distinguish them from inferences of another type that I
shall call geomnetrical inferences. This analysis is not incompatible with the idea (going back to
Aristotle) that behind Euclid’s protological and geometrical inferences there are inferences of a
more fundamental sort, that can be called logical in the proper sense of the word. However I claim
that Euclid’s text as it stands provides us with no evidence in favor of this strong assumption.
One can learn Euclid’s mathematics and fully appreciate its rigor without knowing anything
about logic just like Moliere’s M. Jourdain could well express himself long before he learned

anything about prose!

Whether or not the science of logic really helps one to improve on mathematical rigor - or this is
rather the mathematical rigor that helps one to do logic rigorously - is a controversial question
that I shall discuss throughout this book and suggest an answer only in the last Chapter. The

purpose of my present reading of Euclid is at the same time more modest and more ambitious

in mathematics is called axioms and into [the general issue of] essence. Clearly the inquiry into
these things is up to the same science, namely, to the science of the philosopher. For axioms hold of
everything that [there] is but not of some particular genus apart from others. Everyone makes use
of them because they concern being qua being, and each genus is. But men use them just so far as
is sufficient for their purpose, that is, within the limits of the genus relevant to their proofs. Since
axioms clearly hold for all things qua being (for being is what all things share in common) one who
studies being qua being also inquires into the axioms. This is why one who observes things partly
[=who inquires into a special domain] like a geometer or a arithmetician never tries to say whether
the axioms are true or false. (Met. 1005a19-28, my translation)

Here is the last quote where Aristotle refers to Ax.3 explicitly:

Since the mathematician too uses common [axioms] only on the case-by-case basis, it must be
the business of the first philosophy to investigate their fundamentals. For that, when equals are
subtracted from equals, the remainders are equal is common to all quantities, but mathematics
singles out and investigates some portion of its proper matter, as e.g. lines or angles or numbers,
or some other sort of quantity, not however qua being, but as [...] continuous. (Met. 1061b, my
translation)

The “science of philosopher” otherwise called the “first philosophy” is Aristotle’s logic, which in his understanding
is closely related to (if not indistinguishable from) what we call today ontology. After Alexandrian librarians we
call today the relevant collection of Aristotle’s texts by the name of metaphysics and also use this name for a
relevant philosophical discipline.
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than the purpose of logical analysis. It is more modest because this reading doesn’t purport
to assess Euclid’s reasoning from the viewpoint of today’s mathematics and logic but aims at
reconstructing this reasoning in its authentic archaic form. It is more ambitious because it doesn’t
take the today’s viewpoint for granted but aims at reconsidering this viewpoint by bringing it

into a historical perspective.

1.3 Instantiation, Objecthood and Objectivity

Let us now see where the premises Hyp and Con 1-3 come from. As I have already mentioned
they actually come from two different sources: Hyp is assumed by hypotheis while Con 1-3 are

assumed by construction. 1 shall consider here these two cases one after the other.

The notion of hypothetic reasoning is an important extension of the core notion of axiomatic
theory outlined above; it is well-treated in the literature and I shall not cover it here in full.
I shall consider only one particular aspect of hypothetical reasoning as it is present in Euclid.
The hypothesis that validates Hyp, informally speaking, amounts to the fact that Theorem 1.5
tells us something about isosceles triangles (rather than about objects of another sort). The
corresponding definition (Definition 1.20) tells us that two sides of the isosceles triangle are
equal. However to get from here to Hyp one needs yet another step. The enunciation of
Theorem 1.5 refers to isosceles triangles in general. But Hyp that is involved into the proof
of this Theorem concerns only particular triangle ABC'. Notice also that the proof concludes
with the propositions ABC = ACB and FBC = GCB (where ABC, ACB, FBC and GCB
are angles), which also concern only particular triangle ABC'. This conclusion differs from the
following conclusion (of the whole Theorem), which almost verbatim repeats the enunciation

and once again refers to isosceles triangles and their angles in general terms.

The wanted step that allows Euclid to proceed from the enunciation to Hyp is made in the
exposition of this Theorem, which introduces triangle ABC as an “arbitrary representative” of
isosceles triangles (in general). In terms of modern logic this step can be described as the uni-

versal instantiation:

VeP(x) = P(a/x)

where P(a/x) is the result of the substitution of individual constant a at the place of all free
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occurrences of variable x in P(z). The same notion of universal instantiation allows for interpret-
ing Euclid’s specification in the obvious way. The reciprocal backward step that allows Euclid to
obtain the conclusion of the Theorem from the conclusion of the proof can be similarly described

as the universal generalization :

P(a) = VzP(z)

(which is a valid rule only under certain conditions that I skip here).

As long as the exposition and the specification are interpreted in terms of the universal instanti-
ation these operations are understood as logical inferences and, accordingly, as element of proof
in the modern sense of the word. A somewhat different - albeit not wholly incompatible - in-
terpretation of Euclid’s exposition and specification can be straightforwardly given in terms of
Kant’s transcendental aesthetics and transcendental logic developed in his Critique of Pure Rea-
son [130]. Kant thinks of the traditional geometrical exposition not as a logical inference of one
proposition from another but as a “general procedure of the imagination for providing a concept
with its image”; a representation of such a general procedure Kant calls a schema of the given
concept (A140). Thus for Kant any individual mathematical object (like triangle ABC) always
comes with a specific rule that one follows constructing this object in one’s imagination and
that provides a link between this object and its corresponding concept (the concept of isosceles
triangle in our example). According to Kant the representation of general concepts by imaginary
individual objects (which Kant for short also describes as “construction of concepts”) is the prin-
cipal distinctive feature of mathematical thinking, which distinguishes it from a philosophical

speculation.

Philosophical cognition is rational cognition from concepts, mathematical cognition
is that from the construction of concepts.” But to construct a concept means to
exhibit a priori the intuition corresponding to it. For the construction of a concept,
therefore, a non-empirical intuition is required, which consequently, as intuition, is an
individual object, but that must nevertheless, as the construction of a concept (of a
general representation), express in the representation universal validity for all possi-
ble intuitions that belong under the same concept, either through mere imagination,
in pure intuition, or on paper, in empirical intuition.... The individual drawn figure
is empirical, and nevertheless serves to express the concept without damage to its

universality, for in the case of this empirical intuition we have taken account only of
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the action of constructing the concept, to which many determinations, e.g., those of
the magnitude of the sides and the angles, are entirely indifferent, and thus we have
abstracted from these differences, which do not alter the concept of the triangle.

Philosophical cognition thus considers the particular only in the universal, but math-
ematical cognition considers the universal in the particular, indeed even in the indi-

vidual... (A713-4/B741-2).

Kant’s account can be understood as a further explanation of what the instantiation of math-
ematical concepts amounts to; then one may claim that the Kantian interpretation of Euclid’s
exposition and specification is compatible with its interpretation as the universal instantiation in
the modern sense. However the Kantian interpretation doesn’t suggest by itself to interpret the
instantiation as a logical procedure, i.e., as an inference of a proposition from another proposi-
tion. As the above quote makes it clear Kant describes the instantiation as a cognitive procedure

of a different sort.

Now coming back to Euclid we must first of all admit that the exposition and the specification of
Theorem 1.5 as they stand are too concise for preferring one philosophical interpretation rather
than another. Euclid introduces an isosceles triangle through Definition 1.20 providing no rule
for constructing such a thing. (This example may serve as an evidence against the often-repeated
claim that every geometrical object considered by Euclid is supposed to be constructed on the
basis of Postulates beforehand.) Nevertheless given the important role of constructions in Euclid’s
geometry, which I explain in the next Section, the idea that every geometrical object in Euclid
has an associated construction rule, appears very plausible. There is also another interesting
textual feature of Euclid’s specification that in my view makes the Kantian interpretation more

plausible.

Notice the use of the first person in the specification of Theorem 1.5 : “I say that ....”. In Elements
Euclid uses this expression systematically in the specification of every theorem. Interpreting the
specification in terms of universal instantiation one should, of course, disregard this feature as
merely rhetorical. However it may be taken into account through the following consideration.
While the enunciation of a theorem is a general proposition that can be best understood & la
Frege in the abstraction from any human or inhuman thinker, i.e., independently of any thinking
subject, who might believe this proposition, assert it, refute it, or do anything else about it,
the core of Euclid’s theorems (beginning with their exposition) involves an individual thinker
(individual subject) that cannot and should not be wholly abstracted away in this context. When

Euclid enunciates a theorem this enunciation does not involve - or at least is not supposed to
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involve - any particularities of Euclid’s individual thinking; the less this enunciation is affected
by Euclid’s (or anyone else’s) individual writing and speaking style the better. However the
exposition and thespecification of the given theorem essentially involve an arbitrary choice of
notation (“Let ABC be an isosceles triangle...”), which is an individual choice made by an
individual mathematician (namely, made by Euclid on the occasion of writing his Elements). This
individual choice of notation goes on par with what we have earlier described as instantiation, i.e.
the choice of one individual triangle (triangle ABC') of the given type, which serves Euclid for
proving the general theorem about all triangles of this type. The ezposition can be also naturally
accompanied by drawing a diagram, which in its turn involves the choice of a particular shape
(provided this shape is of the appropriate type), to leave alone the choices of its further features

like color, etc.

Thus when in the specification of Theorem 1.5 we read “I say that the angle ABC' is equal
to AC'B” we indeed do have good reason to take Euclid’s wording seriously. For the sentence
“angle ABC' is equal to AC'B” unlike the sentence “for isosceles triangles, the angles at the
base are equal to one another” has a feature that is relevant only to one particular presentation
(and to one particular diagram if any), namely the use of letters A, B,C rather than some
others 6. The words “I say that ...” in the given context stress this situational character of the
following sentence “angle ABC'is equal to AC'B”. What matters in these words is, of course, not
Euclid’s personality but the reference to a particular act of speech and cognition of an individual
mathematician. Proving the same theorem on a different occasion Euclid or anybody else could

use other letters and another diagram of the appropriate type.

A competent reader of Euclid is supposed to know that the choice of letters in Euclid’s notation
is arbitrary and that Euclid’s reasoning does not depend of this choice. The arbitrary character
of this notation should be distinguished from the general arbitrariness of linguistic symbols in
natural languages. What is specific for the case of exposition and specification is the fact that here
the arbitrary elements of reasoning (like notation) are sharply distinguished from its invariant
elements. To use Kant’s term we can say that behind the notion according to which the choice
of Euclid’s notation is arbitrary (at least at the degree that letters used in this notation are
permutable) and according to which the same reasoning may work equally well with different
diagrams (provided all of them belong to the same appropriate type) there is a certain invariant

schema that sharply limits such possible choices. This schema not simply allows for making some

6 Although the choice of letters in Euclid’s notation is arbitrary the system of this notation is not. This
traditional geometrical notation has a relatively stable and rather sophisticated syntax, which I briefly describe
in what follows.
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arbitrary choices but requires every possible choice in the given reasoning to be wholly arbitrary.
This requirement is tantamount to saying that subjective reasons behind choices made by an
individual mathematician for presenting a given mathematical argument are strictly irrelevant
to the “argument itself” (in spite of the fact that the argument cannot be formulated without
making such choices). In general talks in natural languages there is no similar sharp distinction
between arbitrary and invariant elements . When I write this paper I can certainly change some
wordings without changing the sense of my argument but I am not in a position to describe
precisely the scope of such possible changes and identify the intended “sense” of my argument
with a mathematical rigor. This is because my present study is philosophical and historical but

not purely mathematical.

Thus Euclid’s exposition serves for the formulation of a given universal proposition in terms,
which are suitable for a particular act of mathematical cognition made by an individual mathe-
matician. This aspect of the exposition is not accounted for by the modern notion of universal
instantiation. It may be argued that this aspect of the exposition needs not be addressed in
a logical analysis of Euclid’s mathematics that aims at explication of the objective meaning of
Euclid’s reasoning and may well leave aside cognitive aspects of this reasoning. I agree that this
latter issue lies out of the scope of logical analysis in the usual sense of the term but I disagree
that the objective meaning of Euclid’s reasoning can be properly understood without addressing
this issue. Euclid’s mathematical reasoning is objective due to a mechanism that allows one to
make universally valid inferences through one’s individual thinking. Whatever the “objective

meaning” might consist of this mechanism must be taken into account.

1.4 Proto-Logical Deduction and Geometrical Production

Remind that the proof of Euclid’s Theorem 1.5 uses not only premiss Hyp assumed “by hy-
pothesis” but also premisses Con 1-3 (as well as a number of other premisses of the same type)
assumed “by construction”. I turn now to the question about the role of Euclid’s constructions
(which, but the way, are ubiquitous not only in geometrical but also in arithmetical Books of the
Elements) and more specifically consider the question how these constructions support certain

premisses that are used in following proofs.

As it is well-known Euclid’s geometrical constructions are supposed to be realized “by ruler and
compass”. In the Elements this condition is expressed in the Flements through the following

three
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Postulates:
1. Let it have been postulated to draw a straight-line from any point to any point.
2. And to produce a finite straight-line continuously in a straight-line.

3. And to draw a circle with any center and radius.

(I leave out of my present discussion two further Euclid’s Postulates including the controversial

Fifth Postulate.)

Before I consider popular interpretations of these Postulates and suggest my own interpretation
let me briefly discuss the very term “postulate”, which is traditionally used in English translations
of Euclid’s Flements. Fitzpatrick translates Euclid’s verb “aitein” by English verb “to postulate”
following the long tradition of Latin translations, where this Greek verb is translated by Latin
verb “postulare”. However according to today’s standard dictionaries the modern English verb
“to postulate” does not translate the Greek verb “aitein” and the the Latin verb “postulare”
in general contexts: the modern dictionaries translate these verbs into “to demand” or “to ask
for”. This clearly shows that the meaning of the English verb “to postulate” that derives from

Latin “postulare” changed during its lifetime”.

Aristotle describes a postulate (aitema) as what “is assumed when the learner either has no
opinion on the subject or is of a contrary opinion” (An. Post. 76b); further he draws a contrast
between postulates and hypotheses saying that the latter appear more plausible to the learner
than the former (ibid.). It is unnecessary for my present purpose to go any further into this
semantical analysis trying to reconstruct an epistemic attitude that Euclid might have in mind
“demanding” the reader to take his Postulates for granted. The purpose of the above philological
remark is rather to warn the reader that the modern meaning of the English word “postulate”
can easily mislead when one tries to interpret Euclid’s Postulates adequately. So I suggest to
read Euclid’s Postulates as they stand and try to reconstruct their meaning from their context
forgetting for a while what one has learned about the meaning of the term “postulate” from

modern sources.

FEuclid’s Postulates are usually interpreted as propositions of a certain type and on this basis

are qualified as axioms in the modern sense of the term. There are at least two different ways

I reproduce here Fitzpatrick’s footnote about Euclid’s expression “let it be postulated”:

The Greek present perfect tense indicates a past action with present significance. Hence, the 3rd-
person present perfect imperative Hitesthw could be translated as “let it be postulated”, in the
sense “let it stand as postulated”, but not “let the postulate be now brought forward”. The literal
translation “let it have been postulated” sounds awkward in English, but more accurately captures
the meaning of the Greek.
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of rendering Postulates in a propositional form. I shall demonstrate them at the example of
Postulate 1. This Postulate can be interpreted either as the following modal proposition:
(PM1): given two different points it is always possible to drawing a (segment of) straight-line
between these points

or as the following ezistential proposition:

(PE1): for any two different points there exists a (segment of) straight-line lying between these

points.

Propositional interpretations of Euclid’s Postulates allow one to present Euclid’s geometry as
an axiomatic theory in the modern sense of the word and, more specifically, to present Euclid’s
geometrical constructions as parts of proofs of his theorems. Even before the modern notion
of axiomatic theory was strictly defined in formal terms many translators and commentators
of Euclid’s Elements tended to think about his theory in this way and interpreted Euclid’s
Postulates in the modal sense. Later a number of authors ([114], [122]) proposed different formal
reconstructions of Euclid’s geometry based on the existential reading of Postulates. According

to Hintikka and Remes

[R]eliance on auxiliary construction does not take us outside the axiomatic framework
of geometry. Auxiliary constructions are in fact little more than ancient counterparts

to applications of modern instantiation rules. [115], p. 270

The instantiation rules work in this context as follows. First, through the universal instantiation
(which under this reading correspond to Euclid’s ezposition and specification) one gets some
propositions like Hyp about certain particular objects (individuals) like AB and AC. Then
one uses Postulates 1-3 reading them as existential axioms according to which the existence of
certain geometrical objects implies the existence of certain further geometrical objects, and so
proves the (hypothetical) existence of such further objects of interest. Finally one uses another

instantiation rule called the rule of existential instantiation:

JxP(z) = P(a)

and thus “gets” these new objects. Under this interpretation Euclid’s constructions turn into
logical inferences of sort. As Hintikka and Remes emphasize in their paper the principal dis-
tinctive feature of Euclid’s constructions (under their interpretation) is that these constructions

introduce some new individuals; they call such individuals “new” in the sense that these indi-
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viduals are not (and cannot be) introduced through the universal instantiation of hypotheses

making part the enunciation of the given theorem.

The propositional interpretations of Euclid’s Postulates are illuminating because they allow for
analyzing traditional geometrical constructions in modern logical terms. However they require a
paraphrasing of Euclid’s wording, which from a logical point of view is far from being innocent.
In order to see this let us leave aside the epistemic attitude expressed by the verb “postulate”
and focus on the question of what Euclid postulates in his Postulates 1-3. Literally, he postulates

the following:

P1: to draw a straight-line from any point to any point.
P2: to produce a finite straight-line continuously in a straight-line.

P3: to draw a circle with any center and radius.

As they stand expressions P1-3 don’t qualify as propositions; they rather describe certain opera-
tions! And making up a proposition from something which is not a proposition is not a innocent
step. My following analysis is based on the idea that Postulates are not primitive truths from
which one may derive some further truths but are primitive operations that can be combined
with each other and so produce into some further operations. In order to make my reading clear

I paraphrase P1-3 as follows:

(OP1): drawing a (segment of) straight-line between its given endpoints
(OP2): continuing a segment of given straight-line indefinitely (“in a straight-line)”
(OP3): drawing a circle by given radius (a segment of straight-line) and center (which

is supposed to be one of the two endpoints of the given radius).

Noticeably none of OP1-3 allows for producing geometrical constructions out of nothing; each
of these fundamental operation produces a geometrical object out of some other objects, which
are supposed to be given in advance. The table below specifies inputs (operands) and outputs

(results) of OP1-3:

operation input output
OP1 two (different) points straight segment
OoP2 straight segment (bigger) straight segment
OP3 straight segment and one of its endpoints circle

PE1 as it stands does not imply that there exists at least one point or at least one line in Euclid’s

geometrical universe. If there are no points then there are no lines either. Similar remarks can
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be made about the existential interpretation of other Euclid’s Postulates. Thus the existential
interpretation of Postulates by itself does not turn these Postulates into existential axioms that
guarantee that Euclid’s universe is non-empty and contains all geometrical objects constructible
by ruler and compass. To meet this purpose one also needs to postulate the existence of at least
two different points - and then argue that the absence of any counterpart of such an axiom in
Euclid is due to Euclid’s logical incompetence. My proposed interpretation of Postulates 1-3 as
operations doesn’t require such ad hoc stipulations and thus is more faithful not only to Euclid’s

text but also to a deeper structure of his reasoning 8.

Hintikka and Remes describe Euclid’s geometrical constructions as auziliary. Such a description
may be adequate to the role of geometrical constructions in today’s practice of teaching the
elementary geometry but not to the role of constructions in Euclid’s Elements. Remind that
Euclid’s so-called Propositions are of two types: some of them are Theorems while some other
are Problems (see again the above quotation from Proclus’ Commentary ). In the Elements
Problems are at least as important as Theorems and arguably even more important: in fact the
Elements begin and end with a Problem but not with a Theorem. As we shall now see when
a given construction makes part of a problem rather than a theorem it cannot be described as
auxiliary in any appropriate sense. We shall also see the modern title “proposition” is not really
appropriate when we talk about Euclid’s Problems: while enunciations of Theorems do qualify

as propositions in the modern logical sense of the term enunciations of Problems do not.

I shall demonstrate these features at the well known example of Problem 1.1 that opens Euclid’s

Elements; my notational conventions remain the same as in the example of Theorem 1.5.

[enunciation:]

To construct an equilateral triangle on a given finite straight-line.

[exposition:]

Let AB be the given finite straight-line.

8Remind that the concepts of infinite straight line and infinite half-line (ray) are absent from Euclid’s geometry;
thus the result of OP2 is always a finite straight segment. However the result of OP2 is obviously not fully
determined by its single operand. This shows that OP2 doesn’t really fit the today’s usual notion of algebraic
operation.
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Fig. 1.2

[specification:]

So it is required to construct an equilateral triangle on the straight-line AB.

[construction:]

Let the circle BC'D with center A and radius AB have been drawn [Post. 3], and
again let the circle ACE with center B and radius BA have been drawn [Post. 3.
And let the straight-lines C A and C'B have been joined from the point C, where the

circles cut one another, to the points A and B [Post. 1].

[proof:]

And since the point A is the center of the circle CDB, AC is equal to AB [Def.
1.15]. Again, since the point B is the center of the circle CAE, BC is equal to BA
[Def. 1.15]. But CA was also shown (to be) equal to AB. Thus, CA and CB are
each equal to AB. But things equal to the same thing are also equal to one another
[Axiom 1]. Thus, CA is also equal to CB. Thus, the three (straight-lines) C A, AB,

and BC are equal to one another.
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[conclusion:]

Thus, the triangle ABC' is equilateral, and has been constructed on the given finite

straight-line AB. (Which is) the very thing it was required to do.

As one can see at this example enunciations of Problems are expressed in the same grammatical
form as Postulates 1-3, namely in the form of infinitive verbal expressions. I read these expressions
in the same straightforward way, in which I read Postulates: as descriptions of certain geometrical
operations. The obvious difference between (enunciations of) Problems and Postulates is this:
while Postulates introduce basic operations taken for granted (drawing by ruler and compass)
Problems describe complex operations, which in the last analysis reduce to these basic operations.
Such reduction is made through a construction of a given Problem: it performs the complex
operation described in the enunciation of the problem through combining basic operations OP1-
3 (and possibly some earlier performed complex operations). The procedure that allows for
performing complex operations by combining a small number of repeatable basic operations
I shall call a geometrical production. In Problem 1.1 the construction of regular triangle is
(geometrically) produced from drawing the straight-line between two given points (Postulate 1)
and drawing a circle by given center and radius (Postulate 3). This is, of course, just another way
of saying that the regular triangle is constructed by ruler and compass; the unusual terminology

helps me to describe Euclid’s geometrical constructions more precisely.

Let us see in more detail how works Euclid’s geometrical production. Basic operations OP1-3
like other (complex) operations need to be performed: in order to produce an output they have
to be fed by some input. This input is provided through the exposition of the given Problem
(the straight line AB in the above example). OP1-3 are composed in the usual way well-known
from today’s algebra: outputs of earlier performed operations are used as inputs for further

operations®.

Just like Postulates 1-3 enunciations of Problems can be read as modal or existential propositions
(in the modern logical sense of the term). Then the (modified) enunciation of Problem 1.1

reads:

(1.1.M) it is possible to construct a regular triangle on a given finite straight-line:

9Problem 1.1 involves a difficulty that has been widely discussed in the literature: Euclid does not provide any
principle that may allow him to construct a point of intersection of the two circles involved into the construction
of this Problem. This flaw is usually described as a logical flow. In my view it is more appropriate to describe
this flow as properlygeometrical and fill the gap in the reasoning by the following additional postulate (rather
than an additional axiom):

Let it have been postulated to produce a point of intersection of two circles with a common radius.

Even if this additional postulates is introduced here purely ad hoc, the way in which it is introduced gives an
idea of how Euclid’s Postulates could emerge in the real history.
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or
(1.1.E) for all finite straight-line there exists a regular triangle on this line.

As soon as the enunciations of Euclid’s Problems are rendered into the propositional form the
Problems turn into theorems of a special sort. In the case of existential interpretation Problems
turn into existential theorems that state (under certain hypotheses) that there exist certain
objects having certain desired properties. However this is not what we find in Euclid’s text as
it stands. Every Euclid’s Problem ends with the formula “the very thing it was required to
do”, not “to show” or “to prove”. I can see no evidence in the Elements that justifies the idea
that in Euclid’s mathematics doing is less significant than showing and that the former is in
some sense reducible to the latter. In the Second Part of this paper I shall argue that doing
remains as much important in today’s mathematics as it was in Greek mathematics, and that
the idea of reducing mathematics to showing or proving (in the precise sense of modern logic) is

a unfortunate philosophical misconception.

According to another popular reading Euclid’s Problems are tasks or questions of sort. This
version of modal propositional interpretation of Euclid’s Problems involves a deontic modality

rather than a possibility modality:
(1.1.D) it is required to construct a regular triangle on a given finite straight-line:

Indeed geometrical problems similar to Euclid’s Problems can be found in today’s Elementary
Geometry textbooks as exercises. However the analogy between Fuclid’s Problems and school
problems on construction by ruler and compass is not quite precise. FEnunciations of Euclid’s
Problems just like the enunciations of Euclid’s Theorems prima facie express no modality what-
soever. A deontic expression appears only in the exposition of the given Problem (“it is required
to construct an equilateral triangle on the straight-line AB”). I don’t think that this fact justifies
the deontic reading of the enunciation because, as I have already explained above, the exposi-
tion describes reasoning of an individual mathematician rather than presents this reasoning in
an objective form. That every complex construction must be performed through Postulates and
earlier performed constructions is an epistemic requirement, which is on par with the requirement
according to which every theorem must be proved rather than simply stated. Remind that the
ezxpositions of Euclid’s Theorems have the form “I say that...”. This indeed makes an apparent

»

contrast with the ezpositions of Problems that have the form “it is required to ....”. However

)

this contrast doesn’t seem me to be really sharp. Euclid’s expression “I say that...” in the given

context is interchangeable with the expression “it is required to show that...”, which matches
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the closing formula of Theorems “(this is) the very thing it was required to show”. Euclid’s
expression “it is required to...” that he uses in the expositions of Problems similarly matches the
closing formula of Problems “(this is) the very thing it was required to do”. The requirement
according to which every Theorem must be “shown” or “monstrated” doesn’t imply, of course,
that the enunciation (statement) of this Theorem has a deontic meaning. The requirement ac-
cording to which every Problem must be “done” doesn’t imply either that the enunciation of

this Problem has something to do with deontic modalities.

The analogy between axioms and theorems, on the one hand, and postulates and problems, on the
other hand, may suggest that Euclid’s geometry splits into two independent parts one of which
is ruled by (proto)logical deduction while the other is ruled by geometrical production. However
this doesn’t happen and in fact problems and theorems turn to be mutually dependent elements of
the same theory. The above example of Problem 1.1 and Theorem 1.5 show how the intertwining
of problems and theorems works. Theorems, generally, involve constructions (called in this case
auxiliary), which may depend (in the order of geometrical production) on earlier treated problems
(as the construction of Theorem 1.5 depends on Problem 1.3.) Problems in their turn always
involve appropriate proofs that prove that the construction of the given theorem indeed performs
the operation described in the enunciation of this theorem (rather than performs some other
operation). Such proofs, generally, depend (in the order of the protological deduction) on certain
earlier treated theorems (just like in the case of proofs of theorems). Although this mechanism
linking problems with theorems may look unproblematic it gives rise to the following puzzle.
Geometrical production produces geometrical objects from some other objects. Protological
deduction deduces certain propositions from some other propositions. How it then may happen
that the geometrical production has an impact on the protological deduction? In particular, how
the geometrical production may justify premises assumed “by construction”, so these premises

are used in following proofs?

In order to answer this question let’s come back to the premise Con3 (AF = AG) from Theorem
1.5 and see what if anything makes it true. AF = AG because Euclid or anybody else following
Euclid’s instructions constructs this pair of straight segments in this way. How do we know
that by following these instructions one indeed gets the desired result? This is because the
construction of Problem 1.3 that contains the appropriate instruction is followed by a proof
that proves that this construction does exactly what it is required to do. Construction 1.3 in
its turn uses construction 1.2 while construction 1.2 uses construction 1.1 quoted above. In

other words construction 1.1 (geometrically) produces construction 1.2 and construction 1.2 in
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its turn produces construction 1.3. This geometrical production produces the relevant part of
construction 1.5 (the construction of equal straight segments AF and AG) from first principles,
namely from Postulates 1-3. In order to get the corresponding protological deduction of premise
Con3 from first principles we should now look at proofs 1.1, 1.2 and 1.3 and then combine these
three proofs into a single chain. For economizing space I leave now details to reader and only
report what we get in the end. The result is somewhat surprising from the point of view of
the modern logical analysis. The chain of constructions leading to construction 1.5 involves a
number of circles (through Postulate 3). Radii of a given circle are equal by definition (Definition
1.15). Thus by constructing a circle and its two radii, say, X and Y one gets a primitive (not
supposed to be proved) premise X =Y. Having at hand a number of premises of this form and
using Axioms as inference rules (but not as premises!) one gets the desired deduction of Con3.
The fact that first principles of the protological deduction of Con3 appear to be partly provided
by a definition helps to explain why Euclid places his definitions among other first principles

such as postulates and axioms.

The above analysis allows for disentangling the protological deduction of Con3 from the ge-
ometrical production of straight segments AF, AG and so the aforementioned puzzle remains
even after we have looked at Euclid’s reasoning under a microscope. Even if we can describe in
detail the impact of Problems to Theorems and vice versa it remains unclear how the two kind of
things can possibly work together. Here is my tentative answer to this question. Every Euclid’s
proof involves only concrete premises like Con3 and Hyp, which are related to certain individual
objects. It is assumed that such a premise is valid only if the corresponding object is effectively
constructed. (At least this concerns all premises “by construction”; as we have seen at the ex-
ample of Theorem 1.5 hypothetic premises sometimes don’t respect this rule.) This fundamental

principle links Fuclid’s geometrical production and protological deduction together.

One may argue that my proposed analysis after all is not significantly different from the stan-
dard logical analysis of Euclid’s geometrical reasoning according to which Euclid first proves
that certain geometrical objects exist and only then prove some further propositions concerning
properties of these objects. Is there indeed any significant difference between proving that such-
and-such object exist and producing this object through what I call the geometrical production?
There is of course a difference of a metaphysical sort between these two notions: to produce
an object is not quite the same thing as to prove that certain object exists. But arguably this
difference has no objective significance and so one may simply ignore it. There is however a

further difference between the geometrical production and the mathematical existence, which
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seems me more important. Euclid’s Elements contain two sets of rules, namely axioms and pos-
tulates, supposed to be applied to operations of two different sorts: axioms tell us how to derive
equalities from other equalities while postulates tell us how to produce geometrical objects from
other geometrical objects. A logical analysis of Euclid’s geometry that involves a propositional
(in particular existential) reading of postulates aims at replacing these two sets of rules by a
single set of rules called logical. I would like to stress again that the results my proposed analysis
do not exclude the possibility of logical analysis. Such a replacement may be or be not a good
idea but in any event logical rules are not made in the Euclid’s text explicit and I do not see
much point in saying that he uses rules of this sort implicitly. The fact that we can use today
modern logic for interpreting Euclid is a completely different issue. An interpretation of Euclid’s
geometry by means of logical analysis can be indeed illuminating but one should not confuse
oneself by believing that Euclid already had a grasp of modern logic even if could not formulate

principles of this logic explicitly.

For further references I shall call the 6-part structure of Euclid’s problems and theorems Fuclidean
structure. As the above analysis makes it clear the Euclidean structure does not fit into Hilbert’s
notion of axiomatic theory even when this latter notion is formulated in very general terms as in
the above quotes. While Hilbert and his modern followers assume that a mathematical theory is
a set of truths, some of which are assumed as axioms and some other are logically inferred from
axioms, FKuclid builds his theory through a combination of two different procedures, which I call
protological deduction and geometrical production. Precipitating what follows I would like to
mention here that Hilbert’s view on mathematical theory (which is presented more accurately in
the next Chapter) is not unique in the 20th century. An influential alternative view has been put
forward by Luitzen Egbertus Jan Brouwer; a relevant part of this alternative view is formulated

by Brouwer’s student Heyting as follows:

One of Brouwer’s main theses was that mathematics is not based on logic, but that
logic is based on mathematics. [..] If mathematics consists of mental constructions,
then every mathematical theorem is the expression of a result of a successful con-
struction. The proof of the theorem consists in this construction itself, and the steps
of the proof are the same as the steps of the mathematical construction. These are
intuitively clear mental acts, and not applications of logical laws. (quoted by [222],

p. 237)

This general description prima facie better fits Euclid’s procedures than the modern axiomatic

approach. The problem is that this description does not by itself provide us with an alternative
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general method of building mathematical theories. I postpone the discussion on this matter until
2.2 and conclude the present Chapter with a observation concerning the relevance of Euclid’s

way of theory-building to today’s mathematical practice.

1.5 Euclid and Modern Mathematics

What has been said above may give one an impression that in Euclid’s Flements we deal with
an archaic pattern of mathematical thinking that has noting to do with today’s mathematics.
However this impression is wrong. In fact the Euclidean structure is apparently present in today’s
mathematics, perhaps in a slightly modified form. Consider the following example taken from a

standard mathematical textbook ([136], p. 100, my translation into English):

Theorem 3:

Any closed subset of a compact space is compact

Proof:

Let F' be a closed subset of compact space T' and {F,} be an arbitrary centered
system of closed subsets of subspace F' C T. Then every F, is also closed in T', and
hence {F,} is a centered system of closed sets in T. Therefore NF,, # (). By Theorem

1 it follows that F' is compact.

Although the above theorem is presented in the usual for today’s mathematics form “proposition-
proof”, its Euclidean structure can be made explicit without re-interpretations and paraphras-

ing:

[enunciation:]

Any closed subset of a compact space is compact

[exposition:]

Let F be a closed subset of compact space T

[specification: absent]
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[construction:]

[Let] {F,} [be] an arbitrary centered system of closed subsets of subspace F' C T

[proof ]

[E]very F,, is also closed in T, and hence {F,} is a centered system of closed sets in

T. Therefore NF, # (). By Theorem 1 it follows that F' is compact.

[conclusion: absent | The absent specification can be formulated as follows:
I say that F'is a compact space

while the absent conclusion is supposed to be a literal repetition of the enunciation of this
theorem. Clearly these latter elements can be dropped for parsimony reason. In order to better
separate the construction and the proof of the above theorem the authors could first construct set
NF, and only then prove that it is non-empty. However this variation of the classical Euclidean
scheme also seems me negligible. T propose the reader to check it at other modern examples that

the Euclidean structure remains today at work.

Does this mean that the modern notion of axiomatic theory is inadequate to today’s mathematical
practice just like it is inadequate to Euclid’s mathematics? Such a conclusion would be too hasty.
Arguably, in spite of the fact that today’s mathematics preserves some traditional outlook it is
essentially different. So the “Euclidean appearance” of today’s mathematics cannot be a sufficient
evidence for the claim the the Euclidean structure remains significant in it. In order to justify

this claim a different argument is needed.

Before I try to provide such an argument I would like to point to the fact that the modern
notion of axiomatic theory is used in today’s mathematics in two rather different ways. First, it
is used as a broad methodological idea that determines the general architecture of a theory but
has no impact on details. Such an application of the modern axiomatic method is usually called
informal. Second, the notion of axiomatic theory is used for building formal theories that contain
a list of axioms and a set of theorems derived from these axioms according to explicitly specified
rules of logical inference. In the next Chapter I shall describe the notion of formal axiomatic

theory more precisely and try to explain the precise sense in which it is called formal.
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Chapter 2

Hilbert: Making It Formal

In the standard textbooks Hilbert’s philosophy of mathematics is commonly labelled formalism
and under this title distinguished from Brouwer’s intuitionism, on the one hand, and Russell’s
logicism, on the other hand. However, as Hintikka [112] rightly remarks, this popular name is
very misleading. There are difficulties of two sorts. First of all, Hilbert’s work in foundations of
mathematics was a long-term project that began in 1890-ies and continued more than 40 years.
Although Hilbert unlike Russell never abruptly changed his mind about foundational matters
the development of Hilbert’s project involved significant shifts in its philosophical underpinning.
When one takes this into consideration it becomes impossible to identify Hilbert’s views with any
particular “ism”. Second of all, the meaning of being formal is also changing: Hilbert and his
contemporaries often use this term not in the same sense in which we use it today, and even today
this term is often used in different ways in the mathematical and the philosophical communities.
The two difficulties are mutually related because Hilbert’s work in foundations strongly affected

the changing meaning of being formal.

I shall not treat here the history of Hilbert’s research in foundations systematically! but try to
reconstruct the core dialectics of Hilbert’s ideas, which is crucial for my analysis of today’s state
of affairs given in the next Chapter. I shall refer in this present Chapter to three Hilbert’s texts:
first, Foundations of Geometry of 1899 [109], second, his address Aziomatic Thought of 1917 [101]
and, finally, his paper Foundations of Mathematics of 1927 [100], which makes explicit the philo-
sophical background behind the monumental two-volume work [106] co-authored with Bernays
and published in 1934-1939 under the same title. We shall see that although the Axiomatic

Method as presented in Foundations of Geometry of 1899 and in Foundations of Mathematics in

LFor the question of historical origins of Hilbert’s Axiomatic Method see [236] and [37]
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both cases qualifies as (or at least is commonly called by Hilbert’s contemporaries) formal, the

sense of being formal is not the same in the two cases.

2.1 Foundations of 1899: Logical Form and Mathematical

Intuition

In the last Section I stressed Hilbert’s assumption according to which the deduction of mathe-
matical theorems from axioms is purely logical and then argued that the geometrical theory of
Euclid’s Elements prima facie falsifies this assumption. However this assumption is not specific
for Hilbert’s approach. Frege, who sharply criticizes Hilbert’s Foundations of 1899 on a differ-
ent ground (that I shortly explain), wholly agrees with Hilbert on this general point. A major
difference between Frege’s and (early) Hilbert’s versions of the Axiomatic Method, which led to
a controversy between the two thinkers [64], was the following. Frege assumes as a matter of
course that all terms involved into axioms and theorems of a given theory are meaningful and
that their meanings are specified in advance and rigidly fixed once and for all (at least within the
given theory). Hilbert in his turn allows certain terms of a given to change their meanings and
be considered without any fixed meaning at all. A theory of this latter sort Frege and some other
Hilbert’s contemporaries call formal. For a mathematically educated reader (let alone logician)
this “informal” notion of formal theory is, of course, very familiar. Nevertheless for my purpose
it is useful to present it here in an explicit form. Then I shall explain the sense in which Frege

et al. call such a theory formal.
The first paragraph of the Foundations of 1899 reads:

Let us consider three distinct systems of things. The things composing the first
system, we will call points and designate them by the letters A, B, C,. . . ; those
of the second, we will call straight lines and designate them by the letters a, b,
¢,..; and those of the third system, we will call planes and designate them by the
Greek letters a, 3, v . [..] We think of these points, straight lines, and planes as
having certain mutual relations, which we indicate by means of such words as “are
situated”, “between”; “parallel”, “congruent”, “continuous”, etc. The complete and
exact description of these relations follows as a consequence of the axioms of geometry.

These axioms [..] express certain related fundamental facts of our intuition.

The idea is this. The purpose of foundations of geometry is to develop geometry ab ovo. This
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means that “fundamental facts of our [geometrical] intuition” cannot be here tacitly taken for
granted (as this is done in non-foundational geometrical studies) but must be explicitly described
and postulated. The proposed method of describing these facts is the following. First, one iden-
tifies a list of types of objects, which are primitive in the sense that they are not defined in
terms of some other (types of) objects; they are introduced without any definition. Second, one
identifies a list of primitive relations between primitive objects; these primitive relations are also
introduced without definitions. Finally, one makes up a list of azioms, i.e., propositions, which
involve only primitive objects and primitive relations between these objects. Every consequence
of these axioms qualifies as a geometrical theorem. (I shall specify a relevant notion of conse-
quence in what follows; we shall see that there are in fact two different notions of consequence,

which are here in play.)

Hilbert’s Axiomatic Method does not assume that primitive objects and primitive relations
are given through the usual linguistic meanings of words “point”, “between”, etc. Primitive
objects are assumed instead to be bare “things” (possibly of several different types), which are
called points, straight lines and the like by a merely linguistic convention having no theoretical
significance. Primitive relations are treated similarly. Thus Hilbert’s list of types of primitive
objects and of primitive relations given in the above quote does not say us anything except
that the given axiomatic theory involves three different types of primitive objects and several
different relations between these objects. All the relevant information about these objects and
these relations is supposed to be captured by axioms, which specify certain facts about these
objects and these relations without using any assumption as to what are these objects and these

relations.

To see how it works consider the First Axiom of Hilbert’s Foundations of 1899:

(A1.0) Two distinct points A and B always completely determine a straight line a

(op.cit., p.2).

and remind that words “points” and “straight line” should not be read here in the usual sense.
Notice also a relation between the points and the line, which is expressed by saying that the
points determine the line; there is more than one way to translate this expression in terms of
relations but Hilbert uses here the binary relation of incidence between a given straight line and
a given point, which can be also informally expressed by saying that the given point lies at the
given straight line (or equivalently by saying that the given straight line goes through the given

point). This semantic hygiene leaves us with the following formal reading of A1.0
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(Al.1) Given two different primitive objects A, B of basic type P (“points”) there
exist a unique primitive object a of another basic type L (“straight lines”), such that

each of A, B and a hold a primitive relation R (“incidence”).

Although A1.1 may seem to be not very informative it presents what Hilbert’s First Axiom “really
says” more accurately than A1.0. The idea of Hilbert’s Axiomatic Method is that a system of
propositions like Al.1 provided with an appropriate system of logic may completely determine (in
a sense that I try to clarify further in what follows) what the Euclidean (or some other) geometry
“really is”. The same method of theory-building is supposed to apply in various domains of the
theoretical inquiry both within and outside the pure mathematics. Whatever is the domain
of application of the Axiomatic Method the axioms always involve only abstract objects and
abstract relations. What is specific for Euclidean geometry from Hilbert’s axiomatic viewpoint

is the list of its axioms rather than any particular subject-matter like space or extension.

Suppose a non-experienced reader looks at Al.1 and asks what this proposition has to do with
the Euclidean geometry. An appropriate explanation can be given by translation Al.1 back to
A1.0 followed by the “naive” reading of A1.0, which turns it into a proposition similar to Euclid’s
First Postulate. This naive reading of A1.0 refers to a “fundamental fact of our intuition”, which,
by Hilbert’s word, this axiom “expresses”. However in the given context this “fundamental
fact of intuition” does not ground the corresponding axiom A1.0 but merely motivates it. We
shall shortly see, however, that in a different version of his Axiomatic Method presented in the
Foundations of 1927 [100] Hilbert grants a fundamental role to the geometrical intuition of a

special sort.
How a proposition like A1.1 may qualify as an axiom? In his letter to Frege Hilbert says:

[A]s soon as I posited an axiom it will exist and be “true”. [..] If the arbitrarily
posited axioms together with all their consequences do not contradict each other,
then they are true and the things defined by these axioms exist. For me, this is the

criterion of truth and existence. ([64], p. 12)
Some comments are here in order.

(1) Unlike Frege, Hilbert does not think about mathematical axioms as self-evident truths. In
the above quote Hilbert speaks of axioms as sheer stipulations, which are “true” in virtue of the
fact that they are posited by someone. The only rule restricting the positing of new axioms is the
rule according to which each axiom must be self-consistent and any set of such axioms (belonging

to the same theory) may contain only mutually consistent axioms. As Hilbert puts this in the
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above passage “If the arbitrarily posited axioms [..] do not contradict each other, then they
are true”. One may remark (as did Frege) that given a set of true propositions it is impossible
to infer from them a contradiction anyway. However this observation does not make Hilbert’s
rule redundant because being true does not have its usual meaning. Since being true reduces to
being stipulated the question Which stipulations are allowed and which are not? must be treated
independently. Thus the consistency condition must be checked before “axioms become true”, i.e.
before one stipulates that a given set of expressions represents a set of mathematical truths. Such
a checking requires a special notion of consistency, which applies to linguistic expressions having
no definite truth-values. At the time of writing his letter to Frege Hilbert did not formulate yet
the appropriate notion of consistency rigorously; we shall shortly see how he tried to solve this

problem afterwards.

(2) Notice the peculiar form of Hilbert’s axioms, which involves terms with variable meaning. An
expression of this form turns into a proposition only when the meaning of all its terms becomes
determined. So in order to stipulate that a set of axiom-like expressions represents a set of
axioms, Hilbert needs to assume that there exist “things defined by these axioms”, which (a)
make all terms in these axioms meaningful and (b) which make these axioms true. In the above
quote Hilbert states that the existence of such things is always granted when the corresponding
set of axioms is consistent. (“If the arbitrarily posited axioms [..] do not contradict each other,
then [..] the things defined by these axioms exist”.) Notice that the existence of these things has
no other prerequisites except consistency. Whence there arise two mutually related questions:
What are the things “defined by axioms”? and How the axioms “define” them? Let me consider

these two questions in turn.

The former question has at least three different answers. The first general answer is this: given
an expression like Al.1, which bears on “bare things” and “bare relations” of multiple types
one instantiates these things and these relations in one’s mind and so get what Hilbert after
Kant calls objects of thought or thought-things ( Gedankendinge in German), which are related by

corresponding thought-relations 2

. These thought-things and thought-relations exist merely in
virtue of the fact that one thinks of them consistently. They may be or be not supported by some
sensual intuitions; the sensual intuition is a separate issue which must not be confused with the
capacity to instantiate objects and relations between objects as such. This latter capacity can be

also called intuition - not in the sense of Kant’s Transcendental Aesthetics but exclusively in the

sense of Kant’s Doctrine of Method [130]. Hintikka [112] quite rightly stresses the fundamental

2Compare with Orwell’s thoughtcrimes.
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role of this restricted notion of intuition in Hilbert’s Axiomatic Method. Even when we think of
mathematical objects as “bare things” without associating with these things anything over and
above the relations stipulated through axioms like A1.1 we think about these objects, by Kant’s
word, in concreto (which shows, by the way, that the usual characterization of such object as
abstract is somewhat misleading). The mathematical intuition in the relevant restricted sense of
the term is the capacity to think concretely about objects and relations between objects without

associating to these objects and these relations any additional qualities.

The second answer concerns the role of sensual intuition. Remind that in the introductory part
of his Foundations of 1899 Hilbert says that his geometrical axioms “express certain related

fundamental facts of our intuition”. Earlier in 1891 he made the following remark:

Geometry is the science that deals with the properties of space. [..] I can never
penetrate the properties of space by pure reflection, much as I can never recognize
the basic laws of mechanics, the law of gravitation or any other physical law in this
way. Space is not a product of my reflections. Rather, it is given to me through the

senses. (quoted after Corry [35], p. 44)
In 1894 Hilbert develops this view on geometry:

Among the appearances or facts of experience manifest to us in the observation of
nature, there is a peculiar type, namely, those facts concerning the outer shape of
things, Geometry deals with these facts [..]. Geometry is a science whose essentials
are developed to such a degree, that all its facts can already be logically deduced
from earlier ones. Much different is the case with the theory of electricity or with
optics, in which still many new facts are being discovered. Nevertheless, with regards

to its origins, geometry is a natural science (ib. p.45)

[A]1l other sciences-above all mechanics, but subsequently also optics, the theory of
electricity, etc.- should be treated according to the model set forth in geometry. (ib.

p.45)

What Hilbert says here about the empirical character of Geometry prima facie is not compatible
with his notion of Geometry as a free creation of mind expressed in his letter to Frege quoted
above. It is not impossible, of course, that during this period of time Hilbert had conflicting ideas
about the nature of Geometry and could contradict himself. However it seems me suggestive to
try to reconcile the two notions of Geometry. As a part of the pure mathematics Geometry is

treated as a free creation of mind; the fundamental question here is whether or not the given set of
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geometrical axioms is consistent while the question where those axioms come from is irrelevant.
As a natural science Geometry seeks to express properties of the physical space through an
appropriate set of axioms, then “logically deduce” from these axioms some further geometrical
propositions and finally check these deduced propositions against properties of the physical space.
So the two Geometries well fit together: the physical geometry takes care about choosing axioms
properly while the mathematical geometry takes care about the consistency of any proposed set
of geometrical axioms, about the deduction of new theorems from these axioms and some other
relevant problems. This epistemological model is applicable to all natural sciences; what makes
geometry “more mathematical” than say, the theory of electricity, is the fact that geometry easier

allows for an axiomatic treatment because its “essentials” are better developed.

So we may consider geometry in a larger sense, which combines the axiomatic mathematical
geometry, on the one hand, and the empirical physical geometry, on the other hand. Objects
of this combined geometry are no longer bare individuals but spatial physical bodies, light rays,
etc. Interestingly, the traditional notion according to which geometry presents properties of
the physical space in an idealized form is irrelevant to Hilbert’s axiomatic setting. Geometrical
objects are thought of here either as bare individuals detached from any sensual intuition or as
physical bodies as they are perceived by senses; Hilbert’s epistemic scheme, which we reconstruct
on the basis of the above passages, does not include any intermediate “ideal” element between
the axiomatic logical reasoning and the sensual perception. We shall see, however, that in his

later works Hilbert introduces such ideal elements (2.4).

The third answer to the question about Hilbert’s mathematical “things” and their existence
concerns the possibility of interpreting axioms of a given axiomatic theory in terms of another
mathematical theory. For example with the help of standard tools of Analytic Geometry A1.0 and
other Hilbert’s axioms translate into true propositions about real numbers. An interpretation M
that translates all axioms of a given axiomatic theory A into true propositions of another theory
T is called a model of A in T'; one says also that axioms of A are true in model M. Suppose we
know which proposition of T is true and which is false. This allows one to reverse the order of
ideas about A. Observe that in order to check whether or not axioms of A are true in M one
does not need to establish consistency of this set of axioms in advance. Moreover, if axioms of
A are true in M (i.e., if M is indeed a model of A) then one may conclude that A is consistent!
Remind Hilbert’s remark according to which any consistent set of propositions can be made by

a fiat into a system of axioms, which are true and meaningful. Now we proceed the other way
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round: we first check that our axioms are true and meaningful in some model ® and on this basis
conclude that the given set of axioms is consistent. However this conclusion is not valid unless
T, which is the background theory of M, is consistent in its turn. So what the above argument
really proves is not the absolute but only the relative consistency of A, i.e., the proposition of

the form “if T is consistent then A is also consistent”.

From a mathematical point of view this third way of interpreting Hilbert-style axioms turns
to be the most productive. Already in his Foundations of 1899 Hilbert applies this method
systematically; in the course of 20th century this method develops into the modern model theory,
which remains today an active field of mathematical research still having some philosophical
flavor. I would like to stress here that interpreting a Hilbert-style axiomatic theory in terms
of another mathematical theory and interpreting such a theory in some intuitive terms directly
are two very different issues. Since both procedures go under the same title of “interpretation”
they are too often confused in the current debates. The idea that Hilbert’s axiomatic theory
of Euclidean geometry can be either interpreted “as usual”, i.e., by associating with the terms
“point”, “straight line”, “between”, etc. their “usual” intuitive meanings, or alternatively, be
interpreted arithmetically by identifying points with pairs of numbers, etc., is plainly misleading
because it puts under the same title of interpretation two procedures, which do not belong to

the same general type.

(3) Let us finally discuss Hibert’s view according to which axioms of a given mathematical
theory “define” objects of this theory. Since Hilbert’s axioms refer only to bare “things” and
bare relations and since, according to Hilbert, any consistent set of such axioms allows one to
produce a “system of things” S satisfying these axioms by a fiat (or more precisely by the very
fact that one forms consistent thoughts “about” certain things), such S can be thought of as the
“definiendum” of the axioms. One may ask however whether a given consistent set of axioms
defines the corresponding system S uniquely. Here is what Hilbert says about this in the same

letter to Frege:

You say that my concepts, e.g. “point”, “between”, are not unequivocally fixed
[..]. But surely it is self-evident that every theory is merely a framework or schema
of concepts together with their necessary relations to one another, and that basic
elements can be construed as one pleases. If I think of my points as some system or

other of things, e.g. the system of love, of law, or of chimney sweeps [..] and then

3By meaningfulness of a given axiom in a given model I mean the bare fact that this axiom translates into
a meaningful proposition. Saying that every axiom of a given theory is true and meaningful in a model of this
theory is, of coarse, pleonastic.
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conceive of all my axioms as relations between these things, then my theorems, e.g.
the Pythagorean one, will hold of these things as well. In other words, each and every
theory can always be applied to infinitely many systems of basic elements. For one
merely has to apply a univocal and invertible one-to-one transformation and stipulate

that the axioms for the transformed things be correspondingly similar. (cit. by [64],

p.13).

There are two important ideas in this passage. First Hilbert stresses here once again that in his
axiomatic setting primitive geometrical terms have no intrinsic meaning: any system of things
(i.e., model) satisfying Hilbert’s axioms counts as an Euclidean space. This point has been
already discussed earlier in this Chapter and I shall not return to it. Then follows this crucial
observation: given a model M of a given axiomatic theory one can always get another model
M’ of the same theory through a one-to-one transformation of elements of M into elements
of the new model M’ in such a way that relations between elements of M’ also satisfy the
axioms of the given theory. In the modern language the kind of transformation described here
by Hilbert is called isomorphism. Apparently Hilbert thinks here about an axiomatic theory
that determines its models up to isomorphism, i.e., such that all its models are isomorphic,
i.e., are transformable into each other by some isomorphisms. Such theories are called today
categorical. (Beware that that sense of being categorical has nothing to do with the category
theory!) Isomorphic models can be seen as “equal” and representing the same structure, which
is invariant under transformations between these model. This leads to a philosophical view on
mathematics known as mathematical structuralism; according to this view structures are basic
mathematical objects. I consider the mathematical structuralism and its significance for the
Axiomatic Method in Chapter 8. The idea of the “replacement of equality by isomorphism” is

also discussed in Chapters 5, 6.

Precipitating this further discussion I would like only to stress here that not every Hilbert-style
axiomatic theory is categorical. In fact this is a rather strong property that most of useful
axiomatic theories do not enjoy. Apparently Hilbert didn’t see this problem before he first
published his Foundations in 1899; however in his lecture On the Concept of Number [103]
delivered in the same year 1899 and published in 1900 Hilbert already introduces an ”axiom of
completeness” (Vollstandigkeitsaxiom), which requires from any model of a given theory (this
time it was arithmetic) this maximal property: any model M of the given theory extended with
some new elements is no longer a model. Then he proves that among all models of his theory

(without the completeness axiom) there is only one model (up to isomorphism, of course!),
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which also satisfies the completeness axiom, see [36] p. 160 for details. The second edition of
Hilbert’s Foundations of Geometry appeared in 1903 [98] already contains a geometrical axiom

of completeness.

Let me now return to the question about the sense of being formal. Frege and his contem-
poraries called Hilbert’s axioms for geometry formal extending the sense of being formal used
by Trendelenburg [237] when he made popular the expression “formal logic”. Formal logic in
Trendelenburg’s sense is by and large what Kant calls general logic as distinguished from his
transcendental logic: the formal or general logic takes into account only the form of reasoning
and is neutral with respect to its content (Kant’s transcendental logic is not wholly neutral with
respect to the content of reasoning because it takes into account the difference between objects
of possible experience and thought-objects of other sorts). The modern usual sense of “formal
logic” retains this older sense but does not reduce to it because it also includes the idea of
symbolic mathematical presentation of logical form, see 2.3 below. Although Hilbert’s axioms
are not logical tautologies that hold for all objects and all relations whatsoever, they represent
logical forms of propositions obtained through the usual contentual reading of the same axioms
and allow for alternative instantiations of this logical form (i.e., for alternative models). For ex-

7

ample, by reading words “point” and “straight line” in Hilbert’s First Axiom A.1.0 naively, i.e.,
by associating with these words their usual linguistic meanings, one gets an universal contentual
proposition about (all) points and (all) straight lines (in the relevant domain where this axiom
applies). However the intended meaning of this axiom expressed more explicitly in A1.1 specifies
only a property of abstract relation between abstract objects of two different types. This de-
scription is purely formal in the sense that it fixes no domain of objects and no concrete relation.

It specifies a specific form of relation between objects but specifies no particular relation and no

particular object and no particular type of objects.

Today we would qualify the theory of Hilbert’s Foundations of 1899 as informal or semiformal
at best. This is because this theory is formulated in the natural German with the help of some
symbols like any typical introductory mathematical text. Today’s paradigmatic examples of
formal theories is given by axiomatic theories of sets and of arithmetic like ZF and PA. These
latter theories differ from the theory of Hilbert’s Foundations of 1899 first of all by their symbolic
syntax. In 2.3 we shall see how the idea of using such a symbolic syntax combines with Hilbert’s
earlier approach described in this Section. We shall see that the symbolic approach involves
some epistemological ideas, which do not make part of the traditional notion of being formal

relevant to Hilbert’s Foundations of 1899. So being formal, semiformal and informal should not
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be thought of only as a matter of degree.

2.2 Foundations of 1899: Logicality and Logicism

Consider once again the Hilbert’s First Axiom A1.0
Any two distinct points of a straight line completely determine that line

and remind that certain words in this sentence including the words “points” and “straight line”,
are not supposed to be understood in their usual sense. Now remark that some other words
like “any” and “two” are supposed to be understood in the usual sense. Clearly this second
category of words plays in Hilbert’s Foundations of 1899 an essential role: unless at least some
words in these axioms are meaningful the axioms reduce to an abracadabra! In the last Section
I elaborated on words of the former category, now let us look more attentively on words of the
latter category. First of all let us see how exactly words are sorted into two sorts here. Words
of the first sort refer to primitive geometrical concepts like point, straight line and between
(whether these primitive concepts are understood traditionally or in the sophisticated formal

way explained above). What about words of the second category?
In order to answer this question it is helpful to paraphrase A1.0 as follows:

If different points A, B belong to straight line a and to straight line b then a is

identical to b

Now leaving out geometrical words and expressions “points A, B”, “straight line a”, “straight
line 0”7, “belong to” we get this list: “if”, “different”, “and”, “then”, “is”, and “identical to”. So
the last paraphrase helps us to see that the words belonging to the second list stand for logical

notions.

How to distinguish between logical and non-logical terms more formally? There exist in the
literature two main approaches to defining the notion of logicality: one develops the idea of
logic being content-free (so that logical signs are understood as the “punctuation marks”) and
the other that describes itself as semantic develops the idea of logic being content-invariant
[19]. This later approach dates back to Tarski’s proposal [235] to identify logical notions with

invariants of all permutations of elements of some given set *.

4Bonnay [19] formulates Tarski’s Thesis as follows: beginquote Given a set M, an operation Qs acting on M
is logical iff it is invariant under all permutations endquote
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This latter approach obviously better squares with Hilbert’s Axiomatic Method; the idea here
is to make the fixity of meanings of logical terms and the variability of meanings of non-logical
terms into a formal criterion allowing one to distinguish between these two sorts of terms. Tarski
accounts for this fixity as invariance under permutations of elements of a given set of individuals
(which represents here a certain universe of discourse). This approach to logicality is motivated by
Klein’s Erlangen Program in geometry [134]; it establishes a conceptual link between Klein’s and
Hilbert’s works in foundations of geometry, which is both conceptually significant and historically

plausible. T discuss it in 8.3 below.

Now I would like only to stress Hilbert’s fundamental assumption behind his Axiomatic Method
(as presented in his Foundations of 1899) according to which logic is the ground layer foundation

of all theories built axiomatically. As Hintikka puts this, for Hilbert

The basic clarified form of mathematical theorizing is a purely logical axiom system.

((112], p-20)

This does not mean, of course, that Hilbert like Russell in [212] tries to reduce mathematics to
logic. This later version of logicism is certainly not Hilbert’s. In this book I shall use the term
“mathematical logicism” in a broader sense of epistemic primacy of logic over mathematics. In

this broader sense Hilbert’s view on mathematics qualifies is another version of logicism.

As T have already mentioned in 1.4 the idea of logic and metaphysics as a foundation of all science
dates back to Aristotle. This idea had apparently little or no influence on Greek mathematics
(that followed Euclid rather than Aristotle) but later became quite influential in the medieval
Scholasticism. The Early Modern mathematically-laden science that triumphed with Newton’s
Principia largely rejected the old scholastic pattern of theory-building and developed a very
different notion of scientific theory that was described in general terms by Kant in his Critique of
the Pure Reason. The Kantian philosophy of science and mathematics remained the mainstream
until the beginning of the 20th century when the old scholastic pattern of theory-building kicked

back under the new name of modern Axiomatic Method.

In Kant’s view the objectivity of pure mathematics (which underlies the objectivity of the
mathematically-laden empirical science) roots in its objecthood, i.e., in the universal schemata
according to which one constructs mathematical objects - but not just in the general character
of mathematical concepts. Making difference between the mathematical objectivity and the uni-
versal logical validity, according to Kant, is crucial for differentiating between the mathematical

reasoning and the philosophical speculation. Here is the famous passage:
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Give a philosopher the concept of triangle and let him try to find out in his way
how the sum of its angles might be related to a right angle. He has nothing but the
concept of figure enclosed by three straight lines, and in it the concept of equally
many angles. Now he may reflect on his concept as long as he wants, yet he will
never produce anything new. He can analyze and make distinct the concept of a
straight line, or of an angle, or of the number three, but he will not come upon any
other properties that do not already lie in these concepts. But now let the geometer

take up this question. He begins at once to construct a triangle. Since he knows that

two right angles together are exactly equal to all of the adjacent angles that can be
drawn at one point on a straight line, he extends one side of his triangle and obtains
two adjacent angles that together are equal to the two right ones. [..] In such a way

through a chain of inferences that is always guided by intuition, he arrives at a fully

illuminated and at the same time general solution of the question.” (Critique of Pure

Reason [130], A 716 / B 744)

Kant’s philosophy of mathematics and mathematically-laden science is based upon an analysis of
his best contemporary science as represented by Newton’s Principia [68]. This does not mean, of
course, that Kant derives his philosophical principles from the principles of Newtonian physics;
Kant’s critical philosophy rather aims at explaining how the type of knowledge best represented
by the Newtonian physics is possible (as an objectively valid knowledge). Anyway this method
of philosophical work makes Kant’s philosophy strongly dependent on the contemporary math-
ematics and science. Cohen, Natorp and other neo-Kantians who wished to sustain the Kantian
project of critical philosophy in the 19th century realized this fact very clearly and made efforts
to supply the Kantian philosophy with a historical dimension allowing one to keep track of the
progress in sciences and mathematics. [92]. It was not quite clear in the 19th century and it still
remains a matter of controversy today which (if any) features of Kant’s original approach remain
sustainable in the context of the current science and mathematics, and which features of this
original approach are hopelessly outdated. More radically one may wonder if there is anything
at all in Kant’s analysis that survives all the dramatic changes in science and pure mathematics

that have happened since Kant’s own time.

In spite of a number of interesting attempts of upgrading the Kantian philosophy of mathematics
in order to account for new mathematical developments (like the invention of non-Euclidean
geometries) at certain point the Kantian line in the philosophy of mathematics has been largely

abandoned. Bertrand Russell’s intellectual development is representative in this sense: after
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publishing in 1897 his Kantian Essay on Foundations of Geometry [210] and a short romance
with Hegel [120] Russell learns in 1900 about new works in mathematical logic, publishes during
the same year an essay on Leibniz [211], who now becomes the right philosophical ancestor, and
already in 1903 publishes the Principles of Mathematics [212] where the subject is developed
on new logicist grounds. In the Introduction to this book Russell explains his attitude to the

Kantian line of thought as follows:

It seemed plain that mathematics consists of deductions, and yet the orthodox ac-
counts of deduction were largely or wholly inapplicable to existing mathematics. Not
only the Aristotelian syllogistic theory, but also the modem doctrines of Symbolic
Logic, were either theoretically inadequate to mathematical reasoning, or at any rate
required such artificial forms of statement that they could not be practically applied.
In this fact lay the strength of the Kantian view, which asserted that mathematical
reasoning is not strictly formal, but always uses intuitions, i.e. the a priori knowledge
of space and time. Thanks to the progress of Symbolic Logic, especially as treated
by Professor Peano, this part of the Kantian philosophy is now capable of a final
and irrevocable refutation. By the help of ten principles of deduction and ten other
premisses of a general logical nature (e.g. implication is a relation”), all mathematics
can be strictly and formally deduced. [..]

The general doctrine that all mathematics is deduction by logical principles from
logical principles was strongly advocated by Leibniz... But owing partly to a faulty
logic, partly to belief in the logical necessity of Euclidean Geometry, he was led into
hopeless errors in the endeavour to carry out in detail a view which, in its general
outline, is now known to be correct. The actual propositions of Euclid, for example,
do not follow from the principles of logic alone ; and the perception of this fact led
Kant to his innovations in the theory of knowledge. But since the growth of non-
Euclidean Geometry, it has appeared that pure mathematics has no concern with
the question whether the axioms and propositions of Euclid hold of actual space or
not ..... What pure mathematics asserts is merely that the FEuclidean propositions
follow from the Euclidean axioms, i.e., it asserts an implication. .... We assert always
in mathematics that if a certain assertion p is true of any entity z or of any set of
entities x,y, z..., then some other assertion ¢ is true of those entities ; but we do not

assert either p or ¢ separately of our entities.
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The above argument, which is supposed to refute Kant, obviously begs the question. From the
outset Russell takes it for granted that “mathematics consists of deductions” and his following
remarks make it clear that by deduction Russell means here a logical deduction, i.e. a deduction
of propositions from certain other propositions according to some general rules, which are not
specific for mathematics. This statement overtly contradicts what Kant says about mathematics,
and the following Russell’s argument only provides this first statement with some additional
details but does not constitute any philosophical objection to Kant. Kant’s own objection to the
Leibnizian view on mathematics, to which Russell adheres here, is this. From a formal point
of view (i.e. as far as only logical form of sentences is taken into consideration) mathematics
is no different from a mere metaphysical speculation; a speculative metaphysical theory can be
developed on an axiomatic basis just like any mathematical theory (think about Spinoza’s Ethics
for example). What makes the crucial difference between mathematics and speculation is the fact
that mathematics constructs its objects according to certain rules, while speculation proceeds
with concepts without being involved in any similar constructive activity. The fact that the
speculative thought may also posit some entities falling under these concepts from the Kantian
viewpoint does not constitute an objection because such stipulated entities doesn’t qualify as
objects in the strong Kantian sense of the term. Behind an object there is a procedure (governed
by a certain rule) that constructs it; speculative entities are stipulated as mere thought-things
falling under given descriptions by a fiat. This is the reason why the pure mathematics is objective
in the sense in which the pure speculation is not. What makes the pure mathematics objective
is the rule-like character of object-construction. The formal logical consistency is a necessary
but not sufficient condition for claiming that a given axiomatic theory is objectively valid. This
objective character of mathematics, according to Kant, allows for application of mathematics
in natural sciences (I leave however this further point aside). Russell’s critique of Kant in the
Principles of Mathematics simply does not take into account the Kantian problem of separation
of the pure mathematics from the pure speculation. In this respect Russell’s Leibnizian approach
to mathematics is more traditional than Kant’s and in Kantian terms qualifies as dogmatic. Not
surprisingly Russell provides his philosophy of mathematics with a metaphysical doctrine that
he calls the logical atomism. This is how he describes the relation of this doctrine to logic and

mathematics in the Introduction to his [216]:

As I have attempted to prove in The Principles of Mathematics, when we analyse
mathematics we bring it all back to logic. It all comes back to logic in the strictest

and most formal sense. In the present lectures, I shall try to set forth in a sort of
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outline, rather briefly and rather unsatisfactorily, a kind of logical doctrine which
seems to me to result from the philosophy of mathematics - not exactly logically, but
as what emerges as one reflects: a certain kind of logical doctrine, and on the basis

of this a certain kind of metaphysic.
As a recent biographer describes Russell’s work during this early period of his career

From August 1900 until the completion of Principia Mathematica in 1910 Russell was
both a metaphysician and a working logician. The two are completely intertwined in
his work: metaphysics was to provide the basis for logic; logic and logicism were to

be the basis for arguments for the metaphysics. ([120], p. 7-8)

Thus we can see how an older pattern of intellectual work, which many people in the 19th
century believed to be definitely sublated by Kant’s critical philosophy and other developments,
reemerged in the beginning of the 20th century in the context of new mathematics and new
symbolic logic. An attempt to describe the general intellectual context of that time would
obviously lead me too far but it is my understanding that Russell’s case in an extreme form
represents a more general intellectual tendency. Even more important is the fact that this
tendency towards the revival of the traditional alliance between logical and metaphysical thinking
is still very much alive today, and in fact since 1900 this intellectual project has firmly established
itself in the philosophical school known as Analytic Philosophy (as well as in some other branches
of today’s philosophy). So my critique of Russell of early 1900ies and, in particular, my attempts
to revendicate the Kantian and the Hegelian (see 4.8 below) lines of philosophical thought in
the context of recent mathematics of our own times, aims primarily at the modern proponents

of this traditional alliance.

Russell’s interpretation of Kant’s work in the philosophy of mathematics as an attempt to fill
logical gaps appearing when one tries to reconstruct Euclid’s geometry with Aristotle’s syllogistic
logic hardly correctly describes Kant’s intention. However these Russell’s words are helpful
for a better understanding of his own project. Russell suggests two independent reasons why
there are such logical gaps: first, because Euclid’s geometry is logically imperfect and, second,
because Aristotle’s logic is not appropriate for doing mathematics. However the new mathematics
(including non-Euclidean geometries) and the new symbolic logic taken together, according to
Russell, wholly fix the problem making Russell’s Leibnizian dream real. What Russell’s Principles
of Mathematics aim at is made clear by the following lines that I take from the Preface to this

work:
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The second volume, in which I have had the great good fortune to secure the col-
laboration of Mr A. N. Whitehead, will be addressed exclusively to mathematicians;
it will contain chains of deductions, from the premisses of symbolic logic through
Arithmetic, finite and infinite, to Geometry, in an order similar to that adopted in
the present volume ; it will also contain various original developments, in which the
method of Professor Peano, as supplemented by the Logic of Relations, has shown

itself a powerful instrument of mathematical investigation.

(The planned second volume of The Principles of Mathematics appeared later as a co-authored

independent three-volume work [218].)

Thus we can see that in early 1900ies Hilbert was not alone who thought about logic as the
ground layer foundation of mathematics. (This is in spite of the fact that unlike Hilbert in his
Foundations of 1899 officially sticks to Kant! - notice the Kant’s quote used as the epigraph in
this book. We shall shortly see (2.4) that Hilbert’s latter version of Axiomatic Method better
fit’s the Kantian view on mathematics than this earlier version.) However there were also strong
opposing voices during the same period of time. Among prominent critics of logical approaches
in foundations of mathematics were Poincaré [42] and Brouwer. Consider, for example, this

Brouwer’s passage written in 1907:

About mathematical reasoning, I show in the beginning of the chapter that it is no
logical reasoning, that it uses the connectives of logic only because of the poverty of
language, and thus may perhaps keeps alive the language accompaniment even after
the human intellect has already long ago outgrown the logical argument itself. For,
far from the fact that it would be a “strange company” that does not reason logically,
I believe that it is only a matter of inertia, that the words that go with it [i.e., logic]
as yet still exist in modern languages. A pure use of these words hardly occurs, and
[in] impure [form] they are used in daily life, where they have led to all kinds of
misunderstanding and dogmatism [..]. Those misconceptions arose, not because of
insufficient mathematical insight, but because mathematics, lacking a pure language,
makes do with the language of logical reasoning, although its thoughts reason not
logically, but mathematically, which is something totally different. (quoted after
[240], p. 128-129)

I warn the reader that Brouwer’s concern expressed in the above quote is not met by using the
formalintuitionistic logic instead of classical logic in foundations of mathematics because this

replacement of logic leaves untouched the assumption about the primacy of logic over mathe-

47



matics; such a replacement only translates (through Heyting’s formalization of the intuitionistic
logic [96]) some Brouwer’s ideas into a logicist foundational framework. However the very fact
that today we have more than one candidate logic for building foundations of mathematics is
remarkable. The logicist view on mathematics was particularly appealing in the beginning of the
20th century because at that time the traditional geometry was already split into its Euclidean
and multiple non-Euclidean versions but logic still preserved its traditional unity. Today we live

in a very different environment. Here how Gabbay describes it as for 1994:

In recent years we have witnessed a very strong and fruitful interaction between
traditional logic on the one hand and computer science and Artificial intelligence on
the other. As a result, there was urgent need for logic to evolve. New systems were
developed to cater for the needs of applications. Old concepts were changed and
modified and new concepts came into prominence. The community became divided.
Many expressed themselves strongly, both for and against, the new ideas. Papers
were rejected or accepted on ideological grounds, as well as technical substance. In
this atmosphere, it seemed necessary to clarify the basic concepts underlying logic
and computation, especially the very notion of a logical system. [..] The views
among members of the community are varied and in many cases, very strongly held.
There is at one extreme the pluralistic view, expressed to me once in a meeting by a
distinguished colleague who said something like “we use logics like we use computer
languages”. At the other end of the spectrum there is the view of those who believe
there is only one true logic, and all the rest is nonsense. Of course there exist several

proposals for this true logic with their respective bands of followers. ([44], Preface,

p. V)

So anyone who holds today a logicist view on mathematics (in the broad sense of “logicist”
explained above) needs, first, to specify which is his or her favorite logic used in foundations,
second, to explain why this particular logic is the most appropriate for the purpose °. and,
third (which is perhaps the hardest task), to explain why and in which sense one’s favorite logic
qualifies as logic. This problematic character of modern logic does not imply that the logicist
view on mathematics is no longer tenable but it certainly shows that this view can not and

should not be taken for granted. In Chapter 9 we shall see how the New Axiomatic Methods

deals with this new degree of freedom of today’s axiomatic thought.

5 Alternatively one may consider a variety of “Non-Classical Mathematics” each based on its proper logic [242].
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A more detailed argument against the mathematical logicism has been given in 1907 by Ernest
Cassirer [32] who continued to push the Kantian line taking into account newest mathematical
developments of his time. Referring to Russell [212] and new formal logical methods under the

name of “logistics” Cassirer says:

Here rises a problem that lies wholly outside the scope of “logistics” [..] All empirical
judgements belong to their domain: they must respect the limits of experience. What
logistics develops is a system of hypothetical assumptions about which we cannot
know, whether they are actually established in experience or whether they allow for
some immediate or non-immediate concrete application. According to Russell even
the general notion of magnitude does not belong to the domain of pure mathematics
and logic but has an empirical element, which can be grasped only through a sensual
perception. From the standpoint of logistics the task of thought ends when it manages
to establish a strict deductive link between all its constructions and productions.
Thus the worry about laws governing the world of objects is left wholly to the direct
observation, which alone, within its proper very narrow limits, is supposed to tell
us whether we find here certain rules or a pure chaos. [According to Russell] logic
and mathematics deal only with the order of concepts and should not care about the
order or disorder of objects. As long as one follows this line of conceptual analysis the
empirical entity always escapes one’s rational understanding. The more mathematical
deduction demonstrates us its virtue and its power, the less we can understand the

crucial role of deduction in the theoretical natural sciences.([32], p. 43)

So, according to Cassirer, what the formal logical foundations of mathematics can not possibly
provide (whatever system of formal logic is one’s favorite) are the notions of objecthood and
objectivity appropriate for doing the modern mathematically-laden empirical science (i.e., the
Galilean science as I called it 3.3 above). The popular idea to equate the notion of object with
that of logical individual, which stems from Frege [192], not only leaves this problem open and but
also hides it by eliminating a useful terminological distinction, which helps Kant to distinguish
objects of possible experience from thought-things of other sorts. Although Cassirer does not
provide any concrete solution of this problem he stresses the relevance of Kantian approach to
the modern science in the following words (the second phrase I used as an epigraph to this

book):

The principle according to which our concepts should be sourced in intuitions means

that they should be sourced in the mathematical physics and should prove effective in
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this field. Logical and mathematical concepts must no longer produce instruments for
building a metaphysical “world of thought”: their proper function and their proper

application is only within the empirical science itself. ([32], p. 43-44)

3

The fact that the modern logic indeed tends to create “metaphysical worlds of thought” rather
than make itself into a part of empirical science, and that today’s mainstream philosophy of
logic encourages and justifies this overtly metaphysical tendency (usually by presenting it as
an innocent intellectual game), appears to me very worrying. Although the hostile attitude
towards logic and its mainstream philosophy, which is widely spread in mathematical circles,
demonstrates a healthy intellectual reaction, such a negative reaction by itself does not solve the

problem. In Chapter 4 I come back to this Cassirer’s argument and after Lawvere point to a

way out (4.8).

2.3 Axiomatization of Logic: Logical Form versus Sym-

bolic Form

In his address of 1917 already quoted above Hilbert says among other things the following:

[I]t appears necessary to axiomatize logic itself and to prove that number theory
and set theory are only parts of logic. This method was prepared long ago (not
least by Frege’s profound investigations); it has been most successfully explained by
the acute mathematician and logician Russell. One could regard the completion of
this magnificent Russellian enterprise of the axiomatization of logic as the crowning

achievement of the work of axiomatization as a whole. ([101] p. 1113)

Leaving now aside the purported reduction of number theory (arithmetic) and set theory to
logic let us focus on the idea of aziomatization of logic. By calling the axiomatization of logic
the “crowning achievement of the work of axiomatization as a whole” Hilbert suggests that the
axiomatization of logic is a continuous extension of the axiomatization of geometry, arithmetic
and of any other part of mathematics or natural science. However the notion of axiomatization,
which I have tried to reconstruct above on the basis of Hilbert’s Foundations of 1899 does not
immediately allow for such an extension. In the nutshell the axiomatization in the sense of
Foundations of 1899 works like this: using some fixed logical vocabulary one produces a finite
list of axioms, which refer only to abstract objects and abstract relations; an intended “naive”

interpretation of these axioms and of all theorems derivable from these axioms is supposed to
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capture the content of the corresponding informal theory in a more precise and “logically clear”
form. Notice that this whole procedure applies logic as a tool; an axiomatizer needs to have this
tool in a ready-made form just like a carpenter needs a ready-made hammer for putting down a
nail. So if the above reconstruction of Axiomatic Method is correct in order to axiomatize logic

one needs to use logic. How this may possibly work?

Instead of speculating further on this matter let us see how Hilbert axiomatizes logic in his course
on Theoretical Logic [104] co-authored with Ackermann and first published in 1928. This work
is greatly influenced by earlier works by Frege and Russell; I shall not however trace here these
influences but consider Hilbert’s and Ackermann’s book on its own rights. The Introduction to

this book opens with the following words:

Mathematical logic, also called symbolic logic or logistic, is an extension of the formal
method of mathematics to the field of logic. It employs for logic a symbolic language
like that which has long been in use to express mathematical relations. In mathemat-
ics it would nowadays be considered Utopian to think of using only ordinary language
in constructing a mathematical discipline. The great advances in mathematics since
antiquity, for instance in algebra, have been dependent to a large extent upon success

in finding a usable and efficient symbolism. (quoted after English translation [105],

p. 1)

We see that from the very beginning Hilbert and Ackermann introduce here a new kind of
logic, which they call mathematical or symbolic®. As we shall shortly see Hilbert’s notion of
axiomatization of logic makes sense only in a symbolic setting. The following description of
mathematical (symbolic) logic as an “extension of the formal method of mathematics to the
field of logic” is puzzling. If by formal method one understands the Axiomatic Method in the
sense of Hilbert’s Foundations of 1899 then it is unclear how this application can make logic
symbolic. Indeed, Hilbert’s Foundations of 1899 is written with the usual mixture of informal
prose, geometrical diagrams and the traditional algebraic and geometrical symbols; Hilbert’s
formal approach developed in this book is no more symbolic than the approach taken in any

other elementary geometry textbook published in the 19th century.

Notice also that in the above passage Hilbert talks about application of the “formal method of

mathematics” in logic. So he thinks here about the formal method of mathematics as something

6Saying that symbolic logic is a “new” kind of logic I mean that this kind of logic is new with respect to the
“informal” logic used in Hilbert’s Foundations of 1899; I don’t mean, of course, that symbolic logic first appears
in Hilbert and Ackermann’s book. In a part of the Introduction to this book, which I do not quote here, the
authors provide a brief historical sketch of symbolic logic tracing its history back to Leibniz.
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established independently from logic and then suggest to “extend” this method to the new field
of logic. However the formal method of Foundations of 1899 is certainly not independent of logic.
So talking about “formal method” in the above quote Hilbert and Ackermann mean something

different. What is then this other formal method?

Hilbert’s reference to symbolic algebra provides an important hint. Unlike the notion of logical
form that can be understood after Trendelenburg [237] quite independently of any symbolic rep-
resentation, the notion of algebraic form was intimately connected to mathematical symbolism
throughout the Modern history of algebra. Descartes’ Geometry of 1637 [40] which first estab-
lished algebra as a field of theoretical research at the same time produced what Serfati recently
called a “symbolic revolution” in mathematics [225]. The key idea of Descartes algebra is the
following: the same syntactic operations with symbols may represent geometrical operations with
straight segments and arithmetical operations with numbers. In this sense algebraic operations
are general forms of operations shared by certain arithmetical and geometrical operations 7. The
role of symbolism is crucial here. Although an abstract notion of operation with abstract non-
specified operanda may make logical sense it can hardly make mathematical sense. The algebraic
symbolism invented by Descartes allowed for thinking of abstract operations (applicable both
in geometry and arithmetics) in terms of concrete syntactic operations. This idea was used by
Boole and other pioneers of symbolic logic. We shall shortly see how Hilbert uses this idea in his

new approach to foundations of mathematics.

So at least one thing that Hilbert most certainly had in mind talking in the above passage about
the “formal method of mathematics” and suggesting an application of this method in logic is
the method of (symbolic) algebra. However in the above passage he describes algebra only as
a special case. This is why we cannot derive the wanted sense of being formal from the notion
of algebraic form. A more general notion of form, which turns to be appropriate in this case, is
Cassirer’s notion of symbolic form [33]. I shall not develop it here in its full generality but focus

only on its mathematical version relevant to Hilbert’s work.
The passage quoted above continues as follows:

The purpose of the symbolic language in mathematical logic is to achieve in logic
what it has achieved in mathematics, namely, an exact scientific treatment of its

subject-matter. The logical relations which hold with regard to judgments, concepts,

"Beware that this interpretation of algebra is anachronistic. Arnauld in his New Elements of Geometry [5]
suggests that algebraic operations are operations with general mathematical magnitudes; his notion of magnitude
generalizes upon geometrical magnitudes and arithmetical magnitudes aka numbers. The modern “abstract”
approach in algebra, which is behind the anachronistic reading of Descartes, has been first systematically developed
by van der Waerden in the early 1930-ies [241].
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etc., are represented by formulas whose interpretation is free from the ambiguities
so common in ordinary language. The transition from statements to their logical
consequences, as occurs in the drawing of conclusions, is analyzed into its primitive
elements, and appears as a formal transformation of the initial formulas in accordance
with certain rules, similar to the rules of algebra; logical thinking is reflected in a
logical calculus. This calculus makes possible a successful attack on problems whose
nature precludes their solution by purely contentual [inhaltlische] logical thinking.
Among these, for instance, is the problem of characterizing those statements which

can be deduced from given premises. ([105], p.1)

The first sentence of this passage clearly shows that Hilbert considers here an application of math-
ematics to logic as a way to improve on logic with mathematics. Hilbert and Ackermann claim
here that by using the symbolic methods mathematics achieves “an exact scientific treatment of
its subject-matter”; using this evidence the authors suggest that these methods may equally al-
low for an exact scientific treatment of logic. This project should be certainly distinguished from
the idea of improving on mathematics through the clarification of its logical structure purported
by Hilbert in his Foundations of 1899. Nevertheless Hilbert tends to describe both projects in
similar terms, namely in terms of formalization and axiomatization. Notice the expression “con-
tentual logical thinking” that appears in the above passage. Contentual logical thinking in this
context is opposed to formal logical thinking. Interestingly, Hilbert and Ackermann themselves
do not use the expression “formal logic” in this context and talk instead of mathematical logic
and symbolic logic. This can be perhaps explained by the fact that at that time the expression
“formal logic” was still more commonly used in Trendelenburg’s sense, which does not imply that
formal logic should always involve symbolic methods. However when Hilbert and Ackermann
oppose what they call “contentual” logic to symbolic logic the qualification of this symbolic logic
as formal anyway immediately suggests itself. This is a different sense of being formal, which
is more familiar to us today. What Hilbert and Ackermann call “contentual” logic would be
described today as “informal” logic (even if this informal logic qualifies as formal in the weaker

Trendelenburg’s sense).

Thus Hilbert and Ackermann’s formalization and axiomatization of logic amounts to providing
the given system of logic with a new symbolic form, not to the specification of the “logical form
of logic”. Even if the authors describe the axiomatization of logic as “the crowning achievement
of the work of axiomatization” this “crowing achievement” is not a simple continuation of the

axiomatization in the sense of Hilbert’s Foundations of 1899. Blurring the distinction between
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axiomatization of mathematical theories, on the one hand, and the axiomatization of logic, on
the other hand, also blurs the distinction between theories and logic, which is fundamental for
the 1899 approach. Hilbert and Ackermann’s distinction between the “contentual logic” and
the formal (symbolic) logic opens the new possibility of non-standard interpretation of logical
signs on equal footing with non-logical signs. In 3.4 we shall see how this new possibility is
realized in Tarski’s topological model of intuitionistic propositional calculus; in 4.4 I show how
a further exploration of this possibility leads to a significant change of the Axiomatic Method as
presented in Hilbert’s Foundations of 1899. But the conceptual problem that leads to this further

development can be seen already at this early stage of the history of Axiomatic Method.

A fundamental idea behind the Axiomatic Method in the sense of 1899 is a reduction of math-
ematical reasoning to the form of “purely logical axiom system” (Hintikka). But since the dis-
tinction between logical systems and mathematical theories is blurred such a reduction becomes
senseless because there is no longer any clear sense in which a given axiom system can be called
purely logical rather than simply mathematical. One can however clearly distinguish in this
new symbolic setting between formal (to wit symbolic) and contentual theories, and like in 1899
think of formal theories as a foundation for the corresponding contentual theories. Given such a
contentual theory T one can design its formal counterpart F' and then find another contentual
interpretation T” of F. Although it is natural to describe this latter procedure as formalization
and axiomatization (assuming that F is built axiomatically) this latter kind of formalization
and axiomatization is quite unlike the formalization and axiomatization in the sense of 1899.
While the formalization in the sense of 1899 involves the notion of logical form the symbolic

formalization just described involves, generally, only the notion of symbolic form.

In Hilbert’s thinking both kinds of formalization are merged together, so he hardly distinguishes
between them clearly. He apparently assumes that a formal symbolic logical system unlike a
formal symbolic mathematical theory does not allow (and does not call for) for multiple alterna-
tive contentual interpretations but instead simply clarifies and purifies common vague contentual
logical notions expressed in the natural language. This additional assumption apparently allows
for systems of formal symbolic logic with a fixed semantics of logical terms. But in fact this
assumption produces a tacit shift in the meaning of being formal. If the given symbolic logical
system pins down the precise sense of logical notions, which outside the symbolic setting don’t
have any clear meaning, then the logical symbols used in this logical system are used as proper

names of corresponding logical concepts (like the symbol & conventionally used for denoting the
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logical conjunction) rather than variables that may acquire different interpretations 8. In math-
ematics symbols are used in this way when, for example, number 7 is denoted by symbol “z”
and number 1 is denoted by symbol “1”. So the only notion of symbolic form, which is relevant
in this case, is very unspecific and applies to any natural or artificial language. A notion of
symbolic form, which is more specific and more relevant to logic and mathematics comes into the
play only when a formal mathematical theory presented by symbolic means allows for alternative
contentual interpretations: in this case one can say that the formal symbolic theory grasps the
symbolic form shared by all such interpretations. In the case of the system of symbolic logic
proposed by Hilbert and Ackermann (see below) this latter specific sense of being formal does
not apply. Apparently Hilbert and Ackermann continue to think of their logic as being formal in
the traditional Trendelenburg’s sense, and do not pay attention to the fact that this traditional
sense of being formal does not square with the formal vs. contentual distinction relevant to

mathematical theories.

In 8.3 we shall see that Tarski’s analysis of logicality mentioned in the last Section allows for a
reconstruction of Hilbert’s thinking, which is more coherent that the above reconstruction based
on Hilbert’s own words. It is hard to say which of the two reconstructions is more historically
correct and I leave this question for a further study. (I would like the Tarski-based structuralist
interpretation to be correct but I lack sufficient textual evidences.) It seems me likely that Hilbert
was indeed driven by structuralist geometrical ideas described in 8.3 but since he had to apply
a more traditional conceptual apparatus for talking about logic, this led him to incoherences
that we notice in the above quote. Leaving aside this historical issues I would like to stress
once again that the idea of interpreting formal logical systems on equal footing with formal
mathematical theories suggested by Hilbert’s idea of “contentual logical thinking” is behind the
recent transformations of Hilbert’s Axiomatic Method, which I thoroughly discuss later in this

book.

Let us now see what kind of axiomatic system of logic Hilbert and Ackermann offer in their
book. In fact the authors offer several such systems; for our analysis it is sufficient to consider
the simplest one that the authors call sentential calculus (Aussagenkalkiil) and that is usually
called today propositional calculus. The given axiomatic presentation of this system of sym-
bolic logic consists of four elements (this analysis into elements is due to myself but not to the

authors):

8] am now talking about variables in the general non-technical sense. Non-logical constants of a given formal
theory (in the usual technical sense of the term) also count as variables in this general sense because such constants
are differently interpreted in different models of this theory.
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1) Specification of symbols, types of symbols, and of the intended interpretations of these sym-
bols. Hilbert and Ackermann distinguish symbols of three types: (i) capital letters standing for
propositional variables, (ii) logical symbols, (iii) auxiliary symbols like parentheses and commas,

which serve for separating and grouping other symbols.

2) Specification of syntactic rules according to which well-formed formulas (strings of symbols)
are constructed from the specified symbols. These formulas stand for propositions obtained from
some given propositions (represented by singular symbols) with a help of logical connectives
(also represented by corresponding symbols). So linking propositions by logical connectives is
represented here by concatenation of the corresponding symbols into a single string and insert-
ing appropriate auxiliary symbols in a way similar to which this is done with the usual linear

alphabetic writing®

3) Azioms of this logic, which are distinguished formulas interpreted as logical tautologies, i.e.,

propositions, which are true for all possible values of variables.

4) Specification of logical rules, which allow one to construct certain formulas (representing
propositions) from some other formulas (representing other propositions). This construction is
interpreted as logical deduction. The set of formulas deducible from the axioms according to

logical rules 3 is interpreted as the set of (all) logical tautologies.

Let us now see whether or not this “axiomatization” of propositional logic is similar to the
axiomatization of Euclidean geometry in the Foundations of 1899. Is this the same notion of
axiomatization that is at work in both cases? A common feature is this: in both cases we have
a generic set of true propositions called axioms and certain rules that allow one to deduce some
other true propositions from these axioms. Here however the analogy between the axiomatic
geometry and the axiomatic logic stops. The axiomatic theory of geometry has a logical part
and a properly geometrical part. The properly geometrical part is the geometrical axioms and
geometrical theorems deduced from these axioms. All the rest (including the rules of deduction)
is logic. The considered axiomatic theory of logic consists of logical axioms (generic tautologies),
all other tautologies (deducible from the axioms) and rules of two sorts plus the specification of
symbols. If logical truths (tautologies) are thought of as universal truths about everything and
geometrical truths are thought of as truths about some specific kind of things called geometrical
objects then the comparison between the axiomatic geometry and the axiomatic logic may make

sense.

9Calling the linear alphabetic writing “usual” I mean, of course, that it is usual in the geographic area where
I live.
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It is appropriate to notice here that the specification of certain tautologies as “logical axioms”
used by Hilbert and Ackerman’s in their axiomatization of logic is not necessary for a formal
specification of a formal logical system. As has been shown by Gentzen [74][75] a reasonable
formal logical system may have no axiom at the expense of having a bigger number of rules.
But there is no logical system that has axioms and has no rules. In that sense rules is a more
essential element of a logical system than logical axioms. This fact emphasizes my point that
the “axiomatization of logic” should not be taken on equal footing with the axiomatization
of geometry or axiomatization of any other special theory. What really matters in Hilbert’s
“axiomatization of logic” is developing logic by symbolic means. As I have just mentioned this

can be done without using axioms.

2.4 Foundations of 1927: Intuition Strikes Back

As we have seen the formalization of logic (that Hilbert calls it “axiomatization”) is not an
innocent procedure which merely makes logical notions clearer and more explicit; whether it has
this effect or not the formalization allows for studying and developing logic by mathematical
means. Not surprisingly, the replacement of the traditional non-mathematical “informal” logic
by the mathematical symbolic logic has a very significant impact upon Hilbert’s ideas about
Axiomatic Method and foundations of mathematics. Let us now see how his new foundational
project looks like. In the beginning of his paper Foundations of Mathematics [100] that has been
delivered in July 1927 at the Hamburg Mathematical Seminar, Hilbert describes this project in

the following words:

With this new way of providing a foundation for mathematics, which we may appro-
priately call a proof theory, I pursue a significant goal, for I should like to eliminate
once and for all the questions regarding the foundations of mathematics in the form in
which they are now posed, by turning every mathematical proposition into a formula
that can be concretely exhibited and strictly derived, thus recasting mathematical
definitions and inferences in such a way that they are unshakable and yet provide an
adequate picture of the whole science. I believe that I can attain this goal completely
with my proof theory, even if a great deal of work must still be done before it is fully
developed.

No more than any other science can mathematics be founded by logic alone; rather,

as a condition for the use of logical inferences and the performance of logical op-
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erations, something must already be given to us in our faculty of representation,
certain extralogical concrete objects that are intuitively present as immediate expe-
rience prior to all thought. If logical inference is to be reliable, it must be possible
to survey these objects completely in all their parts, and the fact that they occur,
that they differ from one another, and that they follow each other, or are concate-
nated, is immediately given intuitively, together with the objects, as something that
neither can be reduced to anything else nor requires reduction. This is the basic
philosophical position that I regard as requisite for mathematics and, in general, for
all scientific thinking, understanding, and communication. And in mathematics, in
particular, what we consider is the concrete signs themselves, whose shape, according
to the conception we have adopted, is immediately clear and recognizable. This is
the very least that must be presupposed; no scientific thinker can dispense with it,

and therefore everyone must maintain it, consciously or not. ([100], p. 464-465)

When Hilbert says that mathematics cannot be “founded by logic alone” a modern reader ac-
quainted with Hilbert’s Axiomatic Method readily agrees: of course, for doing mathematics one
needs in addition to principles of logic some specific mathematical axioms like axioms of set
theory! As we shall shortly see Hilbert indeed uses such specific axioms in his Foundations of
1927. But in the above passage he refers to something completely different! He states here that
no logical inference is possible without “certain extralogical concrete objects that are intuitively
present as immediate experience prior to all thought” and then specifies that as far as mathemat-
ics is concerned those “extralogical concrete objects” are “the concrete signs themselves, whose
shape, according to the conception we have adopted, is immediately clear and recognizable”.
Since mathematical symbolic logic does use concrete signs (symbols) Hilbert’s “logic alone” can-
not be mathematical; in the given context the mathematical logic should be rather understood
as the pure logic provided with certain “extralogical” (to wit symbolic) means. According to the
new Hilbert’s view the immediate intuitive giveness of the “concrete signs”, which allows one to
acknowledge “the fact that they occur, that they differ from one another, and that they follow
each other, or are concatenated” is an indispensable ingredient of foundations of mathematics.
For further references I shall call this specific sort of mathematical intuition, which allows one

to manipulate and calculate with mathematical symbols, the symbolic intuition.

Let us compare Hilbert’s view on foundations expressed in the above passage with his earlier
views expressed in his comments on his Foundations of 1899. In 1899 he founds geometry on

the “pure” (non-mathematical) logic and some axioms formulated in terms of this logic. The
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only notion of intuition, which is still indispensable in this setting, is the intuition in the sense of
Kant’s Doctrine of Method; this minimal intuition can be accounted for by the logical notion of
existential instantiation and be considered itself as a part of logic (see 1.3 above). In 1927 Hilbert
no longer relies on the “pure” informal logic but stresses the foundational impact of symbolic
intuition. Hilbert explicitly describes here symbols as “extralogical”; the following explanation
does not allow one to reduce the notion of intuition related to these extralogical objects to the
minimal “logical” intuition. Indeed, while the mere fact that these objects “occur” and “differ
from one another” does not yet make them extralogical, the fact that “they follow each other, or
are concatenated” certainly does! Thus Hilbert’s new foundational proposal of 1927 unlike that

of 1899 essentially involves a non-logical notion of symbolic intuition.

This does not mean however that by 1927 Hilbert abandon his earlier idea according to which all
mathematical theories require a logical background. He rather upgrades this idea as follows: a
system of logic, which is appropriate for founding mathematics, is not a system of “pure” (non-
mathematical) logic but a system of symbolic mathematical logic (which includes an extra-logical

symbolic aspect). Here is how Hilbert describes this upgrade himself:

[[[n my theory contentual inference is replaced by manipulation of signs [ausseres
Handeln] according to rules; in this way the axiomatic method attains that reliability
and perfection that it can and must reach if it is to become the basic instrument of

all research. ([100], p. 467)

The replacement of the “contentual inference” by the manipulation of signs involves two ways
of formalization, which work here together but nevertheless can and should be carefully dis-
tinguished. The formalization in the sense of 1899 remains here at work, so the manipulation
of signs presents here the logical form of the given contentual inference. Simultaneously the

manipulation with signs presents the symbolic form of the same contentual inference.

Since Hilbert makes it clear that his new method amounts to “extending the formal point of
view of algebra to all of mathematic” (ib. p. 470) we may safely identify the symbolic form
with the algebraic form in the given context. However Hilbert’s proposal does not reduce to
the algebraization of logic the same sense, in which one can speak of the algebraization of logic
in earlier works by Boole, Morgan and others. For Hilbert uses a feature of algebra that plays
no special role in earlier works in mathematical logic: I mean the algebraic method of “ideal
elements” like —1 or v/—1. Leaving a more detailed discussion on this algebraic method until
2.6 and 7.4 let me first describe Hilbert’s proposal. After the introductory remarks quoted above

he first introduces a system of symbolic logic similar to one presented in [104] and, second, adds
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two further groups of axioms, which he describes as “specifically mathematical”, namely “axioms
of equality” and “axioms of number”. Then Hilbert shows how this apparatus allows one to do
the finitary arithmetic. One may wonder if doing the finitary arithmetics with this heavy logical
machinery indeed provides any epistemic advantage over doing it in the traditional way. Hilbert’s
answer is: No, it does not! As far as the finitary arithmetic is concerned this machinery allows
one at best to “impart information” 0. If I understand here Hilbert correctly his thinking is this:
since usual arithmetical manipulations with natural numbers represented by strings of strokes
or by the standard Arabic numerals are just as intuitively clear as the manipulation of symbols
and formulas in the Hilbert’s symbolic system, from the foundational viewpoint the difference
between the two formalisms is after all not essential (notwithstanding the fact that the former
formalism has an advantage of being simpler and more convenient, while the latter formalism has
an advantage of making explicit the logical structure of reasoning). However the new proposed
formalism is advantageous as soon as one goes beyond the finitary arithmetic. Hilbert suggests

thinking about such an extension after the pattern of algebraic extension:

Just as, for example, the negative numbers are indispensable in elementary num-
ber theory and just as modern number theory and algebra become possible only
through the Kummer-Dedekind ideals, so scientific mathematics becomes possible

only through the introduction of ideal propositions. ([100], p.471)

An “ideal proposition” is any proposition that is not provable from Hilbert’s logical and arith-
metical axioms, i.e., any proposition, which is not a proposition of the finitary arithmetic. So
any additional axiom and any formal proposition obtained as a formal consequence of the ex-
tended axiom system (which includes the same logical and arithmetical axioms plus the new
axiom) qualifies as ideal. The only requirement that limits such possible extensions is the re-
quirement according to which the extended system of axioms must be consistent. As soon as
the consistency is granted one may safely think of “ideal” objects and “ideal” relations involved
into the given ideal proposition as existent along the same pattern of thinking, which we have
already explained talking about the Foundations of 1899 (remind from 2.1 of thought-things
and thought-relations). And in fact one can do more. Since these ideal objects and relations

are represented by symbols and strings of symbols, which (unlike the bare thought-things and

10

If we now begin to construct mathematics, we shall first set our sights upon elementary number
theory; we recognize that we can obtain and prove its truths through contentual intuitive consid-
erations. The formulas that we encounter when we take this approach are used only to impart
information. Letters stand for numerals, and an equation informs us of the fact that two signs stand
for the same thing. ([100], p. 469)
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thought-relations) are bone fide mathematical objects on their own, any further interpretation
of these ideal things is an option but not a necessary requirement. In the new symbolic setting
these ideal things are concretely represented to begin with, and one may work with them just like
in algebra people work with \/—1. Crucially, working with ideal objects and relations involves
the same type of syntactic manipulations as calculating with natural numbers. So even if the
Hilbert’s Foundations of 1927 is an overkill in the case of the finitary arithmetic it’s expected
advantage is that it allows for an uniform treatment of the whole of mathematics by means

similar to those used in the finitely arithmetic.

The possibility of checking consistency is evidently crucial for Hilbert’s project. Although in
1927 Hilbert offers no general solution of this problem he suggests that this problem is relatively
easy and “fundamentally lies within the province of intuition just as much as does in contentual
number theory the task, say, of proving the irrationality of v/2” ([100], p. 471). In the formal
symbolic setting where a proof is represented by a string of symbols and formulas are constructed
according to precise syntactic rules the proof of consistency of a given set of axioms amounts
to a proof showing that there is no string of formulas that ends up with a formula expressing
contradiction like 0 # 0 (a simple argument shows that if 0 # 0 cannot be formally proved no
other contradiction can be proved either). Hilbert realizes, of course, that such a consistency
proof will not itself qualify as formal but will belong to his proof theory, which in a different place
[106] Hilbert calls by the name of metamathematics. However since the whole of metamathematics
“fundamentally lies within the province of intuition just as much as does in contentual number
theory” this remark does not lead to the infinite regress in foundations. Thus the intuitive proof
theory aka metamathematics (in Hilbert’s original sense of this term) in Hilbert’s view of 1927
becomes a foundation for the rest of mathematics. Beware that so far this is a declaration of
intent, not yet an accomplished project. A more advanced version of the same project is presented

in two volumes [106] published by Hilbert with a cooperation with Bernays in 1934-1939.

As we all well know today in 1927 Hilbert severely underestimated potential difficulties of his
proof theory; Godel’s famous incompleteness theorems and all the following work in the area con-
vinced many people that Hilbert’s Program failed [254]. However even if Hilbert’s foundational
project as described in the Foundations of 1927 indeed failed, his Axiomatic Method making

part of this program certainly survived and until today remains standard.
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2.5 Symbolic Logic and Diagrammatic Logic

What kind of things qualify as symbols? Should they always be the convenient letters written
from the left to the right or other systems of writing can be used to the same effect? Is the
conceptual structure of the symbolic logic neutral with respect to its symbolic presentation or
it is at some degree determined by this presentation? Can one open new logical possibilities
by modifying this standard syntax? As every user of IWTgXperfectly knows various sorts of
complicated non-standard multi-level symbols and diagrams can be encoded into the convenient
strings of letters. Tolstoy’s printed novels communicate us all sort of things using the same type
of linear coding. But this useful feature of the standard symbolic syntax hardly justifies by itself
Hilbert’s far-reaching idea of the ultimate epistemic reduction of mathematical intuition to the
symbolic intuition associated with the symbolic syntax of this particular sort (moreover if one
takes into consideration the failure of Hilbert’s program in its original form). Instead of trying
to answer the above questions directly I propose now to look at some other syntactic possibilities
known from the history of symbolic logic. Namely, I shall talk about logical diagrams after
Venn’s [127] of 1881 where this subject is treated systematically. Then I come back to Hilbert

and make some further comments about his idea of formal symbolic mathematics.

Here is how Venn in 1881 [127] describes the complementary roles of symbols and diagrams in

logic talking about “subdivisions of classes”:

For one thing, we can of course always represent the products of such a subdivision
in the language of common [non-symbolic] Logic, or even in that of common life, if
we choose to do so. They do not readily offer themselves for this purpose, but when
pressed will consent, though failing sadly in the desired symmetry and compactness.
The relative cumbousness of such a mode of expression is obviously the real measure
of our need for a reformed or symbolic language. [..] The reader will see at once how
conveniently and briefly we can thus indicate any desired combination of class terms,
and, by consequence, any desired proposition. [..]

That such a scheme is complete there can be no doubt. But unfortunately, owing
to this very completeness, it is apt to prove terribly lengthy. [..] This then is the
state of thing which a reformed scheme of diagrammatic notation has to meet. It
must correspond in all essential respects to that regular system of class subdivision
which has just been referred to under its verbal and its literal or symbolic aspect.

Theoretically, as we shall see, this is perfectly attainable. ([127], p. 102-103)
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As we can see Venn discusses here the use of symbols and diagrams in logic from a practical rather
than theoretical viewpoint. Unlike Hilbert Venn does not try to distinguish his symbolic logic
from the “pure” logic; instead he distinguishes between the symbolic logic and the “common”
logic meaning the “informal” logic that applies only the natural language without helping itself
with special symbols. Then Venn stresses that diagrams become helpful when the corresponding
symbolic expressions turn to be “terribly lengthy”. Does the length of symbolic expression play
any role from a theoretical or foundational viewpoint? Hilbert could argue that the length of
symbolic expressions is irrelevant to the theoretical logic and to the foundations of mathematics
(as far as this length remains finite) even if it matters practically. T am not convinced by this
argument. Hilbert’s project aims at reduction of the “ideal” objects and propositions to their
“real” counterparts, i.e., to their corresponding symbolic expressions. The idea that a long
symbolic calculation is just as reliable as a short one is obviously a simplifying idealization.
Even if this idealization is acceptable for certain purposes there is no reason to disregard a more
realistic picture in a theoretical study. If Venn is right that diagrams help to tackle with the
complexity of symbolic logical operations the diagrammatic notation must be taken as seriously

as the symbolic notation.

It may be argued that symbols unlike diagrams do not involve the idea of resemblance to what
these things stand for, and that this fact makes symbols appropriate and diagrams inappropriate
in foundations of mathematics. In old good times, so the argument goes, when mathematics
dealt with circles, triangles and the like people could picture these things with diagrams and use
these diagrams in their proofs. However since the modern mathematics involves highly abstract
concepts, which do not allow for such a straightforward intuitive representation, diagrams become
irrelevant. If such abstract mathematical concepts allow for any intuitive representation at all
such representations are purely symbolic and do not involve any relation of resemblance between

symbolic constructions their corresponding mathematical objects.

This argument is based on several misunderstandings. The idea that traditional geometrical
diagrams in some sense resemble certain ideal objects is a Platonic interpretation of the tradi-
tional geometrical practice that can and must be distinguished from this practice itself. One
does not need this interpretation for doing traditional geometry with traditional geometrical
diagrams. Notice that Venn’s logical diagrams just like Venn’s and Hilbert’s logical symbols are

not supposed to resemble anything at all.

The idea that symbolic constructions do not resemble anything should be also taken critically. In

my view the relation of resemblance between mathematical objects and their material represen-
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tations is ill-construed to begin with. We can rather establish such a relations between different
material representations of the same object. For example an Euclidean circle can be represented
both with the traditional diagram (found in Section 6.2 in this book) and also symbolically with
a single letter. Then one may observe that each of these two representations is unlike the other
and further observe that a letter used for denoting the circle is unlike any other letter that can
be used for the same purpose. Here we can see the difference. The capacity to read diagrams and
the capacity read letters equally require the capacity to distinguish between graphical shapes and
to identify tokens of the same shape. But in the case of diagrams this graphical typing reflects
the typing of corresponding mathematical objects while in the case of letters it does not. In that
particular respect diagrams are more informative than letter symbols (although letters, of course,
have other epistemic advantages). However I cannot see any general philosophical justification
of the idea that using graphical types in one way rather than in another way is more appropriate
in mathematics and logic. Which one is more appropriate in a given context is rather a technical

question.

Let us read again more attentively what Hilbert says in the passage quoted in the last Sec-

tion:

[A]s a condition for the use of logical inferences and the performance of logical op-
erations, something must already be given to us in our faculty of representation,
certain extralogical concrete objects that are intuitively present as immediate expe-
rience prior to all thought. If logical inference is to be reliable, it must be possible to
survey these objects completely in all their parts, and the fact that they occur, that
they differ from one another, and that they follow each other, or are concatenated,
is immediately given intuitively, together with the objects, as something that neither

can be reduced to anything else nor requires reduction. ([100], p. 464-465)

Hilbert describes the above claim as his “basic philosophical position that I regard as requisite
for mathematics and, in general, for all scientific thinking, understanding, and communication”.
Yet one may remark that in this claim Hilbert mentions objects that “follow each other” and “are
concatenated” which is hardly appropriate in a claim aiming at the full philosophical generality
because the notions of order (“following each other”) and concatenation are applicable to objects
of some sorts but may be not applicable to objects of some other sorts. If Hilbert would like
to claim here that the order and the concatenation of the “extralogical concrete objects” are
indeed necessary in “all scientific thinking, understanding, and communication” he would need

to provide an additional argument justifying this latter claim, which is actually missing. The
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following lines make it clear that Hilbert has here in mind nothing else but the familiar symbolic

algebraic notation:

And in mathematics, in particular, what we consider is the concrete signs themselves,
whose shape, according to the conception we have adopted, is immediately clear and
recognizable. This is the very least that must be presupposed; no scientific thinker
can dispense with it, and therefore everyone must maintain it, consciously or not.

([100], p. 465)

Why signs rather than diagrams? Why the concatenations of signs rather than geometric con-
structions of other sorts? Well, Hilbert’s project aims at showing that the manipulation with
signs (symbols) is sufficient for all mathematical purposes. Even if this foundational project
works out it does not close the possibility of a different foundation with uses a different intuitive
background and a different basic geometry. Notice also that Hilbert’s foundational project in-
volves his understanding of purposes of doing mathematics. Without trying to reconstruct the
exact Hilbert’s view on this issue I shall show in 3.3 that Hilbert’s formal mathematics is not
quite appropriate for applications in natural sciences and try to explain why. As soon as the
application of mathematics in science counts as a purpose of doing mathematics this argument
shows that the manipulation with signs in the way suggested by Hilbert is not sufficient for all

mathematical purposes.

In order to see a possibility of Axiomatic Method, which involves other mathematical intuitions
than symbolic, it is instructive to look back at Euclid’s Elements from a particular point of view
suggested by Friedman [68]. Friedman suggest this point of view as his reconstruction of Kant’s

view but this does not matter in the given context:

Euclidean geometry [..] is not to be compared with Hilbert’s axiomatization [of
Euclidean geometry in his [109]], say, but rather with Frege’s Begriffsschrift. It is
not a substantive doctrine, but a form of rational representation: a form of rational
argument and inference. Accordingly, its propositions are established, not by quasi-
perceptual acquaintance with some particular subject matter, but, as far as possible,
by the most rigorous methods of proof - by the proof-procedures of Euclid, Book
I, for example. There remains a serious question about Euclid’s axioms, of course;
when pressed, Kant would most likely claim that they represent the most general
conditions under which alone a concept of extended magnitude - and therefore a
rigorous conception of an external world - is possible (see A163/B204). And, of

course, we now know that Kant is fundamentally mistaken here. ([68], p. 94-95)
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Euclidean geometry can be equally compared in this sense with Hilbert’s symbolic logic: “when
pressed” Hilbert like Kant could say that unless the symbolic syntax of his logic is taken for
granted one, strictly speaking, cannot reason mathematically. Or perhaps Hilbert’s mathematical
genius and the common sense would win in this case over his philosophical ideas and he would take
a more flexible attitude claiming only a particular way of building foundations for mathematics

and asking his opponent to do this better.

Although Euclidean geometry cannot any longer serve us as an organon of scientific reasoning I
can see no reason why a theory capable to play this role today should be anything like a symbolic
logical calculus. Moreover, I believe that if such a scientific organon is possible at all it must
reflect objective features of the physical world learned through experience (as Euclidean geometry
does it at a limited degree) rather than be based on speculative ideas about the correct thinking
underpinned by some metaphysical theories. In Chapter 4 I present a tentative organon of this
sort, which is Lawvere’s categorical logic. (I shall tell more about Venn’s diagrammatic logic
during this discussion.) In the end of Chapter 6 I consider Voevodsky’s Univalent Foundations
as another candidate organon of the same sort. Now let us return back to Hilbert and see how

his foundational project of 1927 develops in his later work.

2.6 Foundations of 1934-1939: Doing is Showing?

Foundations of Mathematics [106] published by Hilbert and Bernays in two volumes in 1934
(first volume) and 1939 (second volume) is a systematic technical development of the project
outlined in Hilbert’s paper of 1927 [100]. Leaving this technical development wholly aside I shall
now focus only on the authors’ discussion about “formal axiomatics” in the beginning of the first

volume. Here is the passage of my interest:

The term axiomatic will be used partly in a broader and partly in a narrower sense.We
will call the development of a theory axiomatic in the broadest sense if the basic
notions and presuppositions are stated first, and then the further content of the
theory is logically derived with the help of definitions and proofs. In this sense,
Euclid provided an axiomatic grounding for geometry, Newton for mechanics, and
Clausius for thermodynamics.

In Hilbert’s Foundations of Geometry [of 1899] the axiomatic standpoint received
a sharpening regarding the axiomatic development of a theory: From the factual

and conceptual subject matter that gives rise to the basic notions of the theory, we
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retain only the essence that is formulated in the axioms, and ignore all other content.
Finally, for axiomatics in the narrowest sense, the existential form comes in as an
additional factor. This marks the difference between the axiomatic method and the
constructive or genetic method of grounding a theory. While the constructive method
introduces the objects of a theory only as a genus of things, an axiomatic theory refers
to a fixed system of things (or several such systems), and for all predicates of the
propositions of the theory, this fixed system of things constitutes a delimited domain
of subjects, about which hold propositions of the given theory.

There is the assumption that the domain of individuals is given as a whole. Except
for the trivial cases where the theory deals only with a finite and fixed set of things,
this is an idealizing assumption that properly augments the assumptions formulated
in the axioms.

We will call this sharpened form of axiomatics (where the subject matter is ignored
and the existential form comes in) formal axiomatics for short. (quoted after bilingual

edition [107], p.1a-2a)

We have already discussed the distinction between formal and contentual axioms and I shall not
return to it now but comment on the authors’ distinction between the constructive (genetic) and
the axiomatic methods of theory-building. My first comment concerns Euclid. As we can see in
the above passage Hilbert and Bernays qualify Euclid’s method as axiomatic in a “broader” sense.
This “broader” sense of being axiomatic includes what Hilbert and Bernays call constructive or
genetic method. This is clear from another description of Euclid’s method that Hilbert and

Bernays provide later in their book:

Euclid’s axiomatics was intended to be contentual and intuitive, and the intuitive
meaning of the figures is not ignored in it. Furthermore, its axioms are not in ex-
istential form either: Euclid does not presuppose that points or lines constitute any
fixed domain of individuals. Therefore, he does not state any existence axioms either,

but only construction postulates. (ib., p. 20a)

The above quote clearly shows that Hilbert is well aware about the difference between his and
Euclid’s approaches to theory-building, which I have emphasized in 1.2 ''. The reference to

Foundations of 1899 in the work of 1934 suggests that in 1934 Hilbert retains his earlier notion

1 Nevertheless Hilbert and Bernays in a different place describe Euclid’s (as well as Newton’s and Clausius’)
method in this way: “the basic notions and presuppositions are stated first, and then the further content of the
theory is logically derived with the help of definitions and proofs” (ib., p. 1, my emphasis). As we have shown
in Chapter 1 this description of Euclid’s “genetic” method is incorrect. The fact that this method amounts
to building certain non-logical objects like triangles from given basic objects according to certain rules is not a
sufficient reason for calling it logical.
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of Axiomatic Method. But as a matter of fact in 1934 Hilbert and Bernays use the symbolic
version of this method. As we shall now see this fact has important consequences for the author’s
distinction between constructive (genetic) and axiomatic (in the narrow sense) ways of building

mathematical theories.

Remind that in the symbolic setting mathematical proofs are chains of formulas constructed
according to certain fixed rules (with a help of some basic construction including formulas repre-
senting axioms). In this setting to prove (a proposition expressed by formula F') is to construct
(a chain of formulas that ends up with F'). Thus doing mathematics in Hilbert’s formal axiomatic
setting does not reduce contentual constructions in mathematics altogether but reduces all such
constructions to constructions of a special sort, namely, to the finite symbolic constructions.
Notice however that this reduction does not concern the metamathematical proofs including the
proofs of consistency (of a given set of formal axiom). In the metamathematics everything works
like in the traditional contentual mathematics developed by “genetic” methods. One not only
performs here certain constructions (chains of formulas) but also makes certain judgements about
these constructions, including judgements of the form “such-and-such construction is impossible”
(remind that in order to prove the consistency of a set of axioms it is sufficient to show that
formula 0 # 0 is not derivable from these axioms). I would like to stress that this new turn
of the dialectics of “doing” and “showing” is relevant only to the symbolic version of Hilbert’s
formal Axiomatic Method but not to the “informal” version of this method presented in Hilbert’s
Foundations 1899. Although all main features of Foundations of 1899 are present in the new
Foundations of 1934, these new Foundations have some new features which significantly change

the whole picture.

In this context I would like to consider more attentively Hilbert’s algebraic motivation explained
in his Foundations of 1927. Remind that Hilbert suggests thinking of his ideal propositions
(represented by formulas) after the pattern of algebraic “ideal objects” like v/—1. In 2.4 I have
tried to explain the analogy (after Hilbert) but now I would like to stress a point where it
fails: while in algebra manipulations with symbols represent manipulations with ideal objects in
Hilbert’s formal setting manipulations with symbols represent logical inferences and other logical
operation, which allows one to say different things about ideal objects but not manipulate with

them.

Let me demonstrate this point with two historical examples. Consider, first, the following inter-

esting passage from Arnauld’s New Elements of 1683 :

What cannot be multiplied by its nature can be multiplied through a mental fiction
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where the truth presents itself as certainly as in a real multiplication. In order to
learn the distance covered during 10 hours by one who covers 24 lieu per 8 hours I
multiply through a mental fiction 10 hours by 24 lieu that gives me the imaginary
product of 240 hour times lieu, which I divide then by 8 hours and get 30 lieu. By the
same mental fiction one multiplies a surface by another surface even if the product
has 4 dimensions and cannot exist in nature. One may discover many truths through
multiplications of this sort.

People say that this is because the imaginary products can be reduced to lines. [..]
But there is no evidence that [relevant] proofs depend on those lines, which are in

fact wholly alien to them. ([5] p. 38-39, my translation from French)

Traditionally (in particular, in the early Arab algebra) the product of two straight lines is con-
strued as a rectangle having these given lines as its sides; the product of three lines is a solid but
in order to form products of four and more linear factors in this geometrical way one needs higher
dimensions, which according to Arnauld “cannot exist in nature”. Nevertheless he is ready to
consider such higher-dimensional geometrical constructions as useful fictions on equal footing
with products of distances by time intervals, which don’t have any immediate physical inter-
pretation either but are demonstratively useful for calculations. In the last quoted paragraph
Arnauld refers to Descartes’ proposal to construct the multiplication of geometrical magnitudes
differently, so the product of straight lines is again a straight line; in modern words Descartes’
definition of multiplication of straight lines makes this operation algebraically closed. (Descartes
uses an auxiliary line 1 as a unit and then considers similar triangles with sides 1, a, b, ¢ such that
L =% which gives him the wanted definition of ¢ = ab, see [40]) Arnauld finds this trick artificial
and unnecessary. What makes him confident about higher-dimensional geometrical products and
quasi-physical units like hour times lieu is the symbolic algebraic calculus supporting these oth-
erwise problematics notions. Using this symbolic calculus one forms the product of four factors
p = abed as easily as any product of two or three factors. One cannot easily imagine the product
of two surfaces (just like one cannot give a physical sense to hours times lieu) but one can easily
concatenate the string ab and the string cd and think of this operation as multiplication of two
surfaces. Descartes’ alternative definition of the geometrical product aims at providing a “clear
and distinct” intuitive underpinning of this operation that avoids the talk of higher dimensions.
Arnauld finds Descartes’ construction of product unnecessary because in his eyes the symbolic
calculus provides such an intuitive underpinning by itself. The “proofs” that Arnauld mentions

in this context are nothing but symbolic calculations.
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Now consider this passage from MacLaurin’s Treatise of Fluxions of 1742 where the author shows
how the symbolic algebra allows for operating with Newton’s flurions in a precise way in spite

of the “obstruse” intuitive nature of those things.

The improvement that have been made by it [the doctrine of fluxions] [..] are in a
great measure owing to a facility, conciseness, and great extend of the method of
computation, or algebraic part. It is for the sake of these advantages that so many
symbols are employed in algebra. [..] [Algebra] may have been employed to cover,
under a complication of symbols, obstruse doctrines, that could not bear the light so
well in a plain geometrical form; but, without doubt, obscurity may be avoided in
this art as well as in geometry, by defining clearly the import and use of the symbols,
and proceeding with care afterwards.

(quoted by [27], v2, p. 330)

The above passages from Arnauld and MacLaurin well illustrate Hilbert’s remarks in his Foun-
dations of 1927 where he stresses an epistemic impact of the “formal method of albera” (see
above). Let us however compare the above historical examples with Hilbert and Bernay’s new
symbolic axioms for plane Euclidean geometry found in the Foundations of 1934. This new set of
axioms involves a single type of primitive objects called points (instead of two types specified in
the Foundations of 1899) and two primitive ternary relations Gr(z,y, z) and Zw(z,y, z), which
are informally interpreted as points x,y, z lie on the same straight line (Gr stands for German
Gerade) and point y lies between point x and point z (Zw stands for German zwischen). The

First Axiom reads:

(@)(y)Gr(z,z,y)
that translates into the prose as follows:
all points x,y lie on the same line

(prefix (z) in Hilbert’s notation reads “for all ). Using this axiom, other geometrical axioms
expressed similarly, logical axioms and, finally, the appropriate deductive rules (which in the
given symbolic setting are syntactic rules allowing for building new formulas from some given
formulas) one may formally derive certain theorems (which are some new formulas generated from
the axioms by the given rules). However this formal deduction does not allow for constructing
any new geometrical object: remind that “an axiomatic theory refers to a fixed system of things
(or several such systems), and for all predicates of the propositions of the theory, this fixed

system of things constitutes a delimited domain of subjects, about which hold propositions of
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the given theory”!'? The only way of producing new ideal objects within the formal axiomatic
framework is to suggest a new system of axioms and assure its consistency. This is very unlike
the way, in which the ideal objects are produced in the traditional symbolic algebra. Arnauld first
takes it for granted that the product of three straight lines is a parallelepiped; next he represents
the straight lines by symbols a, b, ¢ and represents their product (i.e., the parallelepiped) by the
string abc (I modernize his notation slightly but this is not essential here). Then he considers
string abcd, thinks how to interpret it geometrically and gets a vague idea of a 4-dimensional
object that “cannot exist in nature”. Since the algebraic rules of multiplication do not limit the
number of factors 4-element strings turn to be just as well-manageable as 3-elements strings.
Thus one may safely operate with 4-dimensional and n-dimensional parallelepipeds symbolically,
no matter how “ideal” such things appear to the geometrical intuition. A symbolic construction,
namely the concatenating of four primitive symbols (letters), represents here an ideal geometrical

construction (the construction of 4-dimensional parallelepiped).

Hilbert’s symbolic constructions unlike Arnauld’s and MacLaurin’s symbolic constructions rep-
resent not ideal constructions themselves but propositions and systems of propositions “about”
ideal objects. This makes Hilbert’s ideal objects (i.e., all mathematical objects except syntac-
tic objects) fundamentally non-constructive like Plato’s “ideal numbers” (see 5.4 below). One
may stipulate their existence by adopting appropriate axioms (keeping in mind the consistency
requirement) but one cannot construct them from simpler elements. In 3.3 T argue that this
feature of Hilbert’s formalism makes it inappropriate for building mathematical theories useful

in sciences.

For further references I shall call the Axiomatic Method as it is described in Hilbert’s Foundations
of 1927 [100] and implemented in the Foundations of 1934-39 [106] by the name of Formal
Axiomatic Method and call the procedure of reconstruction of mathematics with this method the
formalization of mathematics. It is essential for what follows not to confuse this specific notion

of formalization with any other notion that can be occasionally called by the same name.

A modernized version of Formal Axiomatic Method, which includes basics of the modern model
theory, is presented (together with a philosophical underpinning) in Tarski’s textbook [233]. A
more detailed historical study of the Axiomatic Method would require an analysis of this and

many other similar works but this task is out of the scope of the present book. I focus my

120ne may suggest that this method allows for introducing new objects defined as classes (or sets) of points
satisfying holding certain relations definable in terms of the primitive relations; for example a straight line can
be tentatively defined as a class of points such that any three points z,y, z of this class hold relation Gr(z,y, z).
However in fact the formal deduction cannot be interpreted in this ay because in the given setting a class of
things does not count as a new thing. So one needs a background set theory for following this suggestion.
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attention on Hilbert’s work because for my purposes it is essential to analyze how ideas emerge

and less essential to study how they solidify and become an orthodoxy.
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Chapter 3

Formal Axiomatic Method and

the 20th Century Mathematics

The Formal Axiomatic Method has been proposed by Hilbert about a century ago and it is
appropriate to ask how it performed during the past century. It appears to me that its impact
is somewhat controversial. On the one hand, during this time period the Formal Axiomatic
Method was and still remains the standard method of theory-building in eyes of logicians and
logically-minded mathematicians, physicists, biologists and philosophers. On the same side of
the scale T put the progress in the logico-mathematical investigations (some of which use the
title of foundations of mathematics), which apply this method in some form. Finally, in some
form this method is widely used in the current educational practice. (I specify the relevant
forms of the Axiomatic Method below in this Chapter.) But on the other hand, one can also
observe that by this date the Formal Axiomatic Method had no significant effect on either in
the mainstream mathematics or in natural sciences, which remained largely “informal”; none of
recent significant advances in mathematics (like the recent proof of Poincaré conjecture) used

formal logical methods.

So the today’s situation is somewhat schizophrenic. When Hilbert in his Foundations of 1927
suggested his Formal Axiomatic Method as the “basic instrument of all research” ([100], p. 467)
he really meant it, and this clearly did not happen. At the same time most mathematicians and
logicians (as well as many philosophers and a few physicists) agree that the Axiomatic Method
is useful; some of these people also believe that this method is indispensable in their discipline.

When they are asked what do they really mean by Axiomatic Method they likely refer to the
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modern axiomatic set theory or to another example of axiomatic theory built by Hilbert’s method.
If we now ask mathematicians and physicists how it is possible that the Axiomatic Method plays
an important role in their discipline without having any clearly visible effect on it the most
popular answer will be likely this: the Axiomatic Method matters only in the foundations of
science while the mainstream science cares very little about its own foundations. At that point
philosophers and logicians join the discussion and argue like this. It is, of course, not normal
that the foundations of your science are not properly taken care of. But this is understandable
because you, guys, have a lot of other things to do. And perhaps you are not quite qualified for
the job because the foundations is a somewhat philosophical and logical subject. So forget about
foundations and leave this subject to us and give us in return some jobs at mathematical and

physical departments. We shall take care about the foundations and you will do the rest.

I am not satisfied by this division of labor (even if I have a philosophical interest to mathematics
and don’t mind a job at a mathematical department) because, in my view, it produces a wrong
notion of foundation of a discipline, which allows a foundation to be wholly detached from the
discipline itself. A notion of foundation that seems me satisfactory is described by Lawvere and

Rosebrugh in the following words:

A foundation makes explicit the essential general features, ingredients, and operations
of a science, as well as its origins and generals laws of development. The purpose of
making these explicit is to provide a guide to the learning, use, and further devel-
opment of the science. A “pure” foundation that forgets this purpose and pursues a

speculative “foundations” for its own sake is clearly a nonfoundation. ([163], p.235)

Having this Lawvere’s notion of foundations of mathematics in mind I cannot reserve for Hilbert’s
Axiomatic Method a place in foundations of today’s mathematics until I can see more clearly the
role of this method in a broader mathematical context. In the following Section I consider the
case of “speculative foundations”, i.e., the 20th century research of formal axiomatic set theories,
and in the next Section the case of Bourbaki’s mathematics, which is not wholly “speculative”
in that sense because it has an important continuing impact on mathematical education and re-
flects some important features (even if ignores some other important features) of the mainstream
mathematics of the second half of the 20th century. We shall see that although in both cases
the Formal Axiomatic Method plays a central role, in neither of these case this method is used
as intended by Hilbert. In the second half of this Chapter I shall do two other things: first,
put forward an argument explaining why the Formal Axiomatic Method is not quite appropri-

ate for natural sciences and, second, discuss an unusual application of this method by Tarski,
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which I consider as a step towards the rethinking of Hilbert’s Axiomatic Method in Lawvere’s

work.

3.1 Set Theory

Remind the notion of system of things required by the Formal Axiomatic Method. Can one pro-
vide a formal axiomatic theory of such systems? Unless one assumes that a system U of systems
of things is an element of itself this project does not involve a circularity but provides a somewhat
restricted notion of system of things (as an element of U) that can serve for developing various
formal axiomatic theories on the top of the formal theory of U. This anachronistic description of
Zermelo’s idea to axiomatize set theory explains why and how the later development of Hilbert’s
formal approach to foundations of mathematics involved not only the Formal Axiomatic Method

itself but also the axiomatic theory of sets!.

Since Zermelo’s pioneering works in the axiomatic set theory the mainstream research in set
theory focused on studies of various formal theories of sets of models of such theories. This
makes set theory a rare and arguably the most important example of a modern mathematical
theory developed wholly within a formal axiomatic setting. So in order to see how the Formal
Axiomatic Method works in today’s mathematics it is useful to consider the case of set theory
quite independently from any foundational claims made about this theory. For being more
concrete let us consider Cantor’s Continuum Hypothesis (CH), which in 1900 has been listed by
Hilbert [97] as the number one among 23 open mathematical problems that Hilbert at that time

judged to be the most important?.

CH is a very peculiar example of mathematical problem because today there is still no common
opinion as to whether this problem is solved or still remains open! And this peculiar situation is
obviously due to the fact that the modern set theory unlike (almost) the rest of mathematics is
developed in a formal axiomatic setting. The story in brief is the following. In 1938 Godel [77]
discovered that ZF (which is an improved version of Zermelo’s axiomatic theory of sets so called
after the names of Zermelo and Fraenkel [1]) is consistent with CH by building a model of ZF

in which CH holds. In 1963 Cohen [34] discovered that ZF is also consistent with the negation

1Zermelo’s principal motivation for axiomatizing set theory was saving Cantor’s so-called “naive” set theory
from paradoxes [194]

2The Continuum Hypothesis conjectured by Cantor states that there is no cardinal number strictly bigger
than the minimal infinite cardinal number Ro (which can be described as the “number of all natural numbers”)
and strictly smaller that the cardinal number 2%0 of the set of all subsets of some set having the cardinal number
w (for example, the set of all series of natural numbers, including infinite series). Number 280 has been identified
by Cantor with the number of points on a given continuous line or surface; hence the name of this conjecture
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of CH by building a model of ZF in which CH does not hold. So it is well established today
that neither CH nor its negation can be derived from the axioms of ZF [138]. What remains
controversial is whether or not this independence result provides a definite answer to the original
question by allowing one to claim that the original question is ill-posed. An additional axiom -
or some wholly new system of axioms for set theory - may eventually help, of course, to settle
the problem in the sense that CH or its negation can be deduced from the new system of axioms.
There are obvious trivial “solutions” of this sort like considering CH itself as an axiom. Then,
however, it remains to show that the system of axiom for set theory solving the CH problem is
a “right” one, and so the proposed solution is “genuine”. I cannot see how this can be done on
purely mathematical grounds; any possible argument to the effect that one system of axioms for
set theory is “more natural” than some other has a speculative nature and lacks any objective
validity. Even if one gets some non-trivial proof of CH from some system of axioms that appear
to be in some sense natural one can hardly claim that this system of axioms is the “right one”
solely because it solves the CH problem and because such a proposed solution is smart and
elegant. Although this situation is not unprecedented and may be compared, in particular, with
the fate of the Problem of Parallels in geometry of the 19th century (see 7.3 below) it makes a
sharp contrast with the mainstream mathematics that still manages to provide yes-no answers

to many well-posed questions.

It may be argued that the formal axiomatic framework makes explicit a relativistic nature of
mathematics, which we should learn to live with; according to this viewpoint it is pointless to ask
whether CH is true or false without further qualifications, and all that mathematicians can do
is to study which axioms do imply CH (modulo some specified rules of inference), which axioms
imply its negation, and which do neither (like the axioms of ZF). More generally, the only thing
that mathematics can do according to this point of view is to provide true propositions of the
if - then form: 4f such-and-such propositions are true then certain other propositions are also
true. I cannot see how such a deductive relativism (or “if-thenism”) about mathematics can
be sustainable. It is incompatible not only with the common mathematical practice but also,
more specifically, with the current practice of studying formal axiomatic systems. Denote S the
proposition saying that CH is independent from the axioms of ZF (in the sense that neither S nor
its negation can be derived from these axioms). S is commonly seen as an established theorem on
a par with any other firmly established mathematical theorem. However S is not expressed in the
if - then form; it is expressed as an “absolute” mathematical truth about ZF and CH, which does

not refer to any particular formal framework. The proof of S (that comprises the construction
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of Godel’s model L verifying CH and Cohen’s forcing construction falsifying CH) is a piece of
rather sophisticated “usual” or “informal” mathematics but not a formal inference within certain
axiomatic theory. So a consistent if-thenist would not hold without further qualifications that CH

is independent from the axioms of ZF but rather say that it depends of one’s assumptions.

Remind that Hilbert’s foundational project of 1927 was supported by the hypothesis according
to which all metamathematical questions concerning the consistency and the independency of
axioms expressed in a formal language were trivial or, to put it more precisely, treatable by
finitary means. And we know today this hypothesis is false. When people suggest today ZF
as a foundation of mathematics they no longer hope to prove the consistency of this formal
theory (since such a proof requires a stronger metatheory) but rather take a pragmatic attitude
according to which this theory can be used unless one eventually discovers that it is contradic-
tory; if this happens there are always ways of modifying the axioms of ZF that may block the
eventual contradiction. As I have already said the known proofs of S are far from being trivial

or finitary.

Thus in spite of the fact that that the modern set theory no longer considers sets naively but
works instead with various formal axiomatic theories of sets this modern theory like any other
modern mathematical theory relies on non-formalized proofs. What is specific for the modern
set theory is its object rather than its method. Instead of studying sets “directly” in the same
way in which, say, group-theorists study groups, set-theorists study formal axiomatic theories
of sets. However the methods used by modern set-theorists are not essentially different from
methods used in other parts of today’s mathematics. It remains in my sense an open question
whether or not such a roundabout way of studying sets has indeed proved effective. True, at the
present there is no clear alternative to it. However it is not inconceivable that in the near future
the mathematical community may bring about an improved “naive” concept of set that would
allow one to study sets like groups. It is not inconceivable that such an old-fashioned way of
thinking about sets could after all allow for a real progress in the CH problem. In any event it
seems me important to keep such a possibility open and not try to take it out of the table using

philosophical arguments.

The distinction between a theory and metatheory (and, more generally, between mathematics
and metamathematics, which dates back to Hilbert, is helpful for making things clearer. In mod-
ern set theory a theory is ZF or another formal axiomatic theory while proofs of independence
of CH from the axioms of ZF and similar results belong to a meta-theory that tell us impor-

tant things about formal axiomatic theories. I would like, however, to stress here the fact that
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this terminology, which remains standard in the community of people working in foundations
of mathematics, is heavily philosophically-laden and overtly clashes with the language in which
the wider mathematical community usually describes its own activities. Namely, the distinc-
tion between mathematics and metamathematics implies the view according to which formal
axiomatic theories are “usual” mathematical theories while metatheories belong to a special do-
main of metamathematics that lays somehow “beyond” the usual mathematics and has some
philosophical flavor. But if we leave now philosophy aside and describe the same subject-matter
in the language of mathematicians we come to a different view: formal axiomatic theories are not
mathematical theories in the usual sense of the word while their corresponding metatheories are
comparable with “usual” theories from any other area of mathematics! This linguistic confusion
reflects a gap between what today’s mathematics is and what in the opinion of certain people
it must be. In any event it seems me essential to fix it by suggesting a more neutral language.
By the analogy with the distinction between an object language and a metalanguage in formal
semantics I suggest to use the term “object-theory” for what in formal axiomatic studies (but

not in the rest of mathematics) is usually called simply a “theory” 3.

One may argue as follows. True, any formal object-theory requires some supporting informal
metatheory. True, metatheories are, generally, sophisticated. But metatheories can be formal-
ized in their turn and studied with the metametatheories. Although this regress is potentially
infinite and is not going to lead us to any ultimate self-evident ground it nevertheless deepens
our understanding of foundations of mathematics. Although informal instruments cannot be
then wholly taken away like the Wittgenstein’s ladder they can be viewed as a part of general

philosophical underpinning of mathematics rather than as a part of mathematics proper?.

Once again I claim that the above view is based on an a priori idea about mathematics and
its foundations that is not justified neither by the old nor by the recent mathematical practice.
First of all it confuses firm (meta)mathematical results like the independence of CH with a gen-
eral philosophical discussion. It reflects an existing trend in the Analytic philosophy of mixing
mathematical and speculative arguments indiscriminately, which is rejected by the majority of

mathematicians who do not want to allow for philosophical speculation in mathematical papers.

3Remind from 2.4 that Hilbert’s distinction between real and ideal mathematical objects translates into
Hilbert’s distinction between (contentual) mathematics and metamathematics as follows: mathematics stud-
ies ideal objects with a help real syntactic constructions; metamathematics studies real syntactic constructions
without using anything ideal. This, remind, was Hilbert’s original idea supposed to help mathematics to “get real”
without leaving the ideal “Cantor’s Paradise”. When in the light of Gode’s incompleteness theorems and other
developments it became clear that metamathematics cannot do solely with finitary means, some limited “ideal
content” - i.e., some more advanced mathematical content - was allowed in it. The title of “The Mathematics of
Metamathematics” appeared in 1969 [202] perfectly illustrates this shift, which has relaxed the boundary between
mathematics and metamathematics.

4A similar view is developed by Shapiro in [227]
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I support this rejection from the philosophers’ side and insist that although philosophical specu-
lation and mathematics may indeed fertilize each other they must be carefully distinguished and
kept apart. The fact that metamathematical results are obtained “informally” does not preclude
them to be firm and mathematically valid; such results must be sharply distinguished from their
philosophical interpretations, which do not have and cannot possibly have any objective validity.
Second of all the above view once again takes it for granted that a formalized object-theory is
a self-standing mathematical theory. This seems me very dubious. Metamathematical results
concerning ZF and and its likes make the core content of the modern set theory rather than only
a foundation of this theory, which can be left aside unless one has a special interest in studying
foundations (while philosophical interpretations can and should be left aside when one works in

set theory as a mathematician).

Thus we can see that even in set theory where formal methods are applied systematically the
(metamathematical) informal methods remain essential. Let us now see how the Axiomatic

Method applies in the modern mathematics outside set theory and mathematical logic.

3.2 Bourbaki

The multi-volumed FElements of Mathematics [23] produced in 1939-1998 by a group of (mainly
French) mathematicians using the pseudoname Nicolas Bourbaki is the most recent serious at-
tempt to write a self-contained compendium of the core contemporary mathematics after the
Euclid’s example (interpreted liberally)®. Although Hilbert’s Foundations of 1899 fall under the
same description the two works differ in their purpose. Remind that Hilbert’s work of 1899 is
focused on the Euclidean geometry, which in the end of the 19th century was already only a rela-
tively small part of what was commonly known under the name of geometry in the mathematical
community. Hilbert rebuilt here an old theory with a new Axiomatic Method, clarified the log-
ical structure of this old theory, and left it to other people to do a similar job for more recent
theories like the Riemanian geometry (see for example Veblen and Whitehead [243]). So in his
Foundations of 1899 Hilbert presented a method allegedly applicable everywhere in mathematics
and beyond, but unlike Euclid he did not try in this work to account for basic mathematical
concepts sufficient for developing the rest of his contemporary mathematics. Bourbaki in his

turn like Euclid aims at providing a genuine self-contained introduction into the contemporary

5The original French title is Eléments de mathématique, which uses the unusual singular form “ mathématique”

(while the usual French word for mathematics is “mathématiques”). So a more accurate English translation of
the title is Elements of Mathematic. This unusual singular form of the word is supposed to stressed Bourbaki’s
aim of the unification of mathematics.
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mathematics, which systematically presents not only its method but also its basic content. A
concise general description of this project, which makes explicit some grounding ideas behind it,

has been published in 1950 as a separate article [24]

The section of this article named “Logical Formalism and the Axiomatic Method” begins as

follows:

After more or less evident bankruptcy of the different systems [..] it looked, at the
beginning of the present [20th] century as if the attempt had just about been aban-
doned to conceive of mathematics as a science characterized by a definitely specified
purpose and method; instead there was a tendency to look upon mathematics as a
“collection of disciplines based on particular, exactly specified concepts”, interrelated
by “a thousand roads of communications” [..] [quoted by the author from [165], p.447]
Today, we believe however that the internal evolution of mathematical science has,
in spite of appearance, brought about a closer unity among its different parts, so
as to create something like a central nucleus that is more coherent than it has ever
been. The essential aspect of this evolution has been the systematic study of the
relation existing between different mathematical theories, and which has led to what

is generally known as the “axiomatic method.” ([24], p.222)

After this recognition of the unifying power of the Axiomatic Method Bourbaki makes an inter-
esting move by distinguishing between the logical aspect of the Axiomatic Method from another
aspect, which can be called structural (see Chapter 8); in Bourbaki’s view this is the latter rather
than former aspect that makes the Axiomatic Method a powerful instrument of the unification;
as we shall now see Bourbaki points here to his proper version of Axiomatic Method rather than

Hilbert’s Formal Axiomatic Method in its original form as described in the last Chapter:

[E]very mathematical theory is a concatenation of propositions, each one derived from
the preceding ones in conformity with the rules of a logical system [..] It is therefore
a meaningless truism to say that this “deductive reasoning” is a unifying principle
for mathematics. [..] [I]Jt is the external form which the mathematician gives to his
thought, the vehicle which makes it accessible to others, in short, the language suited
to mathematicians; this is all, no further significance should be attached to it.

What the axiomatic method sets as its essential aim, is exactly that which logical
formalism by itself cannot supply, namely the profound intelligibility of mathematics.
[..] Where the superficial observer sees only two, or several, quite distinct theories,

lending one another “unexpected support” [quoted by the author from [165], p.446]
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through the intervention of a mathematician of genius, the axiomatic method teaches
us to look for the deep-lying reasons for such a discovery, to find the common ideas of
these theories, buried under the accumulation of details properly belonging to each
of them, to bring these ideas forward and to put them in their proper light. ([24],
p.223)

In order to illustrate his point Bourbaki uses the example of the “abstract” group theory; the
author describes here this theory as an axiomatic theory construed after the pattern of Hilbert’s
Foundations of 1899 [109] as a system of things, which are subject to the following three axioms

(modulo a slight change Bourbaki’s original notion).

G1l: zo(yoz) = (zoy)oz (associativity of o)

G2: there exists an item 1 (called unit) such that for all z xol =10z =2

G3: for all = there exists 21 (called inverse of z) such that zox ! =2 tox = 1.

A system of things satisfying these axioms as called a group. Expression x oy = z stands here
for an abstract binary algebraic operation, which in the given context is to be understood as
a (uninterpreted) logical ternary relation R(x,y,z) having this special property: if z = 2’ and
y =1y then R(x,y,z) < R(2',y,2) (which means informally that the output of the operation is

uniquely determined by its input).

The above axiomatic theory of groups (which I shall denote GT for further references) have
various interpretations, which were known and studied before GT the rise of Hilbert’s Axiomatic
Method: by interpreting variables x,y, z, as invertible geometrical transformations (like motion)
and interpreting the operation o as composition of these transformation one gets the notion
of group of geometrical transformation; by interpreting variables z,y, z, as whole numbers and
interpreting o as + (addition of whole numbers) one gets the additive group of whole numbers,
etc. Such examples belong to different domains of mathematics and many of them play some
significant role in their proper domains. But until GT was axiomatically formulated as above
6 and until it brought about the precise general notion of group those examples could not be
understood as instances and special cases of one and the same thing (for no such thing was
known yet!) and the links between these different groups, which were eventually guessed by
some smart mathematicians, looked as unsystematic and sometimes even mysterious. Thus in

this case the Axiomatic Method helps to bring about the new powerful mathematical concept of a

6 As Bourbaki notices here GT can be defined through different axioms. What determines the identity of this
theory is its set of true propositions (including both axioms and theorems inferred from these axioms) but not a
given set of axioms.
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group and develop the corresponding general theory, which unifies a large spectrum of significant

mathematical results from different areas of mathematics.

As we see Bourbaki points here on a general phenomenon, which is not specific to the Axiomatic
Method (and moreover to Hilbert’s Formal Axiomatic Method), namely to the mathematical
concept-building and its unifying role. Such basic mathematical concepts as number, figure and
the like can be similarly seen as abstractions generalizing upon more specific examples like sets
of dots or sets of strokes (for number) and circles, polygons, etc. (for figures). Although the
generalization upon and abstraction from specific features of previously known examples is not
the only way in which emerge new mathematical concepts this way of emergence is a major one.
And in Bourbaki’s example it works through the Axiomatic Method. Let us see how it works

more attentively.

First of all we need to distinguish between two ways in which an axiomatic theory unifies its
content. When a set of contentual propositions is logically deduced from certain propositions
belonging to the same set and chosen as axioms this unifies all these propositions into a single
(contentual) theory. As we have seen Bourbaki recognizes this fact but in the last quote he clearly
points to a different way of unification, which is equally made possible by the Axiomatic Method.
This different way of unification is made possible by the formal character of Axiomatic Method,
where “formal” is to be understood in the sense of Hilbert’s Foundations of 1899 rather than in
the sense of his Foundations of 1927 [100] (which is referred to in the above quote in the expression
“logical formalism”). This second axiomatic unification amounts to the following: a formal (as
opposed to contentual) axiomatic theory unifies its interpretations (models) by identifying certain
common features of these interpretations and abstracting from all other specific features of those
interpretations. The usual talk of interpretation of a given formal theory takes it for granted that
the formal theory is given first and interpreted next. Now we reverse the perspective and consider
the (would-be) interpretations as given (as contentual mathematical theories and fragments of
such theories) and then think how to make up a formal theory, which captures common features
of these things and thus unifies them. The example of GT is used by Bourbaki to illustrate the

latter but not the former way of unification.

Thus Bourbaki shows - in my view quite correctly - that the Formal Axiomatic Method has a
unifying capacity, which is absent from contentual versions of the Axiomatic Method. However
Bourbaki’s version of Axiomatic Method is not identical to Hilbert’s! Let me now describe the

difference.

As an example of a theorem of GT Bourbaki mentions this proposition P:
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For all z,y,zif roy =x 0z then y = z

which follows from G1 - G3 almost immediately. I claim that the simplicity of this example does
not allow it to represent correctly Bourbaki’s Axiomatic Method. Notice that among objects of
GT there is no (abstract) groups just like among objects of Euclidean (3D) geometry developed
in Hilbert’s Foundations of 1899 there is no such thing as (3D) Euclidean space. As a system
of things (model) of GT any group is a domain where all axioms and theorems of GT hold;
objects of this theory are elements of the given group but not this group itself. But Bourbaki’s
theory of (abstract) groups (see [23] vol. 2, Chapter 1, Section 6) like any other presentation of
this theory does treat groups as its objects, distinguishes between different groups, classify them
and makes various constructions with them. Notice that GT by itself does not allow one even
to formulate the notion of subgroup! Take also in consideration that GT is not categorical (in
the usual model-theoretic sense of the term), which simply amounts to saying that not all groups
are isomorphic. So axioms G1 - G3 provide nothing but the general notion of abstract group
and in this sense can be compared with a definition of some traditional mathematical object
like triangle; theorems of GT like P are to be compared with propositions like “all triangles
have three angles” implied by the definition of triangle. Remind the famous passage from Kant’s

Critique of Pure Reason that has been already quoted above

“Give a philosopher the concept of triangle and let him try to find out in his way
how the sum of its angles might be related to a right angle. He has nothing but the
concept of figure enclosed by three straight lines, and in it the concept of equally
many angles. Now he may reflect on his concept as long as he wants, yet he will
never produce anything new. He can analyze and make distinct the concept of a
straight line, or of an angle, or of the number three, but he will not come upon any
other properties that do not already lie in these concepts. But now let the geometer

take up this question. He begins at once to construct a triangle .... In such a way

through a chain of inferences that is always guided by intuition, he arrives at a fully

illuminated and at the same time general solution of the question.” (Critique of Pure

Reason [130], A 716 / B 744)

Kant’s point apparently applies to the case of group theory too. Although there are some general
truths like P which logically follow from the concept of group (i.e., from axioms G1 - G3) those
truths are of little mathematical interest. The genuine mathematical work in the (abstract)
group theory begins when groups are conceived of (or “constructed”) as individual objects. In

this way mathematicians prove non-trivial facts about groups that do not follow from G1 - G3
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alone (the mathematical reader may think of Lagrange’s theorem for a simple example). I do not
mean to suggest here that Kant’s philosophy of mathematics in its original form fully applies to
the modern mathematics in general and to the modern group theory in particular. So we need
to study more precisely how groups and other modern mathematical concepts are constructed as
objects; this issue will be thoroughly discussed in Chapter 8. However already at this point it is
clear that GT by itself no more deserves the name of group theory than a definition of triangle
deserves the name of a theory of triangle. Kant’s point about the proper geometrical study of
triangles and a “philsophical” study of triangles that seeks to get the relevant knowledge directly

from definitions (see 1.3 above) is perfectly relevant in the case of group theory!

Before I make explicit the way in which groups and other mathematical concepts are constructed
as (mathematical) objects I need to clarify a widespread terminological ambiguity. Bourbaki
call abstract groups abstract by the contrast with such “concrete” examples of groups as the
additive group of whole numbers, the group of Euclidean motions and the like. This way of
distinguishing between the abstract and the concrete in mathematics is specific for the given
mathematical context and should not be confused to the general distinction between abstract
concepts and concrete instants of those concepts, which is applicable everywhere in mathematics
and beyond. The former distinction describes a way of obtaining some mathematical concepts
from some others: given the concept of the additive group, the concept of group of Euclidean
motions, the concept of group of permutations, etc., one forms the general concept of group
through abstraction from certain specific features of each of these examples. The obtained
concept of so-called abstract group like any other mathematical concept may be though of both
in abstracto, i.e., as a self-standing non-represented concept, and in in concreto as represented
by an individual object or a set of such objects. The confusion between the two senses of
“abstract” and “concrete” in mathematics is not without a reason; it can be explained by the
fact that at certain points of history certain concepts obtained through abstraction from earlier
known mathematical concepts cannot be immediately represented in concreto, and so remain
speculative rather than genuinely mathematical until they get supported by newly developed
corresponding modes of representation. In Chapter 8 below I show more precisely how this
dialectics of abstract and concrete works in the history of mathematics. Notice that the title of
“abstract group theory” used by Bourbaki in 1950 today is an anachronism: what Bourbaki in

1950 calls an “abstract group” today is commonly called simply a group.

Let’s now see what kind of representation of the abstract group concept is used by Bourbaki in

their volume on algebra, which includes the group theory. Like in other similar cases they use
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for it a set-theoretic representation; the relevant set theory is developed in the first volume of
Bourbaki’s Elements (I shall tell more about it shortly.) Crucially, the set-theoretic representa-
tion does not reduce to interpreting GT in set theory. One gets a set-theoretic model of GT
by interpreting variables z,y, z, as elements of some set G and interpreting the group operation
o in terms of Cartesian product of sets which reduces it to the primitive set-theoretic relation
of membership. However such a model of GT is nothing but one particular group G but not a
domain where live all groups accounted for by group theory! So the group theory as developed
in Bourbaki’s Elements is not just an interpreted version of GT but a theory of set-theoretic
models of GT developed on the basis of (Bourbaki’s) set theory. Thus all Bourbaki’s groups
live in an universe of sets (that interprets their set theory). The same is the case for objects
(structures) of other sorts treated in Bourbaki’s Elements. In this sense set theory qualifies as a

foundation of all Bourbaki’s mathematics.

We see that Hilbert’s Axiomatic Method is used by Bourbaki in a very peculiar way, which is not
made clear by Bourbaki’s remark about the Axiomatic Method in his paper of 1950 [24]. Namely,
the Hilbert-style axiomatic theory of groups GT is used by Bourbaki for defining objects of their
theory of groups, which is not an informal version of GT but something quite different! Objects
of this sort Bourbaki call structures. Formal Axiomatic Method involves the idea that isomorphic
structures are essentially the same. Thus Bourbaki’s structures have a double identity criterion:
in one sense the identity of a given structure is given by the identity of its underlying set (which is
formally treated in the corresponding set theory) and in a different sense the identity of structures
is their isomorphism. In Chapter 8 we shall see how this conceptual tension translates into a
philosophical controversy between structuralism and set-theoretic substantialism. The issue of
identity of structures will be also discussed in Part 2 of this book. Here I would like to stress
that the peculiar way, in which Bourbaki applies Hilbert’s Axiomatic Method, allows Bourbaki’s
mathematics to fit (by and large) the pattern of traditional mathematics, where mathematical

concepts are represented by individual objects.

Let us now look at Bourbaki’s set theory presented in the first volume of his Elements [23]. This
theory follows the formal method of Hilbert’s Foundations of 1927 closer than any other known
to me axiomatic exposition of set theory. The First Chapter of the volume, which has the title
Description of Formal Mathematics, begins with an account of signs and assemblies (strings) of

signs provided with a definition of mathematical theory according to which a theory

. contains rules which allow us to assert that certain assemblies of signs are terms or

relations of the theory, and other rules which allow us to assert that certain assemblies
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are theorems of the theory. (quoted by English translation [25], p. 16)

Then follows a description of operations that allow for constructing new assemblies of signs from
some given assemblies; the simplest operation of this sort is the concatenation of two given assem-
blies A, B into a new assembly AB. On such a purely syntactic basis Bourbaki introduces some
logical concepts necessary for a formal axiomatic treatment of set theory. Although Bourbaki’s
version of axiomatic set theory is not identical to ZF it is similar in its character; the differences
between the two ways of formalizing set theory are not relevant to the present discussion and I
leave them aside. The general Bourbaki’s strategy in set theory is to develop formally all set-
theoretic concepts used in various specific theories treated in other volumes after the pattern of
group theory, so that all these specific theories appear as (or can be translated into) fragments

of the formal Set-theory.

As a matter of fact the formal notation used in the first volume never reappears in the following
volumes, so the possibility of translation of specific theories into the formal set theory remains
theoretical and is never explicitly explored. Instead the formal set theory presented in the first
volume Bourbaki everywhere else uses its informal version, which is systematically exposed in an
unpublished draft of the first volume of the Elements [22]. After a philosophical introduction the
author introduces (informally) the concept of fundamental set and the relation of membership
between sets and their elements. (The author calls a set fundamental in order to distinguish a
well-defined set concept from a more general notion of collection.) Then the author introduces
(with the usual informal notation) the concept of subset, which is the subject to the following

axiom:

Any predicate of type A defines a subset of A; any subset of A can be defined through

a predicate of type A. ([22], p.7, hereafter my translation from French)

(Predicate of type A is a predicate P such that for every element a of set A P(a) has a definite
truth-value. The subset S of set A defined by P consists of such and only of such a for which

P(a) is true.)

Next Bourbaki introduces the concept of complement of a given subset, of powerset P(A) of a
given set A (i.e., the set of all subsets of A); of union, intersection and cartesian product of
sets (described as operations on sets), of relation and function between sets. Having these basic

concepts in his disposal the author says:

In any mathematical theory one begins with a number of fundamental sets, each of

which consists of elements of a certain type that needs to be considered. Then on
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the basis of types that are already known one introduces new types of elements (for
example, the subsets of a set of elements, pairs of elements) and for each of those
new types of elements one introduces sets of elements of those types.

So one forms a family of sets constructed from the fundamental sets. Those construc-
tions are the following;:

1) given set A, which is already constructed, take the set P(A) of the subsets of A;
2) given sets A, B, which are already constructed, take the cartesian product AxzB
of these sets.

The sets of objects, which are constructed in this way, are introduced into a theory
step by step when it is needed. Each proof involves only a finite number of sets. We
call such sets types of the given theory; their infinite hierarchy constitutes a scale of

types. ([22], p.43-44)
On this basis the author describes the (informal) concept of structure as follows:

We begin with a number of fundamental sets: A, B,C, ..., L that we call base sets.
To be given a structure on this base amounts to this:

1) be given properties of elements of these sets; 2) be given relations between ele-
ments of these sets; 3) be given a number of types making part of the scale of types
constructed on this base; 4) be given relations between elements of certain types con-
structed on this base; 5) assume as true a number of mutually consistent propositions

about these properties and these relations. ([22], p.44-45)

What I want to stress is the fact that principles of building mathematical theory described in the
Bourbaki’s draft are not so different from Euclid’s: Bourbaki like Euclid begins with principles of
building mathematical objects but not with axioms. Axioms (in the modern sense of the term)
appear only in the very end of the above list (the 5th item) and as I have already argued they
play the role of definitions. While for Euclid the basic data is a finite family of points and the rest
of the geometrical universe is constructed from these points by Postulates for Bourbaki the basic
data is a finite family of sets and the rest is constructed as just described. While for Euclid the
basic type of geometrical object is a figure for Bourbaki the basic type of mathematical object
is a structure. In both cases the constructed objects come with certain propositions that can be
asserted about these objects without proofs because they immediately follow from corresponding
definitions. In both cases the construction of objects is a subject of certain rules but not the
matter of a mere stipulation. In order to continue this analogy one may compare the notion of

isomorphism of structures in Bourbaki with Euclid’s notion of congruence of figures.
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We see that Bourbaki’s mathematics has two different layers. On the ground layer it has a
formal set theory built with Formal Axiomatic Method. But the rest of this mathematics is
developed with an informal notion of set described through constructive postulates like “take
the cartesian product of given sets”, which are similar to Euclid’s Postulates. Calling such
postulates constructive I mean not that they involve only finitary operations (they are obviously
infinitary) but that they are not existential propositions. However the formal theory of sets
provides a theoretical possibility of translating all these informal set-theoretic postulates into
formal existential axioms and ultimately - of translating all of Bourbaki’s mathematics into
strings of symbols operated according to purely syntactic rules, which can be also described as
constructive postulates (about operating with strings of symbols). So this translation allows (in
principle) for replacement of informal set-theoretic infinitary postulates into finitary syntactic

postulates.

It is interesting to observe that the ground set-theoretic layer of Bourbaki’s mathematics is seen
by the author as undesirable; it looks like Bourbaki would be happy to get rid of it but does
not know how to do this exactly. Here is what he says about it in the earlier quoted draft (my

translation from French):

The reader will see that the nature of elements of fundamental sets can be always
easily left undetermined and that this point of view is often useful. From here there
is only one step to thinking that only structure matters and that the true aim of
mathematical theory is a study of structure independently from sets that may rep-
resent it. Perhaps it is indeed possible to study structures themselves and forbid
oneself to consider fundamental sets. However because of the commodity of language
and the invincible habit of mind we take the “ontological” approach, i.e., stipulate

fundamental sets for each theory.
and in his manifesto of 1950 Bourbaki says in a footnote:

We take here a naive point of view and do not deal with the thorny questions, half
philosophical, half mathematical, raised by the problem of the “nature” of the math-
ematical “beings” or “objects”. Suffice it to say that the axiomatic studies of the
nineteenth and twentieth centuries have gradually replaced the initial pluralism of the
mental representation of these “beings” thought of at first as ideal “abstractions” of
sense experiences and retaining all their heterogeneity by an unitary concept, gradu-
ally reducing all the mathematical notions, first to the concept of the natural number

and then, in a second stage, to the notion of set. This latter concept, considered for a

88



long time as “primitive” and “undefinable”, has been the object of endless polemics,
as a result of its extremely general character and on account of the very vague type of
mental representation which it calls forth; the difficulties did not disappear until the
notion of set itself disappeared (and with it all the metaphysical pseudo-problems con-
cerning mathematical “beings”) in the light of the recent work on logical formalism.
From this new point of view, mathematical structures become, properly speaking,

the only “objects” of mathematics. ([24], p. 225-226)

Since “the recent work on logical formalism” referred to by Bourbaki in the last quote does not
contain anything that goes beyond Hilbert’s Formal Axiomatic Method these passages are rather
puzzling. A way to understand Bourbaki’s misgivings about set theory is this. A strictly formal
version of the Axiomatic Method like one applied in Bourbaki’s volume on set theory does not
require set theory developed in advance; however except this volume the set theory (namely its
informal version) is used by Bourbaki essentially. So the misgiving may be due to the fact that,
in particular, Bourbaki’s group theory is not a formal theory like GT (which by itself does not
require the notion of set) but a theory of set-theoretic models of GT. Although this fact may
indeed explain Bourbaki’s reference to the “logical formalism” the idea of making structures into
objects is hardly compatible with the Formal Axiomatic Method (for structures determined by
formal axiomatic theories are not objects of their theories). So what Bourbaki really aim at
is not a strictly formal axiomatic treatment of group theory and the rest of mathematics but
rather finding an appropriate replacement for set theory in its role of universal vehicle carrying
all specific mathematical structures. In 8.5 I shall come back to this issue and consider category

theory as such an alternative vehicle.

Coming now back to the question about the role of the Formal Axiomatic Method in the 20th
century mathematics we observe the following. Bourbaki formulated an important part of the
contemporary mathematics in set-theoretic terms and thus showed a theoretical possibility to
formalize this part of mathematics by reducing it to formal axiomatic set theory. However the
Formal Axiomatic Method did not become in Bourbaki’s hands the “basic instrument of all
research” as Hilbert suggested in 1927 ([100], p. 467); it is used instead only for foundational
purposes (notwithstanding the fact that the syntax of Bourbaki’s formal set theory lacks the
intuitive clearness through which Hilbert hoped to ground the infinitary reasoning in mathe-
matics). As an instrument of research and more importantly as an instrument of presenting
a ready-made knowledge in a systematic form Bourbaki uses a different version of Axiomatic

Method, which I have tried to describe in this paragraph. Describing this other method as in-
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formal one should keep in mind that the relevant difference between being formal or informal
is not a matter of degree. As we have seen Bourbaki’s method involves features, which are not
present in Hilbert’s method, in particular the idea of using formal axioms for defining objects of a
given theory rather than developing this theory itself. Another important difference concerns the
doing-showing dilemma. While Formal Axiomatic Method makes mathematical (as distinguished
from metamathematical) reasoning into a (syntactic) construction Bourbaki uses informal set-
theoretic constructions and proves (informally) theorems about these constructions and in this
sense more closely follows Euclid’s example. The fact that this new way of doing-and-showing
can be in principle represented formally should not be, of course, neglected. However it does not
provide any substance to the claim that the Axiomatic Method used by Bourbaki throughout

his Elements qualifies as formal in Hilbert’s sense.

3.3 Galilean Science and Set-Theoretic Foundations of Math-

ematics

Remind from the last Section Bourbaki’s claim according to which “every mathematical theory
is a concatenation of propositions, each one derived from the preceding ones in conformity with
the rules of a logical system”, which the author suggests as self-evident. This is a statement
of what I have called above a mathematical logicism in the large sense and argued that it is
not self-evident at all. In Chapter 1 I have shown that Euclid’s mathematics does not fit the
logicist description of mathematics as a “concatenation of propositions” because in addition to
theorems it contains problems, which aim at constructing some objects rather than prove some
propositions. In 2.4 - 2.6) we have seen that Hilbert’s Formal Axiomatic Method (in the sense of
his Foundations of 1927 and later works) employs a very special form of mathematical logicism,
which reduces a “concatenation of propositions” to a symbolic construction and in this way
assures a fundamental role of mathematical intuition of a special sort. Finally we have observed
that Bourbaki’s mathematics, in fact, is not quite unlike Euclid’s: it cannot be described as
a concatenation of propositions either because it similarly involves constructions of objects of
special sort called structures. The idea of reduction of all constructive postulates to existential
propositions plays a role only at the ground level of the formal set theory, where informal
set-theoretic constructions indeed translate into symbolic constructions (or more precisely, a
possibility of such translation is shown albeit no such translation is actually done). Now I would

like to return to the issue of mathematical logicism and argue that mathematics has a non-
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propositional constructive aspect, which makes possible application of mathematics in empirical
sciences and technology. This view is obviously not original and dates back at least to Kant.

Nevertheless it is appropriate to spell it here again in modern terms.

It is hardly controversial that mathematics deals with forms of possible human experience; in
its simplest and most general form this claim is simply tantamount to saying that mathemat-
ics applies across a wide range of human practices. Today this is even more true than it was
in Kant’s time: crucial technologies, on which depend our well-being, in many ways depend
on mathematical considerations and cannot be sustained and further developed without mathe-
matical expertise; mathematics today makes part of any engineering education. In Kant’s time
the only properly mathematized science was (Newtonian) mechanics; the following progress of
science in the 19th century has brought us to the point when every physical theory deserving
the name has a mathematical aspect. Today physics and chemistry are mathematized and the
mathematization of biology is in progress. Using mathematical models also becomes an usual

practice in social sciences.

Let me now be more specific and ask which general forms of experience are relevant to today’s
science and technology. This question is obviously yet too large and too general to be answered in
any detail here. I would like however to stress only the following point. At least since Galileo’s
times science practices an active intervention of humans into the nature through experiments
rather than a passive observation and description of the observed phenomena. So we are talking
now about the mathematically-laden science where mathematics serves for guiding human inter-
actions with the environment rather than simply for describing how this environment appears to

our senses. As van Fraassen puts this

The real importance of theory, to the working scientist, is that it is a factor in

experimental design. ([57], p. 73)

Thus mathematical forms of possible experience relevant to the modern science are forms of such
possible interactions with the environment rather than only linguistic and logical forms that
allow for spelling out some plausible hypotheses about the world and deriving from them some
consequences according to certain rules. The forms of the latter kind may be sufficient for devel-
oping a speculative science along the older scholastic pattern but they are certainly not sufficient
for developing the modern mathematically-laden science and the modern mathematically-laden

technology.

As far as the pure mathematics is conceived as a domain of abstract logical possibilities the fact
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that mathematics proves “unreasonably effective” [252] in its applications to empirical sciences
and technology remains a complete mystery. The mystery is dissolved as soon as one observes that
mathematics explores not everything that can possibly be the case (which is a hardly observable
domain unless one delimit the sense of “possibly” in one way or another) but rather what we
can possibly do within the limits of our human capacities (which are steadily growing with the
progress of science and technology). What are these limits is a tricky question. On the one hand,
mathematics systematically ignores certain apparent limits by exaggerating relevant capacities:
this is usually called the mathematical idealization. For example, mathematicians pretend that
they can count up to 1010%0 just as easily as up to 10 or that they can draw a straight line between
two stars just as easily as they can draw a line between two points marked on a sheet of paper.
This strategy usually works until the point where the empirical constraints become pressing and
people invent new mathematics that takes these constraints into account as this, for example,
happened when people realized that the old good Euclidean geometry is not appropriate for
describing the physical space at large astronomical scales (in spite of the fact that it still works
amazingly well at the scale of a planetary system like ours). One the other hand, it also happens
that in a real experiment people observe what in terms of the assumed mathematical description
of this experiment qualifies as impossible as this happened in the Michelson-Morley experiment
supposed to measure parameters of the ether flow around the Earth. In such cases people say
that the assumed mathematical description (and hence the corresponding physical theory) is
wrong and look for a new one. Sometimes the suitable mathematics can be found in a nearly
ready-made form and only used for building a new physical theory but sometimes in order to fix
the problem one needs to develop the appropriate mathematics from the outset as this happened
in the history of the electro-magnetism, for example. This picture suggests the view on the pure

mathematics as a proper part of the modern Galilean science.

Russell’s neo-Leibnizian logicism about mathematics promises nothing more and nothing less
than that: to make mathematics a part of logic, so that any mathematical form of possible
experience turns into the form of a proposition (and forms of logical inference of propositions
from some other propositions), which may eventually refer to some experience. Russell’s view
is quite radical in this respect, and many people including Hilbert who were directly involved
into reforming mathematics on the basis of new logic in the beginning of the 20th century didn’t
share Russell’s philosophical views. Anyway, as I have already argued, a weaker form of the neo-
Leibnizian approach is intrinsic to Hilbert’s Formal Axiomatic Method. Even if forms of possible

experience delivered by a formal axiomatic theory do not qualify as logical forms in the precise
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sense of the term they nevertheless are forms of possible empirical propositions rather than forms
of empirical interactions or anything else. This, in my view, explains the very little success that

Hilbert’s Axiomatic Method has had so far in physics and other natural sciences.

As far as we want to continue to develop the Galilean science (and the technology connected to
this type of science) our mathematics must provide for it forms of possible empirical interaction
rather than just forms of propositions. In other words it must provide forms appropriate for doing
various things in the world but not only forms for talking about this world and showing how
the world looks like in a mathematical representation. Since formal axiomatic theories are not

appropriate for this job we need to learn how to build mathematical theories differently.

As Kant shows in great detail the traditional geometry and his contemporary algebra are useful in
the Galilean science because these mathematical theories are constructive in the sense that they
involve rules for constructing their objects (explicitly or implicitly). Today we cannot hope, of
course, to get a new mathematical theory that would allow for identifying a physical object with
a mathematical object in the same way, in which one may identify (modulo the mathematical
idealization), say, a planet with an Euclidean sphere. Today’s physicists describe particles using
the mathematical group theory and manipulate with these particles in experiments using a special
hi-tech equipment; they don’t expect that mathematical manipulations with groups would map
their experimental manipulations in a direct way. Nevertheless the constructive character of the
mainstream informal mathematical practice, which I have stressed earlier in this Chapter, still
helps physicists and other scientists to design their experiments and their equipments. Scientists
make up mathematical models of their experimental systems, manipulate both with the models
(theoretically) and with the experimental systems (in real experiments) and see whether the
manipulations of the two sorts work coherently. This is, of course, an oversimplified picture
of the scientific experiment (for more details see [57]) but it is sufficient for seeing that the
possibility to establish a correlation between mathematical manipulations, on the one hand, and
experimental manipulations, on the other hand, remains essential in today’s mathematically-

laden experimental science.

I cannot see how such a correlation cannot be possibly established when the only type of math-
ematical objects available for manipulation are syntactic objects, which represent (logical forms
of) propositions related to certain experimental settings but do not represent these experimental
settings themselves. Given a proposition expressed in a formal language one may interpret it in
terms of physical data and evaluate whether under this interpretation the given proposition is

true or false. From a number of so interpreted true propositions one may deduce some further
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propositions, consider them as physical predictions and finally check these predictions against
the available physical data. So far so good but notice that from a methodological viewpoint this
way of doing natural science resembles Ptolemean astronomy saving phenomena rather than the
Galilean physics intervening into the nature with experiments! In order to design an experiment
one needs a mathematical model (representation) of a given physical environment itself but not
of formal propositions interpretable in terms of this environment; mathematical manipulations
(i.e. some further constructions) with a model of the former sort may serve as a guide for real
experimental manipulations within the given environment, mathematical manipulations with a

model of the latter sort cannot be directly used for this purpose.

Bourbaki’s FElements present a possible compromise between the formal axiomatic approach
and a more traditional constructive approach of doing mathematics. (Beware that I use here
the term “constructive” in the sense of Hilbert’s distinction between “construction postulates”
and propositional “existential form” ([107], p. 20). This sense of being constructive does not
imply anything about the admissibility of mathematical constructions of a given type. The
admissibility of constructions depends on concrete constructive postulates but I am now taking
about constructive postulates in general.) So we have in Bourbaki’s Elements a formal axiomatic
theory (of sets) on the ground level, informal set-theoretic constructions on upper levels and
the (theoretical) possibility to translate the higher-level mathematics into the formal ground-
level terms. Arguably such a translation (however impractical it may be) plays an important
justificatory role since it allows for reduction of problematic set-theoretic constructions (like
the construction of the powerset of a given infinite set) to formal deductions from axioms of
set-theory (including existential axioms) to (long and tedious but anyway finitary) symbolic
constructions. So the question of admissibility of problematic set-theoretic constrictions reduces
to the question of admissibility of the corresponding symbolic constructions. And in this latter
case we have a clear criterion of admissibility: a given formal deduction is admissible if and only
if it, first, conforms the explicit rules of deduction and, second, the given formal theory of sets
is consistent, which is tantamount to saying that from the given axioms the proposition 0 # 0
can not be deduced by the aforementioned rules (i.e. that these rules do not allow to build a

symbolic construction with the axioms on the one end and 0 # 0 on the other end).

Although having such a device for checking suspicious mathematical constructions and suspicious
mathematical proofs seems to be a good idea Bourbaki’s attempt to apply this device in practice
brings a rather controversial outcome. First of all it does not allow for an effective proof-checking;:

formal versions of Bourbaki’s proofs are too long and cumbersome to be survey able by a human
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mathematician and at the same they are not adopted for an automatic proof-checking with
a computer. This is why the theoretical possibility of translating set-theoretic constructions
into symbolic one may serve only as an epistemic ground justifying certain basic set-theoretic

constructions like the powerset.

It must be however stressed that in Bourbaki’s Elements the Formal Axiomatic Method does
not perform this foundational task as perfectly as Hilbert has imagined it in 1927. There are
two fundamental difficulties here that Hilbert did not acknowledge. First, the criterion of formal
consistency cannot be used straightforwardly because the proof of consistency of Bourbaki’s set
theory or any other formal set theory requires using some stronger theory. So we don’t really
know whether or not the background set theory is consistent. Second, what can and what cannot
be proved in a formal theory depends on the chosen background logic and such a choice, as I
have already stressed, is a matter of controversy. Given these fundamental difficulties I doubt
that formal Set theories can play the foundational role they are supposed to play in Bourbaki
or elsewhere in the modern mathematics. The powerset operation is admitted by Bourbaki not
because its formal existential version (i.e., the formal powerset axiom) is formally consistent with
other axioms of set theory but rather on an intuitive ground by an appropriate modification of the
intuition relevant to the finite case. The finite intuition underpinning Euclid’s First Postulate is
similarly modified in the case of the Second Postulate, which allows for an infinite extension of a
given straight segment. Although the infinite powerset operation requires a deeper modification
of the finite intuition this is nevertheless a matter of degree rather than matter of principle. This
is why any sharp distinction between “real” and “ideal” objects in mathematics is in my view
unjustified. In Chapter 7 I show how in the history of mathematics “ideal” objects become “real”
through the development of appropriate intuitions. The power set operation can be, in my view,
stipulated directly as a constructive postulate (“constructive” in the above sense!) rather than
in the roundabout way through the existential powerset axiom. Having said that I do not deny
that the formal logical analysis has helped to clarify some important issues in foundations of set
theory and in foundations of mathematics in general. We have learned about certain set-theoretic
paradoxes and ways of avoiding them. In particular we learned to distinguish sets from proper
classes (like the class of all sets, see 5.8). So even formal axiomatic set theories cannot provide
ultimate foundations they show how us how to avoid known contradiction by forbidding certain

constructions like the set of all sets.

Using a formal set theory as a foundation and using a set theory informally for building structures

are related but still different issues, which we need to distinguish carefully. We have seen that
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the idea of building mathematical objects as structured sets comes from the Formal Axiomatic
Method but then lives an independent life within theories, which are nor formal neither axiomatic
in Hilbert’s sense of these terms. It is appropriate to ask whether the informal “set-theoretical
language” is indeed sufficient for doing modern mathematics. We shall see in Chapter 8 that the
answer is rather in negative. Here I shall only make a remark concerning possible applications
of Bourbaki’s structural mathematics in natural sciences. Although the informal Bourbaki’s
structural mathematics just like Euclid’s mathematics involves constructions (but not only logical
deductions) the set-theoretic nature of these constructions apparently makes an obstacle for
interpreting these constructions in physical terms and applying them in physics and other natural
sciences. Consider the case of group theory: in spite of the fact that this theory is widely used in
the 20th century physics physicists normally think of groups as groups of transformations (see 6.1
) rather than construe them as structured sets. This fact is hardly surprising since Cantor’s notion
of infinite set is of metaphysical rather than physical origin and has no physical sense; naively this
can be expressed by saying that infinite sets do not exist in nature. The later development of set
theory, which eventually led to modern axiomatic theories of sets, clarified the logical aspect of
set theory but did not have anything to do with physics either. This makes Bourbaki’s structural
mathematics quite unlike Euclid’s mathematics where the basic mathematical concepts such as
number and (geometrical) magnitude are directly relevant to the material practices of counting
and measuring, which are even today indispensable in any empirical science. The question, which
I want to stress now is the following: is the present detachment of foundations of mathematics
from the foundations of natural science indeed an epistemic necessity or rather an outcome of

bad epistemic strategy?

It is true that the contemporary mathematics is so sophisticated and the experience relevant to
the contemporary fundamental physics is so unlike the everyday human experience that we cannot
hope to find a pre-established cognitive mechanism providing a natural link between mathematics
and physics at the level of their foundations. However constructing such a link artificially can be
an epistemic strategy on its own. As I have already mentioned in 2.2 the idea to use metaphysics
as a guide and formal logic as a tool for building foundations of mathematics is related to the
anti-Kantian turn in the philosophy in the very beginning of the 20th century, which gave a new
credit to the traditional pre-Modern and pre-Galilean patterns of doing science. I claim that the
epistemic success of this type of science in the past is a sufficient reason to continue to keep its
basic epistemic strategy untouched and think how to conform new mathematical and physical

results with it rather than give up this strategy and replace it by a new form of Scholasticism. This
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may sound like knocking into an open door in the large scientific and mathematical community
but not in the community of people professionally working in the foundations of mathematics,
most of which still follows the logicist agenda established by Frege and Russell a century ago
and works in an isolation from the mainstream mathematics and physics. I would like to stress
that linking foundations of mathematics to foundations of physics is in not in my view only a
pragmatic question of having better mathematical tools for physics but a fundamental question
concerning foundations of the modern mathematized natural science. Although in this book I
cannot present a systematic defense of the Galilean Science I claim that the irrelevance of set-
theoretic foundations of mathematics to the contemporary physics is a strong reason for rejecting

these attempted foundations and looking for a replacement.

3.4 Towards the New Axiomatic Method: Interpreting Logic

In the 20th century the part Symbolic Logic, which describes itself as “philosophical”, went
through a booming development; for an overview I refer the reader to the last continuing edition
of the Handbook of Philosophical Logic edited by Gabbay and Guenthner [45] 7. Without trying
to survey here the recent history of philosophical logic I shall try only to answer this question:
Whether or not the development of logic after Hilbert brought about any new notion of Axiomatic

Method?

In order to answer this question let me first of all stress that Hilbert’s Formal Axiomatic Method
is extremely flexible and leaves one the freedom not only for building various axiomatic theories
(including incompatible ones) but also for making a choice of the background logic. The mere
replacement of (formalized) Classical logic by the (formalized) Intuitionistic logic or any other
system of formal logic does require the replacement of the Formal Axiomatic Method by a new
method of theory-building®. However there is, in my view, at least one continuing development
in logic, which indeed changes the sense of the Formal Axiomatic Method but not only presents

a new application of the same method.

Remind from 2.3 that in their logical textbook of 1928 [104] Hilbert and Ackermann distin-

guish between “contentual” and formal (i.e., symbolic) logic along with distinguishing between

7If one asks what is specifically “philosophical” about the multiple formal systems presented in this Handbook
then, I think, the answer is twofold: all these formal systems are designed with certain philosophical motivations
and/or used for treating some philosophical problems. The relevant notion of being philosophical derives from a
particular notion of philosophy, which can be roughly identified with the Analytic Philosophy.

8 Although this second degree of freedom (which adds to the free choice of axioms) has been not previewed
by Hilbert himself I don’t qualify its discovery as a modification of Hilbert’s Axiomatics Method. However this
new degree of freedom undermines Hilbert’s suggested epistemic justification of his method and thus creates new
epistemological problems. I shall discuss these problems and suggest a solution in Chapter 9.
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contentual and formal axiomatic mathematical theories. Do Hilbert and Ackermann also mean
here a possibility of providing their system of symbolic logic with alternative interpretations
(alternative models) along with alternative interpretations of formal axiomatic theories based on
this system of logic? As I have already argued this is not the case: the authors rather think of
formalization of “contentual”, i.e., informal, logical concepts as a way of making these concepts
sharper and better manageable with a help of symbolic means. A similar attitude is expressed

in 1932 by Gentzen in a footnote:

If the words ’sentence’ (‘theorem’) and ’proof are used informally as constituents of
our language they are of course intended to mean something quite different from the
purely formally introduced concepts of ’sentence’ (‘theorem’) and ’proof (and even
under an intuitive interpretation the latter concepts are still considerably narrower
than the former); the context should make it clear in each case how these concepts

are intended. ([73], p. 312)

So in Gentzen’s view a formal language allows for a narrower and more precise formulation of
logical concepts than the natural language. It is an essential part of this view that each formal
logical concepts has certain intended interpretation, which can be expressed by formal means
more precisely than by the natural language. Tarski is his Introduction of 1941 [233] treats logic
as a formal theory such that it necessarily makes part of any other (formal) theory and which
can be called, in this sense, the minimal theory. (He does not discuss in this textbook the issue
of multiplicity of logics and talks about the logic in singular.) After explaining the notion of

model of a given formal theory and providing some examples Tarski remarks:

For precision it may be added, that the considerations which we sketched here are
applicable to any deductive theory in whose construction logic is presupposed, but
their application to logic itself brings about certain complications which we would

rather not discuss here. ([233] p. 119)

Let me now point to such a complication, which is of philosophical rather than mathematical
character. In his earlier paper Sentential Calculus and Topology [234] first published in 1938
Tarski develops topological interpretations of Classical and Intuitionistic propositional calculi.
Under these interpretations the syntax of propositional logic is interpreted in terms of elements
(open subsets) of a given topological space and operations with these elements, so a given well-
formed formula F designates (not a proposition but) a certain element ¢ of the given space
construed from other elements. Then Tarski proves that F' is derivable in the given calculus if

and only if ¢ has certain property P (which is not the same in the Classical and the Intuitionistic
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cases).

Let me briefly explain for a non-mathematical reader what is topology and an open set. Topology
is a “gummy geometry”, which studies those properties of geometrical objects, which remain
invariant under invertible continuous transformations. Think about a circle (more precisely a
circumference of a circle) and allow it to change its form however you want but without cutting it
and without gluing it to itself. Such a “gummy” object qualifies as a circle (or “one-dimensional
sphere”) in the topological sense of the term (even if it may look like an oval and so not qualify
as circle in the usual Euclidean sense of the term). A standard way to define a topological
object (usually called a topological space) using set theory is the following. For a given set T' (of
“points”) one specifies which subsets U C T count as open; the complement T\U of an open set
is called closed. The choice of open (sub)sets is restricted by several axioms, which I shall not
list here. Consider a circle (or any closed curve) on the Euclidean plane and think of these two
things as sets of points. Then the “natural” topology is one where the interior area of the circle
counts as open while the rest (the rest of the plane together with the curve) counts as closed.
In this setting a continuous transformation is defined as one that reflects opens, i.e., one, which

never transforms closed sets into open.

I shall not reproduce here details of this Tarski’s construction and discuss only its problematic
significance for the Formal Axiomatic Method. Remind that a pillar of Formal Axiomatic Method
is the symbolic logic and that this pillar is twofold: it comprises a symbolic syntax, on the one
hand, and a logical content, on the other hand. Each of the two aspects of symbolic logic
has its specific epistemic impact: the logical content comprises basic laws of reasoning; the
symbolic syntax makes these laws explicit through the symbolic intuition (2.4). This is why the
logical content of formal theories (built by Hilbrt’s Formal Axiomatic Method) unlike their non-
logical content is indispensable. Indeed, given a list of mutually consistent axioms one may after
Hilbert stipulate thought-things and thought-relations satisfying these axioms and consider them
as mathematical objects; since the axioms are written with a symbolic language this language
provides these “ideal” objects with a symbolic representation, which makes it easy to reason about
these objects as if they were “real”. Further interpretations of the given formal theory can be
interesting and useful (and may even constitute the pragmatic raison d’étre of the given theory)
but, strictly speaking they are not necessary. However this way of construing mathematical
objects does not work unless one has the notion of logical consistency in one’s disposal. On
the syntactic level the logical consistency translates into the impossibility of building a string

of formulae, which begins with the axioms and ends up with a distinguished formula like 0 # 0
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(provided one follows fixed rules about building strings of formulas). However this syntactic
counterpart of the logical consistency is not sufficient by itself to make the Formal Axiomatic
Method work. In order to make the method work one must assume, in particular, that the
symbolic expression 0 # 0 expresses a contradiction. So the logical content unlike the non-logical
content cannot be dispensed with in formal theories. It is always possible, of course, to study
systems of symbols on their own rights but the Formal Axiomatic Method does not fall out of
such a study unless one brings logical concepts into it. So interpreting logical and non-logical
terms in a formal theory are indeed two rather different issues. Understandably Tarski did not

want to enter into these details in his introductory chapter on model theory [233].

With Tarski’s topological interpretation of the Classical and Intuitionistic propositional calculi
we get in addition to the intended logical interpretation of the given symbolic calculi a non-
intended one. Tarski [234] uses for this interpretation Kuratowski’s semi-formal set-theoretic
approach to topology [139]; a fully formalized version of this latter theory would comprise (i)
a background logic, (ii) a formal set theory, and (iii) an axiomatic theory of topological spaces
interpreted in the underlying set theory. What sense one can make of the fact that a theory,
which involves these three foundational levels (i), (ii), (iii) interprets a logical calculus, which

can be a fragment of its own background logic (i)?

The standard notion of model and its usual epistemological underpinning (as developed in [233])
hardly allows for thinking about Tarski’s topological interpretation as epistemically significant.
However, if one sees this construction from a different perspective, which brings one back to Boole
and Venn, the same construction appears as a proper part of propositional logic (rather than its
interpretation), which accounts (in topological terms) for the universe of discourse relevant to
this logic . We shall discuss this alternative view on logic in the next Chapter ( see 4.3 below).
Let me only mention here that the issue of universe of discourse in Venn’s work is closely related
to his use of logical diagrams (see 2.5 above), and that the logical diagrams are topological
objects in the sense that their sizes and shapes do not matter but their topological properties

(and only such properties) do.

Tarski himself makes the following remark about his proposed topological interpretation of the

two propositional calculi (which the translator calls sentential):

The present discussion seems to me to have a certain interest not only from the
purely formal point of view; it also throws an interesting light on the content relations
between the two systems of the sentential calculus and the intuitions underlying these

systems [zugrundeliegende Intuitionen]. ( [234], p. 421)
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Does Tarski claims here seriously that certain topological intuitions underly logical calculi or he
rather talks about intuitions here in a vague sense, which does not imply any epistemological
commitment on his part? Be it as it may Tarski’s topological interpretation of propositional
logic points to a connection between geometry and logic, which is very unlike that assumed in
Hilbert’s Foundations of 1899 [109] and other works following the same line of thought. Remind
from 2.1 that in 1899 Hilbert thinks of logic as an ultimate foundation of geometrical theories,
which are treated on equal footing with physical theories and theories of other sorts. This way
of founding geometry on logic allows Hilbert to avoid in foundations of geometry any appeal
to geometrical intuition (or at least this is his intention). When the foundations of Euclidean
geometry are remade by Hilbert with a symbolic logical calculus the intuition comes back and its
foundational role becomes explicit but this concerns only the symbolic rather than the properly
geometrical intuition. Now under Tarski’s topological interpretation the propositional fragment
of logic itself appears to be geometrical in a sense. (The same observation can be made already
on the basis of using diagrams in logic.) This suggests that some geometrical (and in particular

topological) intuitions may after all play a role in foundations too.
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Chapter 4

Lawvere: Pursuit of

Objectivity

In a paper of 2003 Lawvere makes the following general remark about foundations of mathematics

and Axiomatic Method:

In my own education I was fortunate to have two teachers who used the term “foun-
dations” in a common-sense way (rather than in the speculative way of the Bolzano-
Frege-Peano-Russell tradition). [..] The orientation of these works seemed to be
“concentrate the essence of practice and in turn use the result to guide practice”. 1
propose to apply the tool of categorical logic to further develop that inspiration.

Foundations is derived from applications by unification and concentration, in other
words, by the axiomatic method. Applications are guided by foundations which have

been learned through education. ( [158], p. 213, italic is author’s)

The author’s attitude to foundations of mathematics, which he describes as commonsensical,
assumes a permanent interaction between the foundations and the current mathematical practice
(“applications”). It is opposed in this sense to the “Bolzano-Frege-Peano-Russell tradition”
(making part of today’s Analytic philosophy), which attempts to provide Formal Axiomatic
Method with a philosophical underpinning disregarding its problematic status in the context
of the current mathematical research. Lawvere’s notion of Axiomatic Method is very general;
his more specific proposal concerns the categorical logic, which is an area of logic invented by

Lawvere himself [14], [182].
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Here the first time in this book we meet the mathematical notion of category, which is going to
play an important role in what follows. I shall introduce this notion twice in this book: in this
current Section and then more geometrically in 6.3 below; the original motivation of category
theory is (partly) explained and in 8.5. Here I allow myself to reproduce the introduction of the
notion of category, which Lawvere designed for a philosophical reader in his [150]. This particular
introduction is of special interest for us because it appears to me that in this philosophical
publication Lawvere makes an attempt to use a new original axiomatic approach, which at least

at this time (1960-70ies) he did not use in his properly mathematical papers.

The formalism of category theory is itself often presented in “geometric” terms. In
fact, to give a category is to give a meaning to the word morphism and to the

commutativity of diagrams like

A——B A*>B

/\l ]

¢ A——>D

which involve morphisms, in such a way that the obvious associativity and identity

conditions hold, as well as the condition that whenever

is commutative.
To save printing space, one also says that A is the domain, and B the codomain of f

when

is commutative, and in particular that h is the composition f.g if
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is commutative. We regard objects as co-extensive with identity morphisms, or equiv-
alently with those morphisms which appear as domains or codomains. As usual we

call a morphism which has a two-sided inverse an isomorphism. ([150], p. 283)

Although Lawvere in the first phrase of the above quote uses inverted commas around the
word “geometrical”, I suggest that he thinks about the geometric aspect of categorical diagrams
seriously. Notice that the concept of category is introduced here right from the stretch as in the
case of a “purely formal” axiomatic introduction of this concept by usual symbolic means (like
one found in the beginning of Lawvere’s [147], see also [48] of 1945 where the mathematical notion
of category are first introduced by Eilenberg and MacLane). So this “geometrical” introduction
of the categorical formalism is to be contrasted with the standard introduction by means of
symbolic sogic (i.e., by the Formal Axiomatic Method in the precise sense of this expression
specified above). Lawvere’s remark that with a help of the above diagrams one is supposed
to “give a meaning” not only to the term “morphism” but also to the term “commutativity”
suggests that Lawvere treats this latter term also as primitive (albeit “primitive” should not be
understood here in the formal logical sense). The usual definition of commutative diagram is this:
a given categorical diagram is commutative when for all pairs of its nodes A, B all morphisms
between these nodes obtained by composition of composable morphisms shown at this diagram
are equal; for example the commutativity of the square diagram shown above amounts to the
equality f.b = a.g. Lawvere’s idea, if I understand him correctly, is rather to postulate the
commutativity for simple cases like A 1 B and then transport it geometrically to more

complicated cases like the square diagram and beyond.

Although this introduction of the concept of category addressed to philosophers is not sufficient
for a rigorous treatment of the concept of adjoint functors discussed further in the same paper,
I believe that this is not a merely informal description of the notion of category either. Even if
it does not qualify yet as a new form of rigorous Axiomatic Method it gives an idea how such a

new method may look like. A crucial characteristic feature of the new method is the involvement

1Given morphism A *f> B its two-sided inverse is morphism B 7 A such that f.g = Aand g.f = B.
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of geometry at the foundational level and its dialectical interplay with logic. In 4.9 we shall see
how this dialectics between logic and geometry develops in a more involved and more rigorous

context of topos theory.

The axiomatic introduction of the notion category found in the very beginning of Lawvere’s

Ph.D. thesis [145] has the same geometrical flavour:

[In a category wle identify objects with their identity maps and we regard a diagram

A—1-B
as a formula which asserts that A is the (identity map of the) domain of f and that
B is the (identity map of the) codomain of f. Thus, for example, the following is a

universally valid formula

Atop s aAanatoBrB-EoBArAf=f=fB

What is remarkable here is the way in which Lawvere combines the diagrammatic and the logical
symbolic notation. The diagram

Aa—1-p

in the category theory usually represents a mathematical object, namely a particular morphism f
in some category. I assume that Lawvere as anybody else uses this diagram in this sense too (even
if he may understand the notion of being a particular object in his proper way). However he also
reads it as an assertion and combines it with standard propositional connectives. “Officially”
this is only an unusual symbolic convention, which does not change the sense of the matter.
However in fact it touches upon the core of Formal Axiomatic Method. Remind from 2.4 that
this method assumes a distinction between “real” and “ideal” mathematical constructions: only
symbolic constructions qualify in this sense as real while all their interpretations qualify as ideal.
As T have stressed earlier this distinction creates a gap between the formalized and the “real” (i.e.,
informal) mathematics because manipulations with “real” symbols in formal theories represent
some logical operations but not operations with the “ideal” objects themselves (3.3). I would
like to stress now that Hilbert’s distinction between real and ideal mathematical objects is built
into the Formal Axiomatic Method technically but is not a matter of philosophical interpretation
of this method. A user of this method cannot ignore this distinction even if he or she is not

inclined to describe it in Hilbert’s original terms. More commonly this distinction is described
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today as the distinction between the formal syntax and its informal semantics.

Let me repeat a part of my earlier argument using a simple example. Hilbert in [106] uses
symbolic expression Zw(z,y, z) for denoting a predicate saying that given point y lies between
given points x, z; here the symbolic expression itself makes part of the formal syntax of the given
theory (formalized Euclidean geometry) and what this symbolic expression stands for makes
part of the informal semantics of this theory. As soon as values of x,y, z are fixed Zw(x,y, z)
expresses a proposition. Now let us tentatively identify Zw(z,y,2) with a geometrical object
(construction), which makes the corresponding proposition true, namely with a triple of points
< x,y,z > such that y lies between = and z. So we get in the same parcel, first, an object, and,
second, a true proposition “about” this object - just like in the case of expression f: A — B
read both as a particular morphism f and an (asserted) proposition saying that A is the domain

and B is the codomain of f.

In some special cases such a constructive interpretation of Hilbert’s formalism seems to work.
Consider formula Zw(z,y, z) — Zw(z,y,z) and read it, first, as intended (i.e., as a logical impli-
cation) and second, as a description of the geometrical operation, which turns this geometrical
construction

X—Y——7Z

into that

Z—Y ——X

by permuting endpoints X,Y. In this particular case indeed there is a structural similarity
(which can be described as a precise isomorphism if one likes) between operations with symbols
x,v, z in Hilbert’s formulas and operations with symbols XY, Z making part of the traditional

geometrical notation used together with traditional geometrical diagrams.

However such a geometrical interpretation of formulas obviously does not extend to the whole
of Hilbert’s formalized Euclidean geometry. Notice that formula Zw(z,y, z) is meaningful even
if it expresses a false proposition; in such cases we still have a symbolic construction but have
no corresponding geometrical construction. (Mutatis mutandis this remark applies to Lawvere’s
notation: unless the diagram A — B is commutative it does not represent any actual morphism.
This is why Lawvere in the above quote reads this diagram as an assertion but not as a mere

proposition.) Further, if we consider a bit more complex formulas like this one

VavyVz(Zw(z,y, z) — Zw(z,y,z))
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(which under the intended interpretation says that Zw(z,y, z) — Zw(z,y, x) is universally valid)
we find no obvious geometrical interpretation for symbol V, and hence no geometrical counterpart
of the extension of formula Zw(z,y,z) — Zw(z,y,z) with prefix VaVyVz . Clearly if we con-
sider formal deductions we lose any structural similarity between symbolic constructions, which
represent these deductions, and geometrical constructions making part of the informal intended
interpretation of the given theory. So in order to make sense of this theory we should do exactly
what Hilbert asks us to do: consider only the formulas as real mathematical constructions and
treat geometrical constructions and geometrical operations appearing in the intended informal
interpretation of this theory as a metaphorical facon de parler about ideal mathematical objects

and their relations.

Since, as I have already argued, mathematicians in their actual practice generally do not tend
to reduce mathematical constructions to symbolic constructions they develop a mathematical
notation called by some philosophers (but rarely by mathematicians themselves) informal or
semi-formal. This latter sort of notation just like the traditional geometrical notation helps one to
describe mathematical constructions in terms of certain symbolic and diagrammatic constructions
and does not, generally, require making difference between “real” and “ideal” mathematical
objects (although such a difference may eventually appear in some more specific contexts, for
example, if one treats real numbers as real and imaginary numbers as ideal). It is often assumed
that the semi-formal presentation of mathematical theories is essentially a useful shorthand
to a corresponding formal presentation, which can be obtained through some tedious routine
procedure of formalization; in particular this is the official position of Bourbaki in his Elements.
Using this latter example I have argued in 3.2 that this position is not tenable (even if the
formalization is workable) because the semi-formal presentation allows for manipulating with
mathematical objects other than symbols while the purely formal presentation does not; as a
part of the same argument I have also argued in 3.3 that manipulations with mathematical
objects other than symbols is an epistemically (but not only pragmatically) significant aspect of
mathematics. So even if a purely formal presentation of mathematical theories is possible this
presentation does not presents an essential aspect of these theories. Beware that talking about
the formal presentation I mean here a presentation made by the Formal Axiomatic Method in
the precise Hilbert’s sense. My argument does not concern the issue of symbolic presentation as
such. I do not deny that any mathematical content can be presented in a symbolic form - even
if I do not think that such a presentation is always better than a presentation that combines

symbols with diagrams and some prose.
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Commutative diagrams first appeared in mathematics as a part of semi-formal notation? and are
commonly used today (both within and outside the category theory proper) as such. Lawvere’s
attempt to use commutative diagrams as a part of formal syntax is a bold attempt to bridge
the gap between the formal and the semi-formal (aka “usual”) notation in mathematics. Instead
paying the usual lip service according to which the semi-formal notation can be replaced by a
purely formal notation “in principle” Lawvere does not want to tolerate the gap between the
“official” foundations and the practice. Clearly the symbolic convention according to which
commutative diagrams stand for assertions, does not solve the problem. However as we shall
shortly see Lawvere’s contribution into Axiomatic Method involves much more; in particular, we
shall see that the idea of geometrical interpretation of logical quantifiers, which sounds absurd
in the context of Hilbert’s approach, becomes a part of Lawvere’s novel approach. A central
role in Lawvere’s approach is played by categorical logic which he designs as a tool of axiomatic
thinking that helps to “concentrate the essence of practice and in turn use the result to guide

practice” ([158], p. 213)

Before we discuss Lawvere’s notion of categorical logic I would like to mention two Lawvere’s
achievements, which do not involve the categorical logic proper but can be described as unusual
applications of the usual Formal Axiomatic Method. This “classical” aspect of Lawvere’s work

is equally important for our analysis.

4.1 Elementary Theory of the Category of Sets

An important Lawvere’s achievement made wholly within the standard Formal Axiomatic Method
is his Elementary Theory of the Category of Sets (ETCS) first presented in his thesis in 1963
[145], [159] and published the next year as a separate paper [146] 3. The category of sets S is
category having (all) sets as objects and (all) functions between these sets as morphisms. If a
universe of sets is given in advance (say, through the axiomatic theory of sets ZF') category S
can be understood as a specific way of thinking about this universe. (Beware that the totality
of all sets is a proper class but not a set, see 5.8.) Lawvere’s ETCS reverses this order of ideas
and introduces S axiomatically using, first, MacLane and Eilenberg’s axioms for a general cat-
egory and, second, some additional axioms which distinguish S among other categories up to

categorical equivalence (which is an equivalence relation weaker than that of isomorphism, see

2 According to MacLane [176], p. 29, commutative diagrams were first used in early 1940ies by W. Hurewicz
in topology some time before the official birth of category theory in 1945 [48]

3A longer version [160] of this paper dating back to 1964 has been recently republished with new author’s
commentaries.
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6.7). The major difference between ZF and other similar axiomatic theories of sets, on the one
hand, and ETCS, on the other hand, lies in the choice of primitive non-logical constants. While
ZF and other similar theories take the binary relation of membership between sets as primitive
(usually denoted by symbol €) ETCS takes as primitive the binary operation of composition of

functions (which is a ternary relation between functions).

As McLarty and Lawvere rightly stress [160] this way of thinking about sets has important
advantages. Surely ETCS qualifies as an important example of what is colloquially called the
categorical thinking. 1 would like to stress, however, that ETCS is built by exactly the same
method as ZF, namely by the standard Formal Axiomatic Method, so in this particular case
the new categorical thinking wholly complies with the earlier established method of building
axiomatic mathematical theories. No categorical logic is involved in the ETCS in its original
form. The theorem according to which the axioms of ETCS specify the category of sets up to
categorical equivalence (see 6.7) is explicitly described by Lawvere as a “metatheorem” - once

again in full accordance with the Formal Axiomatic Method in its canonical form.

4.2 Category of Categories As a Foundation

Lawere’s axiomatic theory of Category of Categories As a Foundation (CCAF), which equally
stems from his thesis and which has been presented in a separate paper in 1966 [147], like ETCS
rests on a formal axiomatic theory of general categories; this time Lawvere writes down the
appropriate axioms explicitly once again using the Formal Axiomatic Method without trying to
modify it. This background part of CCAF Lawvere calls the elementary theory (ET). After the

introduction of the axioms of ET and providing some definitions Lawvere says:

By a category we of course understand (intuitively) any structure which is an in-
terpretation of the elementary theory of abstract categories, and by a functor we
understand (intuitively) any triple consisting of two categories and a rule T which
assigns, to each morphism x of the first category, a unique morphism z7T" of the second

category in such a way that ...

(follows the usual definition of functor as a structure-preserving map, which I explain and criticize

in 8.6 below).

ET is a preparatory step towards an extended theory, which Lawvere calls basic theory (BT).

BT begins with the introduction of the category of categories and a re-introduction of the notion
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of functor:

Of course, now that we are in the category of categories, the things denoted by the
capitals will be called categories rather than objects, and we shall speak of functors

rather than morphisms.

Remind that in his ETCS paper [146] Lawvere distinguishes between his theory and the relevant
metatheory explicitly. In the CCAF paper this distinction is blurred. The definition of functor
through the structure-preserving rule 7' is clearly metatheoretical. But the following re-definition
of functor as a morphism in a category of categories brings us back to the theoretical (i.e.
elementary) level. The usual way of handling the difference between a theory and its metatheory
in this case is the following. First of all one needs to specify what is meant by “all” categories.
A natural candidate is the class of all small categories, i.e., all categories in which morphisms
(including identity morphisms aka objects) form sets. Then having a set theory in one’s disposal
one may consider the class of all set-theoretic models of ET and then using the meta-theoretical
notion of functor conceive of a large category C of all small categories*. Since C is large and
its objects are small C' is not its own object. All this reasoning is clearly metatheoretical with
respect to ET. What we get at the end is a class of set-theoretic models of ET (i.e., the class
of small categories), which with a help of the metatheoretical notion of functor (as morphism
between small categories) is made into another (not set-theoretical) model of ET. Whether or
not the obtained large category of all small categories is legitimate is an instance of the general

problem about legitimacy of large collections like the putative collection of all sets (8.7).

This line of thought relies on a set theory and for this reason is not appropriate for Lawvere’s
purpose, which is to construe his category of categories as foundation. A rationale behind this
project is that small categories are certainly not all categories that one typically encounters in
the mathematical practice (see 8.5). So Lawvere’s idea is different: to think of the hypothetical
category C'AT of all categories as an intended model of ET and then add to ET new axioms
which distinguish C AT between other categories; then pick up from C' AT an arbitrary object
A (i.e., an arbitrary category) and finally specify A as a category by internal means of CAT
(stipulating additional properties of C AT when needed). So Lawvere replaces the set-theoretic

bottom-up approach outlined in the last paragraph by an original top-down approach.

More precisely it goes as follows (I omit details and streamline the argument). Stipulate the

existence of terminal object 1 in CAT), i.e., the object with exactly one incoming functor from

4Since the totality of all sets is not a set but a proper class (see 5.8) the category of all small categories is not
small. In the axiomatic theory of sets called after Quine New Foundations (NF) the totality of all sets is a set.
However NF turns to be not appropriate for modeling categories, see [184].
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each object of CAT. Then identify objects (= identity functors) of A as functors in CAT of
the form 1— A. Stipulate also the existence of initial object 0, i.e. the object with exactly one
outgoing functor into each object of CAT. Then consider in CAT object 2 of the form 0—1
and stipulate for it some additional properties among which is the following: 2 is a universal

generator which means that:

G (generator): for all f, g of the form:
:g>> B
and such that f # g there exist x such that:

2$A$B

and zf # xg.

U (universal): if any other category N has the same property, then there are y, z such that:

and yz = 2.

This allows Lawvere to identify functors (morphisms) of A as functors of the form 2— A in CAT.
The fact that 2 is the universal generator (it is unique up to isomorphism as follows from the
above definition) assures that categories are determined “arrow-wise”: two categories coincide if
and only if they coincide on all their arrows. This new definition of functor also allows one to
make sense of the notion of a component of a given functor of the form h: A — B , which in ET
is understood as a map m sending a particular morphism f of A into a particular morphism g

of B . In BT, m turns into this commutative triangle:

A—8B

Thus categories and functors are no longer built “from their elements” but rather “split into”
their elements when appropriate. Although the notion of functor as a structure-preserving map

can be recovered in this new context it no longer serves for defining the very notion of functor.
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Rule T used by Lawvere for defining functors in the elementary theory disappears in BT without

leaving any trace.

Further consider this triangle which Lawvere denotes 3:

] —2

(It should satisfy a universal property which I omit). & serves for defining composition of
morphisms in our “test-category” A as a functor of the form 3— A in C. Finally, in order to
assure the associativity of the composition Lawvere introduces category 4, which is pictured as

follows:

(The associativity concerns here the path 0 — 1 — 2— 3.)

This construction provided with appropriate axioms makes A into an “internal model” of ET
in the following precise sense: If F' is any theorem of ET, then “for all A, A satisfies F” is a

theorem of BT.

It must be mentioned that this Lawvere’s work contains a technical flaw that has been noticed by
Isbell in his review [121]. This flaw has been later fixed, in particular, by McLarty [184] who also

provides some additional clarifications on CCAF, which I use in the following discussion.

Let us see once again what we get here. We have a formal first-order theory BT and its hy-
pothetical intended model CAT. Lawvere and McLarty describe CAT as a “metacategory” ,
and McLarty quite rightly, in my view, stresses that “whether there are useful axioms on C AT
making C AT an object in itself” still remains an “open question” ([184], p. 1259). That BT does
not make C AT into an object is hardly surprising. Similarly, Hilbert’s Foundations of Geometry
[109] does not make Euclidean space into an object although it introduces points, straight lines
and planes as (primitive) objects. With respect to the given axiomatic theory the Euclidean

space is the “system of things”, i.e., an universe of discourse and in this sense it has a metathe-
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oretical status; C AT is metatheoretical with respect to BT in the same sense. So far BT works
just like any other formal axiomatic theory and so fully complies with the Formal Axiomatic

Method.

An unusual feature of BT concerns the fact that it contains ET as its part. ET is sufficient for
the axiomatic introduction of the notion of category: any “system of things” that satisfy ET is
a category by definition. Why one needs more axioms in category theory? An obvious answer is
this: ET is not categorical, i.e., it does not define a category up to isomorphism; there are many
different categories that one wishes to study but not just one. We have already seen in 3.2 that
the usual axiomatic group theory has the same property and that in order to make this latter
axiomatic theory useful one needs to use it together with set theory, which serves for building
and handling its various models. CCAF assumes no such background metatheory. Instead it
upgrades ET to BT with additional axioms and so determines a category of a special sort, namely
CAT - in a sense of “determines” that does not implies that C' AT is an object as just explained
5. Although CAT is not itself an object but a “system of things” one must expect that those
“things”, i.e., elements of C'AT, namely categories and functors, are determined through the
theory of CAT (i.e., through BT) as objects. This is exactly what BT claims to achieve. This
means, however, that BT significantly strengthens the concept of category with respect to its
usual definition through ET. To be a category in the sense of being an object of C'AT assumes
more axioms than to be a category in the sense of being a model of ET. Let us see what this

strengthening exactly amounts to.

There are two ways of thinking about the additional axioms of BT, which complement each other.
First, these additional axioms pick some specific notion of category. They strengthen the notion
of category in the same sense in which the definition of isosceles triangle strengthen the definition
of triangle. Clearly that such a strengthening by itself has no bearing on the foundations of the
category theory or the foundations of mathematics in general. Second, these additional axioms
allow for a re-introduction of basic category-theoretic concepts like object (as a functor of the
form 1 — A) , morphism (as a functor of the form 2 — A) and the rest. This second sense of
“strengthening” certainly does have a bearing on foundations and is of our special interest in our
discussion of the Axiomatic Method. Indeed although BT is construed as a formal theory in full
accordance with the Formal Axiomatic Method we see that within this theory (given its intended
interpretation C AT') Lawvere develops a different way of introduction primitive concepts, which

essentially involves C' AT and hence some previously assumed category-theoretic constructions.

5BT does not determine CAT up to isomorphism (or in any other relevant sense) uniquely [184] but let me
not bother about this problem now
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So we have here a foundation involving two levels: the level of elementary theory ET and the level
of description of the same primitive categorical concepts by categorical means made available
through BT. I would like to stress that the distinction between these two foundational levels
does not coincide with the standard distinction between a formal theory and its metatheory.
Although Lawvere describes C AT as metacategory he does not provide it with a metatheory.
McLarty [184] provides some elements of such a metatheory by considering some candidates for
CAT but it is not relevant to my present point. The second-level axiomatic foundation I am
talking about from a formal viewpoint is fully accounted for by the extension of ET to BT. So
from a formal point of view it amounts to a particular interpretation of this extension. Still
this particular interpretation is explicit in Lawvere’s paper and it amounts to determining basic
categorical concepts by categorical (rather than standard formal ) means. T would like to stress
however that these categorical means do not qualify as elements of categorical logic, which I

consider below.

It is appropriate to ask whether or not this latter “purely categorical” way of laying out axiomatic
foundations may work independently from the Formal Axiomatic Method. Surely it does not
work in such an independent way in Lawvere’s CCAF paper [147]; McLarty’s development of
Lawvere’s idea [184] does not go in this direction but rather cleans it up from the point of view
of the standard Formal Axiomatic Method. (McLarty after Lawvere challenges the set-theoretic
foundations built with this method but does not challenge the method itself.) In 4.9 I argue that
in another work Lawvere does use a new axiomatic method that I shall call the New Axiomatic

Method; in 9.3 I describe this New Method in general terms.

4.3 Conceptual Theories and their Presentations

In two abstracts [148], [149] published in 1966 and 1967 correspondingly Lawvere presents an
improved version of yet another idea first developed in his thesis [145], [159], namely, the idea of
presenting a formal theory (more precisely every first-order theory with equality) as a category
T of a special sort and presenting models of T" as functors from this theory to the category of sets
(i.e., functors of the form 7' — S). Terms and formulas in this setting are specific morphisms
in T, truth-values form a distinguished object L in T, and (every instance of) the existential
quantifier 3 is also a morphism in 7. In this context Lawvere makes a distinction between a

non-interpreted theory T and its syntactic presentation L:

Given a first-order language-with-axioms L, the associated theory T may be thought
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of as the “Sinn” [= meaning] of £ and the category STl as the “Bedeutung” [=

reference] of £. ([148], p.295)

referring to Frege’s [59], which we discuss in 5.10 - 5.11. ST is the category of models of T,
i.e., of specific functors of the form T'— S. No details are provided about the “association” with

a given language £ an appropriate theory T

The following discussion aims at placing Lawvere’s ideas into the historical context discussed in

earlier Chapters. For a more technical exposition I refer the reader to [182].

Lawvere’s “language-with-axioms” L is a standard formal theory like ZF formulated with a list of
axioms written down with usual symbolic means. So we have here a standard Formal Axiomatic
setting with formal theories, on the one hand, and set-theoretic models of these theories, on the
other hand. Now Lawvere introduces into this general framework a third intermediate element,
which he calls after Frege [59] the meaning of £ and identifies this meaning (rather than £ itself)
with a non-interpreted theory. As a later Lawvere’s comment makes it clear £ in this context is
to be thought of as a particular presentation of the corresponding theory T'; T itself is thought of
as a conceptual (rather than formal) theory, which remains invariant under changes of its various

presentations:

Since in practice many abstract concepts [...] arise by means other than presentations,
it is more accurate to apply the term “theory”, not to the presentations as had become
traditional in formalist logic, but rather to the more invariant abstract concepts
themselves which serve a pivotal role, both in their connection with the syntax of

presentations, as well as with the semantics of representations. ( [159], p. 8)

Lawvere’s conceptual theories like usual formal theories include a core part, which can be iden-
tified as a pure logic. Although in [148] Lawvere does not provide any explicit criterion for
distinguishing between logical and non-logical elements of a theory it is clear that the notions
of existential quantifier and truth-value belong to the former category. Saying that Lawvere in
this paper interprets logic in category-theoretic terms is actually in odds with Lawvere’s way of
thinking about this matter: Lawvere would rather say that the category-theoretic terms allow for
formulating logic concepts in an invariant form, which does not depend on this or that symbolic
presentation of these concepts. Nevertheless I shall use this external language because it helps me
to compare Lawvere’s categorical logic with Tarski’s topological interpretation of propositional

logic mentioned above (3.4).
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Remind that Tarski [234] provides a topological interpretation of Classical and Intuitionistic
propositional logic, which puts into one-one correspondence logical operations, on the one hand,
and some operations with elements of a topological space, on the other hand. Lawvere’s categori-
cal interpretation of logic works similarly but it is more powerful because it interprets more logic.
First, it works for the first-order logic but not only for propositional logic. (Here the crucial role
plays Lawvere’s interpretation of logical quantifiers as functors, which we shall discuss shortly.)
Second, it also interprets truth-values (true, false), which in Tarski’s topological interpretation
remain uninterpreted. These features allow Lawvere to think about his categorical interpretation
of logic (also called a categorical semantics of logic by some authors [8]) as a genuine conceptual
formulation of logic and to call it categorical logic rather than by any other name. The fol-
lowing quote from Lawvere’s textbook [163] co-authored with Rosebrugh shows that Lawvere’s
categorical logic has a philosophical but not only technical aspect; the same passage provides an

informal explanation of Lawvere’s interpretation of logical quantifiers as functors:

The term “logic” has always had two meanings - a broader one and a narrower one:
(1) All the general laws about the movement of human thinking should ultimately be
made explicit so that thinking can be a reliable instrument, but

(2) already Aristotle realized that one must start on that vast program with a more
sharply defined subcase.

The achievements of this subprogram include the recognition of the necessity of mak-
ing explicit

(a) a limited universe of discourse, as well as

(b) the correspondence assigning, to each adjective that is meaningful over a whole
universe, the part of that universe where the adjective applies. This correspondence
necessarily involves

(c) an attendant homomorphic relation between connectives (like and and or) that
apply to the adjectives and corresponding operations (like intersection and union)
that apply to the parts “named” by the adjectives.

When thinking is temporarily limited to only one universe, the universe as such need
not be mentioned; however, thinking actually involves relationships between several
universes. [..] Each suitable passage from one universe of discourse to another induces
(0) an operation of substitution in the inverse direction, applying to the adjectives
meaningful over the second universe and yielding new adjectives meaningful over the

first universe. The same passage also induces two operations in the forward direction:
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(1) one operation corresponds to the idea of the direct image of a part but is called
“existential quantification” as it applies to the adjectives that name the parts;

(2) the other forward operation is called “universal quantification” on the adjectives
and corresponds to a different geometrical operation on the parts of the first universe.
It is the study of the resulting algebra of parts of a universe of discourse and of these
three transformations of parts between universes that we sometimes call “logic in the
narrow sense”. Presentations of algebraic structures for the purpose of calculation
are always needed, but it is a serious mistake to confuse the arbitrary formulations
of such presentations with the objective structure itself or to arbitrarily enshrine one
choice of presentation as the notion of logical theory, thereby obscuring even the
existence of the invariant mathematical content. In the long run it is best to try
to bring the form of the subjective presentation paradigm as much as possible into
harmony with the objective content of the objects to be presented; with the help of

the categorical method we will be able to approach that goal. ( [163], p. 193 - 194)

Notice that Lawvere and Rosebrugh put at the first place of their description of “logic in the
narrow sense” the stipulation of “limited universe of discourse”. So the authors definitely asso-
ciate themselves with the logical tradition, which originates in Leibniz and then develops through
Boole’s pioneering works in symbolic logic, through De Morgan, Jevons, Venn and Peirce. An-
swering Schroder’s criticism Frege calls logic developed in this tradition “calculus ratiocinator”
(calculus or reasoning) and opposes it to another tradition (to which he adheres himself), where
logic is understood as “lingua characteristica” aka characteristica universalis (universal language
of thought); this latter tradition also dates back to Leibniz but then develops relatively inde-
pendently by Frege, Peano, Russell, Quine and Church [110],[113], [111]. While the calculus
ratiocinator tradition applies logic “locally” leaving it up to the user to determine the universe
of discourse in every concrete application, the characteristica universalis tradition tends to apply

logic to the fixed metaphysical universe that is supposed to include all that there is . Thus

For Frege there is [..] only one possible Begriffsschrift, for there is only one kind of human thinking it
must reflect. Frege’s Formelsprache is not a particular development beyond our ordinary language;
it is a purified and streamlined version of the entire ordinary language itself. It is calculated to
replace ordinary language, at least in its mathematical uses, not to extend it. [..] This syndrome
of ideas characterizes what I have called language as the universal medium. Since the meanings
(references) of the expressions of our language cannot be expressed in that language we cannot
rationally consider varying them, either, at least not in a way that could be specified in language
and theorized about. In this sense, our language cannot be reinterpreted. Hence all model theory
of our actual language is impossible, for the basic idea of all model theory is precisely to let the
interpretation of the language vary. [..] And hence the meanings of our language cannot be changed,
it can be used for one purpose only, viz. to speak of this one actual world of ours. Hence a kind of
one-world assumption is implicit in the idea of language as the universal medium. ([113], p. x-xi)
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Lawvere’s categorical logic belongs to the calculus ratiocinator tradition rather than the charac-

teristica universalis tradition.

In his book [127] already quoted above Venn includes a chapter titled The Universe of Discourse,
and its symbolic representation where he, in particular, remarks (referring to a famous example

of syllogism, which includes a premises “All men are mortal”):

Hence we constantly make assertions about all men without the slightest intention of
being bound by our words beyond a reference to a comparatively small selection of

mankind. ([127], p. 182)
and further

All and nothing therefore, in any application of our formulae, are to be interpreted
in accordance with the limits which we may decide to lay down at the outset of the

particular logical processes in question.([127], p. 186)

Since the choice of the universe of discourse is for Venn a matter of “application” of logic rather
than matter of “symbolic statement” of logic, Venn unlike Lawvere describes the notion of
universe as “extra-logical” (éb., p. 184). In this context Venn makes an interesting link between

the issue of universe of discourse and logical diagrams:

It has been said above that this question of the Universe only arises when we apply
our formulas. Now diagrams are strictly speaking a form of application, and therefore
such considerations at once meet us when we come to make use of diagrams. I draw
a circle to represent X, then what is outside of that circle represents not-X, but the

limits of that outside are whatever I choose to consider them. ([127], p. 186)

Even if laying down logical diagrams according to given symbolic formulas may indeed qualify
as “a form of application” of these formulas, the logical diagrams certainly make part of Venn’s
logic and in this sense are quite unlike men and any other external objects, which one may wish
to include in one’s universe of discourse at a given occasion. So the “application” of logical
formulas to diagrams is a form of self-application. In other words, the use of logical diagrams
makes the notion of universe of discourse in some sense internal after all. Thus Venn’s use of
diagrams in logic can be seen as a step toward Lawvere’s position, who considers “making explicit
a limited universe of discourse” as an essential determination of logic rather than a matter of its
application. Tarski’s topological interpretation of Classical and Intuitionistic propositional calculi
(see3.4) can be also most naturally understood as a specification of the universe of discourse

of a given calculus. Beware however that Tarski himself does not consistently think of this
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construction as a proper part of logic.

The next necessary determination of logic according to Lawvere and Rosebrugh is classical and
can be found already in Boole: given a predicate (adjective) P(z) and an universe U consisting
of individuals z such that P(x) is meaningful (i.e. has a definite truth-value) for all z, one is also
given a part (subclass) of U consisting of such individuals z for which P(z) is true. I would like
to stress that in the standard set-theoretic foundations of mathematics using formal axiomatic
theories of sets like ZF this principle is rendered into the form of an axiom schema of set theory
(called Separation or Restricted Comprehension Axiom Schema) [1] but not as a principle of
logic. This technical point is a part of Lawvere’s disagreement with the “speculative” “Bolzano-
Frege-Peano-Russell tradition” in foundations of mathematics, which the standard set-theoretic
foundations inherit ([158], p. 213). Now we see that this disagreement is neither purely technical
nor purely ideological but that it also concerns Lawvere’s philosophical understanding of logic
as a conceptual tool (calculus ratiocinator) rather than the characteristica universalis, i.e., the

“universal medium” ([113], p. xi).

The last point of determination of logic according to Lawvere and Rosebrugh concerns the “atten-
dant homomorphic relation” between logical connectives, on the one hand, and the “mereology”
of the corresponding universe of discourse; as along as this universe is thought of as a class, this
mereology reduces to a number of operations with subclasses of this class like unions and inter-
section. The “attendant relation” is, of course, well-known since Boole; the structure shared by
propositions, on the one hand, and subclasses of a given class, on the other hand, is called after
Boole the Boolean algebra. Tarski’s topological interpretation of propositional calculus (3.4) al-
lows for a similar “homomorphic relation” for the case of intuitionistic propositional calculus; the
corresponding structure is called Heyting algebra. 1 would like once again to stress that Lawvere
and Rosebrugh talk here about the “homomorphic relation” between logical connectives and the
mereology of the universe of discourse as a proper part of logic but not as a model-theoretic

issue.

Whether there exists only one metaphysical universe of everything or one has a freedom to
assume as many universes of discourse as one likes may seem to be a philosophical issue that
can and arguably must be separated from the logical formalism as such. However as the further
explanations of Lawvere and Rosebrugh make it clear such a complete separation of “application”
of logic from the logic itself is not compatible with their approach. In fact the assumption
about the plurality of universes of discourse is necessary for the most original technical aspect

of Lawvere’s proposal, namely for his interpretation of logical quantifiers there exist and for all
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as functors adjoint to substitution (also understood as a functor).

An adjoint situation (called also an adjunction) is a pair of categories A, B with two functors

f, g going in opposite directions:

provided with certain natural transformations (i.e., morphisms between functors) and satisfying
certain conditions, which make these functors in some special sense mutually inverse. Given an
adjoint situation as above functor g is called left adjoint to functor f and functor f is called
right adjoint to functor g, in symbols g 4 f. A given functor has at most one (up to unique
isomorphism) left adjoint and one right adjoint. Here is the precise definition 7. In addition to
functors f,g adjunction g 4 f comprises natural transformations a: A — fgand 8 : gf — B
such that (ga)(Bf) = g and (af)(gB8) = f. (As above I write here the composition in the
geometrical order and following Lawvere in [147] do not distinguish between objects and their

identity morphisms.) The required condition is that the following two triangles commute:

go
9——=gfg

N

g

=25 for

N

f

Once again I would like to stress that saying that quantifiers are interpreted as adjoint functors
provides an external description of Lawvere’s discovery; as the above quote from Lawvere and
Rosbrugh makes it clear Lawvere himself thinks of this functorial interpretation of quantifiers
as the “objective content” of the notion of quantification. Let me now discuss some of this
conceptual objective content beginning with the notion of substitution; in this discussion I shall
continue to trace a historical link between the categorical logic and the earlier calculus ratiocinator

tradition in logic as represented by Venn [127].

While Venn thinks of multiple universes of discourse as certain independent domains of appli-

cation of his logic, Lawvere and Rosebrugh claim that “thinking actually involves relationships

"The concept of adjunction has been first introduced in 1958 by Kahn [128] in the context of algebraic geometry.
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between several universes” (my emphasis) and then talk about the “passage” from one universe
of discourse to another. In a category-theoretic setting universes are presented as objects X,V ..

of some category and passages between universes are presented as morphisms like

(Notice that passages between two given universes are, generally, many and they are, generally,
not inversible.) Thus we have here a category of universes of discourse but not just a class of these
things. Let us for simplicity think of these universes as sets but have in mind that the functorial
construction of logical quantifiers does not require this assumption. (We shall see in 4.5 how this
construction works in a more general setting and how in such a more general setting it reveals its
distinctive geometrical aspect.) Suppose now that we have a one-place predicate (a property) P,
which is meaningful on set Y, so that there is a subset Py of Y (in symbols Py C Y') such that
for all y € Y P(y) is true just in case y € Py. Now using these data (together with morphism f
as above) we can define a new predicate R on X as follows: we say that for all x € X R(x) is true
when f(x) € Py and false otherwise. So we get subset Rx C X such that for all x € X R(x) is
true just in case € Rx. Let us assume in addition that every subset Py of Y is determined by
some predicate P meaningful on Y. Then given morphism (“passage”) f from “universe” X to
“universe” Y we get a way to associate with every subset Py (every part of universe Y) a subset
Rx and, correspondingly, a way to associate with every predicate P meaningful on Y a certain
predicate R meaningful on X. Since subsets of given set Y form Boolean algebra B(Y') we get

a map between Boolean algebras (notice the change of direction!):

i BY) —= B(X)

Since Boolean algebras themselves are categories (with objects subsets and maps inclusions of
subsets) f* is a functor. For every proposition of form P(y) where y € Y functor f* takes some
x € X such that y = f(x) and produces a new proposition P(f(x)) = R(z) (for a single given
y it may produce a set of different propositions of this form). Since it replaces y in P(y) by

f(x) =y it is appropriate to call f* substitution functor.

The left adjoint to the substitution functor f* is functor



which sends every R € B(X) (i.e. every subset of X) into P € B(Y') (subset of Y) consisting
of elements y € Y, such that there erists some x € R such that y = f(x); in (some more)

symbols

3 (R) ={yFz(y = f(x) Nz € R)}

In other words 35 sends R into its image P under f. Now if (as above) we think of R as a
property R(x) meaningful on X and think of P as a property P(y) meaningful on Y we can
describe 35 by saying that it transformes R(x) into P(y) = 3yxP’(z,y) and interpret 35 as the

usual existential quantifier.

The right adjoint to the substitution functor f* is functor

Ve B(X) —_— B(Y)

which sends every subset R of X into subset P of Y defined as follows:

Vi(R) = {yVa(y = f(z) = = € R)}

and thus transforms R(X) into P(y) = VszP'(x,y).

Notice that functors 3y and V¢ are defined here as adjoints to functor f*, i.e., quite independently

from their interpretation as logical quantifiers explained above.

The very fact that that in this setting quantifiers arise “naturally” through the functorial adjunc-
tion is remarkable from a mathematical point of view. According to Marquis and Reyes “[t]his
was a key observation that convinced many mathematicians that this was the right analysis of

quantifiers” ([182], p.710).
Let me now focus on philosophical aspects of this Lawvere’s achievement.

Lawvere’s approach to logicality like Tarski’s approach discussed in 2.2 is semantical because it
essentially uses the notion of universe of discourse. Nevertheless it is very unlike Tarski’s. While
Tarski thinks about logic in a traditional vein as an invariant structure over a given universe
of discourse, Lawvere’s categorical logic is a device that allows one to translate a proposition
meaningful in a given universe Y into another proposition meaningful in another given universe

X taking into account the relationship between the two universes expressed by morphism f :
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X — Y; as we have seen the corresponding “translation functor” f* expresses the simple idea of
substitution of a given variable y by term f(z). The fact that logical quantifiers are defined in
this setting through the substitution shows that the operation of translation between different
universes is not just a useful extra feature of logic but its very conceptual basis. The only
logical structure that is shared by all universes is the propositional (Boolean, Heyting or other)
structure. However for the first-order and higher-order logic the translational nature of logic
becomes essential. Logic is understood here no longer as a system of universal forms of thought,
which are not sensitive to differences between various domains of its application, but rather as
a universal translational protocol, which allows one to navigate between different domains. This
makes Lawvere’s conception of logic fundamentally relational: notice that quantifiers applied
in domain X are relativized to a particular “passage” f : X — Y from this domain to certain
codomain Y'; one needs to specify such a passage and the corresponding codomain every time
when one talks about “all  from X7, for example, when one says that all men are mortal. Does
this make sense? Let us see. The content of the proposition all men are mortal can be expressed
by saying that being a man implies being mortal. So this content can be expressed by means
of propositional logic without using quantifiers. But when quantifiers are really needed - as for

example in the case of Hilbert’s First Axiom (see 2.6 above):

VaVyGr(z, x,y)

(saying that any two points are aligned) - one should have in mind that talking about “all points”
does not make sense within the universe of points Pt but requires a “higher” or, better to say,
simply some external viewpoint, which allows one to look at Pt from outside and see it as a whole.
In the given example such an external viewpoint can be specified rather straightforwardly: since
the First Axiom characterizes a geometrical space, one should stipulate an appropriate category G
of spaces and make a new independent variable in the above expression to range over these spaces.
Then the universal quantifiers in the above axiom can be understood as Lawvere quantifiers; they
depend not only on category G but on a chosen functor f : Pt — G from points to spaces. From
the traditional Hilbertian viewpoint functor G and f belong to the metatheory and so must be
treated separately but Lawvere shows us that without these things the first-order logic used in
the given formal theory cannot work. Since “a quantifier is an operation in logic that moves a
statement from one context to a related context” 8 one cannot use quantifiers working within a

single context.

8http://www.ncatlab.org/nlab/show/quantifier as for April 2012
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The informal explanation of the notion of logical quantifier given by Lawvere and Rosebrugh
in the above quote in terms of universes of discourse makes it clear that these universes must
not be understood as external domains of interpretation of a given theory; as objects of a given
logical category these things are proper elements of this category and so they do not provide by
themselves an interpretation (semantics) in the model-theoretic sense of the term. In [150] where
Lawvere presents an advanced version of his categorical notion of elementary theory he refers
to objects of the given logical category as types. This terminology points to Lawvere’s “1963
observation [..], that cartesian closed categories serve as a common abstraction of type theory
and propositional logic” ([162], p.1), which deserves our special discussion. For a systematic
study of this subject (that extends far beyond Lawvere’s original observation of 1963) see [169]
and [123].

4.4 Curry-Howard Correspondence and Cartesian Closed

Categories

The idea of logical calculus that not simply applies to different domains of individuals but
explicitly distinguishes between different types of individuals dates back to Russell who has
coined the term “theory of types” ([212], Appendix B); the idea can even be traced further back
to Aristotle’s distinction between different genus of things and his principle according to which
switching between different genus in a reasoning (metabasis) is not allowed. One may remark

that the type distinction reflects a feature of our natural languages:

Types are inherent in everyday language, for example, when we distinguish between

“who” and “what” or between “somebody” and “something”. ( [169], p. 125

and further remark that distinguishing between different types of objects is tacitly made in the

mathematical practice:

In our mathematical practice we have learned to keep things apart. If we have a
rational number and set of points in the FEuclidean plane, we cannot even imagine
what it means to form the intersection. [..] If we think of a set of objects, we usually
think of collecting things of a certain type, and set-theoretical operations are to be
carried out inside that type. Some types might be considered as subtypes of some
other types, but in other cases two different types have nothing to do with each other.

That does not mean that their intersection is empty, but that it would be insane to
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even talk about the intersection. ([190], p. 31)

Indeed the standard Set-theoretic foundations of mathematics do not allow for distinguishing
between types of objects (at least at the foundational level) and, formally, do allow for crazy
set-theoretic operations mentioned in the above quote (since every mathematical object is a set
one may always form an intersection of two objects). Notice that the type distinction between
points and straight lines, which is made explicit in Hilbert’s Foundations of 1899, disappears in
his Foundations of 1934, where the Formal Axiomatic Method takes its mature symbolic form
(remind that in the latter case Hilbert treats only points as primitive objects). This is not
surprising because the system of (symbolic) logic used by Hilbert is not typed. One could expect
that the replacement of the underlying logical calculus by a typed logic may solve the problem
without effecting the foundations of the Formal Axiomatic Method itself; however at least one
particular development in type theory, namely one that has eventually led to the discovery of
the so-called Curry-Howard correspondence aka Curry-Howard isomorphism, as a matter of fact
does touch upon the foundations of the Axiomatic Method and connects the type theory to

categorical logic, as we shall now see.

As Lawvere ([162], p.2) and some other people notice the name of Curry-Howard isomorphism
is misleading because the term “isomorphism” is used in it loosely. I would like to stress that it
is also misleading in a different sense, namely in the sense that it does not properly reflect the
original philosophical motivation behind this discovery. In 1924 Schonfinkel published a paper
[220], [221] aiming at deepening Hilbert’s formalization of logic, which, as I have already stressed
in Chapter 2, indeed does not provide a purely formal treatment of logical concepts like propo-
sition and variable; the sense in which Hilbert treats logical concepts “formally” is significantly
weaker than the sense in which he treats formally non-logical concepts (2.3). Schonfinkel’s
idea was to reduce the logical concepts, which so far were generally seen as basic, to a small
number of allegedly more fundamental syntactic operations like substitution and permutation of

signs” Independently similar ideas inspired Huskell Curry in 1920ies (before he first came across

9

The successes that we have encountered thus far on the road taken encourage us to attempt further
progress. We are led to the idea, which at first glance certainly appears extremely bold, of attempting
to eliminate by suitable reduction the remaining fundamental notions, those of proposition, proposi-
tional function, and variable, from those contexts in which we are dealing with completely arbitrary,
logically general propositions (for others the attempt would obviously be pointless). To examine
this possibility more closely and to pursue it would be valuable not only from the methodological
point of view that enjoins us to strive for the greatest possible conceptual uniformity but also from
a certain philosophic, or, if you wish, aesthetic point of view. For a variable in a proposition of
logic is, after all, nothing but a token that characterizes certain argument places and operators as
belonging together; thus it has the status of a mere auxiliary notion that is really inappropriate to
the constant, “eternal” essence of the propositions of logic. It seems to me remarkable in the extreme
that the goal we have just set can be realized also; as it happens, it can be done by a reduction to
three fundamental signs. ( [221] , p. 358-359)
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Schonfinkel’s paper during the academic year of 1927-1928) who gave to this field of study its
current name of combinatory logic 1© Here is how Curry describes the aim and the scope of

combinatory logic in a later co-authored monograph:

Combinatory logic is a branch of mathematical logic which concerns itself with the
ultimate foundations. Its purpose is the analysis of certain notions of such basic
character that they are ordinarly taken for granted. These include [(i)] the process of
substitution, usually indicated by the use of variables; and also [(ii)] the classification
of the entities constructed by these processes into types or categories, which in many
systems has to be done intuitively before the theory can be applied. It has been
observed that these notions, although generally presupposed, are not simple; they

constitute a prelogic, so to speak, whose analysis is by no means trivial. ([85], p. 2)

Purposes (i) and (ii) mentioned by Curry in the above quotes are mutually dependent '!. Since
a formal logical calculus is seen as a bare symbolic calculus where signs do not have any previ-
ously assumed meaning one needs to make explicitly certain distinctions between different types
of symbolic constructions without which this calculus cannot qualify as logical - including, in
particular, the distinction between individuals, propositions and logical connectives. The idea of
Combinatory logic as Curry describes it requires making all such distinctions formally without
appealing to the usual meaning of words “individual”, “proposition”, etc. Thus pushing the
formal approach to logic to the extreme shows the necessity of typing, so one may argue that
the type distinction is always present in logic whether one describes explicitly or not. As Jacobs

puts this
A logic is always a logic over a type theory. ([123], p. 1)

In 1969 William Howard reformulated and extended Curry’s results in a note [118] that has been
first published only in 1980. Instead of using Combinatorial logic Howard used the formalism of
(simply) typed lambda calculus invented by Alonzo Church in late 1920s [31] and first published
in 1933. Curry was of, of course, aware about the fact that the formalism of lambda-calculus
comes close to that of combinatory logic but he claimed that his formalism provides a deeper
foundational analysis ([85], p.6 - 9). Unlike Curry Howard did not stress the philosophical mo-

tivation and the foundational significance of this result but formulated it in terms of structural

L0For more detailed historical accounts see [31], [224].

H1n the above quote Curry uses the term “category” interchangeably with the the term “type” - and further in
his book he uses the former term more often than the latter. Although in the category theory the term “category”
is used in a different sense the two different uses of this term are compatible as long as one assumes in the spirit
of CCAF that an object of a category is, generally, itself a category.
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correspondence between two families of formal calculi, namely, the simply typed lambda calculi,
on the one hand, and the formal deductive systems, on the other hand. Although such a presenta-
tion may have certain advantages for a mathematical reader not interested in foundational issues,
it leaves behind the philosophical content of Curry’s work and gives a wrong impression that
we are dealing here with some unexplained structural similarity rather than with a conceptually

clear mathematical fact concerning the foundations of logic.

Lawvere’s 1963 insight that the relevant structure shared by type theories and deductive systems
can be described as a category of special sort (that is called cartesian closed) has been system-
atically developed by Joachim Lambek in late 1960s and early 1970s, see [142], [143], [144]; a
systematic analysis of relationships between combinatory logic, lambda-calculus and cartesian
closed categories, which also contains some historical notes, is found in Lambek’s and Scott’s
monograph [169]. For my present purpose it is sufficient to stress that the notion of cartesian
closed category (CCC) used by Lawvere for logical purposes connects his work to the earlier
attempts to deepen foundations of logic and mathematics made by Schonfinkel, Church, Curry
and their collaborators. It is appropriate also to mention that the notion of CCC first appears
(without the name) in Lawvere’s work as a property of the category of sets [146] but not as a
part of logic. Lawvere’s thinking about CCC is made explicit in the following Introduction to

his paper [151] of 1969 where CCC first appears in press under that name:

Cartesian closed categories [..] serve as a common abstraction of type theory and

propositional logic [..] ([151], p. 134)

For Lawvere CCC is not an exclusively logical category but rather a category that plays a (central)
role in logic in particular. In that sense there is a clear difference between Curry’s strategy who
pursues “the ultimate foundations” of logic by studying general features of syntactic structures
and Lawvere’s strategy, who uses the category theory for describing “abstract structures” found
everywhere in mathematics including mathematical logic and who does not grant to syntactic

structures any special importance.

The abstraction of CCC, which lies behind the so-called Curry-Howard correspondence, sheds a
new light on the doing versus showing dilemma, which I have stressed earlier. We have seen that
in Euclid these two aspects of mathematical reasoning are intrinsically intertwined - in spite of the
fact that Euclid explicitly qualifies each “Proposition” of his Elements either as a problem or as a
theorem (using appropriate endings, see 1.4). In Hilbert’s Axiomatic Method (in its mature form
of 1927 and later) the relationships between doing and showing are arranged as follows: what we

do are syntactic constructions and what we show by doing these “real” syntactic constructions
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are certain facts concerning “ideal” mathematical objects in terms of which we interpret these
constructions (2.6). (A different sort of showing is reserved for metamathematics; I leave it now
aside.) The setting of Curry-Howard Correspondence does not apply Hilbert’s rigid distinction
between “real” and “ideal” mathematical objects and allows for doing something else than only
building formulas: the simply typed lambda calculus is not a formal deductive machinery but a
kit for building mathematical objects of sort like Euclid’s geometrical “calculus” of constructions
with ruler and compass. The Curry-Howard correspondence amounts to the observation that
the rules of simply typed lambda calculus can be used (mutatis mutandis) for making formal
deductions; the notion of CCC makes the mathematical sense of this correspondence precise.
Thus in the given case the relationships between doing and showing are arranged differently.
We no longer assume that we do things of one sort (build strings of symbols) and then use
these things for showing something about things of another sort (by interpreting these strings
of symbols as propositions about “ideal” mathematical objects); instead we explore the same
structure of CCC by doing allowed calculations and showing with these calculations certain facts

about this very structure. As we can see this arrangement is similar to Euclid’s and dissimilar to

Hilbert’s. It is appropriate to notice here that CCC is not the only kind of category that allows
for this new form of synthetic mathematical reasoning (albeit historically it was invented first).
A similar synthetic approach is supported, in particular, by locally cartesian closed categories
(LCCCQ), which provide a categorical framework for Martin-Lo6f’s intuitionistic type theory with
dependent types [223], see 5.11 and 6.9.

4.5 Hyperdoctrines

The idea of quantifiers as adjoints to substitution, which I explained in 4.3 pretending that we
were talking about sets, was first mentioned by Lawvere in [149] and then fully elaborated in
the Dialectica paper [150] with a help of the notion of CCC; the categorical construction, which
supports the quantification (and in fact the full first-order logic) Lawvere calls a hyperdoctrine.
A hyperdoctrine consists of a CCC T of “types” and functor h that associates (i) with every
object A of T - a category P(A) of “parts” of A, which in the given context are also thought
of as “predicates” or “attributes”'?, and (ii) with every morphism f : A — B - a functor

sf: P(A) «— P(B) (beware the reversal of the arrow!) thought of as “substitution” (in the sense

12 A given part Pa[¢] consists of those and only those “elements” of A, which have attribute ¢; now this idea
is expressed in a form, which doesn’t require the reference to elements. This does not mean that we get rid of
elements altogether but means only that we don’t use the notion of element as primitive; in fact this notion can
be recovered in the given setting and, moreover, in a generalized form.
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explained in 4.3 but this time in a more general setting). It is assumed that every P(A) is a
partial order (parts are partially ordered by inclusion), which is tantamount to saying that it is a
category having at most one morphism Py4[¢p] — Pa[¢] with for given domain and codomain. It
is also assumed that P(A) is CCC. This allows for thinking about this partial order as a deductive

order and denote it 4.

Notice once again how closely this setting reproduces the traditional ideas of British symbolic
and diagrammatic logic as presented by Venn [127]! An important difference, however, is that in
Lawvere’s case the order F 4 is construed concretely as a structure on given type A rather than
as an abstract structure (like Boolean algebra) responsible for logical deduction, which merely
applies to A and to any other “universe of discourse”. This change of viewpoint is the key
idea that allowed Lawvere to capture algebraically the first-order logic after the example of the

traditional algebraic treatment of propositional logic by Boole, Venn and others.

As we already know from 4.3 the universal and the existential quantifiers are recovered as the
right and the left adjoints to functor sy, so the quantification also turns into a concrete structure
associated with the given morphism f, which maps one given type (the domain of quantification)
to another given type (the codomain). The fact that a sound notion of quantification requires
not only a specification of its domain A but also a specification of (i) its codomain B and (ii)
a particular map f : A — B between the domain and the codomain, is a discovery of great
philosophical significance, which I have already tried to explain. The reader is advised to re-read
now 4.3 and see that the above discussion concerns the general hyperdoctrine but not only to

the hyperdoctrine of sets used then as a convenient example'3.

Observe that functor h : T'— P that associates to the category T of types a further structure,
is “something more” than a “usual” contravariant functor, which maps our given category 1" to
another one. Objects of category P (which I did not describe so far) are categories P(A) (so
it is a category of categories) and its morphisms are functors of the form sy : P(B) — P(A).
Crucially, we cannot disregard here the internal structure of each P(A) and thus treat P as an
abstract category of some appropriate kind. As we shall see in 6.9 P can be described in a more
compact way as a 2-category but now it is more appropriate for my purpose to describe functor
h as a fibration (in particular, because this is how Lawvere describes it in [152]). The notion

of fibration comes from geometry: it is a way of “thickening” a given geometrical object G by

13Here is how the category of sets presents itself as a hyperdoctrine. First consider this category as the category
T of types (think of each set A as a particular type). Next associate (i) with every set A its powerset (i.e. set of all
subsets of A) P(A) and (ii) with every function f: A — B a new function between powersets sy : P(B) — P(A)
(substitution) which sends given subset B’ C B to subset A’ C A formed as follows: a € A is a member of A’
if and only if b = f(a) is a member of B’. Elements of powerset P(A) (i.e., the subsets of set A) are partially
ordered by inclusion, this partial order has the structure of Boolean algebra and the resulting logic is classical.
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associating with every point p of G a new object f(p) called a fiber in a way, that reflects the
structure of the base object G. For a suggestive example think of a hairy head: if the hair is
normally cut (i.e., is neither too short nor too long) one can see how the form of the hair reflects
the form of the head without being reduced to it (if the hair is too short one can see only the
form of the head, and if it is too long the form of the head becomes invisible). Now we have a
similar situation: the hyperdoctrine h transforms every “thin” type A into a “thick” category
P(A) of attributes over this type and every “thin” morphism f: A — B into a “thick” functor

sy : P(B) — P(A) between the categories of attributes.

Let me say a few more words about the geometrical notion of fibration, which will be used in
Chapter 6. In accordance to the direction of A I informally described the geometrical fibration
as a process of “thickening”, which is non-trivial in the sense that it adds more structure. In
the case of hyperdoctrines it adds a logical structure. However in order to give a geometrical
definition of fibration it is more appropriate to describe fibration in terms of the opposite process
that maps the “hairy head” onto its base “bold head” (which is the simplest way of cutting one’s
hair). Hence the definition of fiber bundle (which is a special case of fibration corresponding to
intuitive examples like that of hairy head) as a continuous surjective (i.e., onto) map F — B,
which locally looks like a projection of a product space B x F' onto one of its components F'. A
trivial example of fiber bundle is given by a cylinder C seen as the product O x L of its base
circle over its side (the “hair”) and the projection p : O x L — O of this cylinder onto its base.
(In order to reverse the process think of this cylinder as formed by hairs growing out of its base.)
A non-trivial example is obtained from the former one by twisting the side L of the cylinder:
this twist produces a Mobius strip M. Observe that M and C' grow from the same base O with
the same hair L; however M cannot be (globally) described as a product space and the map

f: M — O is no longer a projection (Fig. 4.1)

Trivial Non-trivial

Fig. 4.1

The notion of fiber bundle allows for a generalization called Hurewicz fibration or simply fibration,
which turns to be particularly appropriate in a categorical context as we shall see in 6.8. Hurewicz
fibration must not be confused with Grothenideck fibration discussed in 6.5. How these two

categorical notions of fibration relate to each other will be also explained in 6.8.
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The fact the geometrical aspect of the notion of hyperdoctrine is something more than just
a useful intuitive way of thinking about it has been demonstrated by Lawvere’s work in topos
theory [153] almost simultaneously with the first public appearance of hyperdoctrines in [150] and
the second appearance of hyper doctrines in [152]; we shall better see how works this dialectical

interplay between geometry and logic in in 4.9.

Although in the late 1960ies and early 1970ies the “internalization” of quantifiers with hyperdoc-
trines was justly commonly perceived as the most impressive result of Lawvere’s work, I would
like to mention now another Lawvere’s achievement, which attracted the common interest more
recently. This is the internalization of equality (aka identity in logic). The idea first appears in
[149] (before the introduction of hyperdoctrines) and then becomes central in [152]. Technically
it comes in the same parcel with the internalization of quantifiers. Consider in the category T
of types (making part of hyperdoctrine h as above) morphism 4 : A — A X A which we want
to play the role of the diagonal map that sends each “element” of type A to its cartesian square
(which always exists because T is cartesian closed). Then consider in P(A) the “maximal” at-
tribute 14, which we interpret as the predicate “identically true over A” (if A is a set then 14
is the maximal subset of A, which however we must formally distinguish from A itself); any
deduction in P(A) that has the form 14 — X we interpret as a proof over A. Finally consider
the adjunction 35, - s5, and the image ids = 35,(14), which is an attribute in P(A x A); we
take this latter attribute to be the internal equality relation for terms of type A. The adjunction
brings the canonical map 14 — s5,(ida), which we read as a proof (over A) of reflexivity of

ida.

As we shall see in 6.9 the geometrical view on hyperdoctrines as fibrations sheds a new light
on the notion of identity and reveals its highly non-trivial character. The link between the
proof theory and the homotopy theory pointed to by Lawvere in 1970 [152] '* recently became
a field of active research, which led Voevodsky to the idea of the new Univalent Foundations of

mathematics discussed in 6.10 below.

14

For deductions over X, one may take provable entailments (so that the category P(X) reduces to
a preodered set) or one may take suitable “homotopy classes” of deductions in the usual sense.
One can write down an inductive definition of the “homotopy” relation, but the author does not
understand well what results. ([152], p. 3-4)
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4.6 Functorial Semantics

The model-theoretical notion of interpretation (model) is treated by Lawvere in [148], [149] under
the title of Functorial Semantics. The idea is to identify a model of a given theory T' (presented
as a category as just explained) with a functor 7' — S to the category of sets, which preserves
the additional structure (i.e., the features of theory 7' distinguishing it from a general category).
In [150] Lawvere uses the same notion of model but this time describes the category of sets
itself as a hyperdoctrine. Thus the Functorial Semantics is a rather straightforward translation
into a category-theoretic setting of the standard Tarski’s set-theoretic semantics. However this
translation is far from being trivial: as we shall now see it brings about (or “reveals” if one likes)

some genuinely new features.

Remind that the older notion of interpretation involves the idea of substitution of non-logical
terms of formal theory T by certain objects and relations making part of another (usually in-
formal) theory T” like in the case of the arithmetical model of Euclidean geometry described by
Hilbert in his Foundations of 1899; what is then usually called a model is a particular construc-
tion in 77. What this standard setting lacks is a properly mathematical theory of substitution.
Tarski’s model theory describes concrete cases of substitution precisely but still has no general
mathematicaldescription of this procedure. Lawvere’s category-theoretic approach construes the
relevant notion of substitution as a mathematical object, namely a functor. In additional to
technical advantages of this approach, which I cannot analyze here, it also changes the usual way
of thinking about relationships between theories and their interpretations (models) discussed in
the last Chapters. With the functorial approach to model theory the notion of categoricity of
a formal theory (i.e., the uniqueness of its model up to isomorphism) loses its usual appeal: in
the new setting one expects to obtain a category Mr of models (i.e., of certain functors) of given
theory T', which has algebraic properties making it manageable, but not necessarily a category
consisting of a single object (up to isomorphism). Further, this setting allows for considering

given theory T itself as a special object of Mr, so by Lawvere’s word
The theory appears itself as a generic model [159], p.19.

It is appropriate to ask whether or not Lawvere’s theories are formal in anything like Hilbert’s
sense of the word. As we have already seen the answer is rather in negative because Lawvere
distinguishes between “invariant” conceptual theories from their formal presentations, and by
default uses the word “theory” for invariant theories. Let us now see more precisely how Lawvere

describes the relationships between the formal and the conceptual, and how in this context he

133



thinks about theories and their semantics. I come back to Lawvere’s functorial semantics in

9.2.

4.7 Formal and Conceptual

Lawvere’s Dialectica paper [150] begins as follows:

That pursuit of exact knowledge which we call mathematics seems to involve in an es-
sential way two dual aspects, which we may call the Formal and the Conceptual. For
example, we manipulate algebraically a polynomial equation and visualize geometri-
cally the corresponding curve. Or we concentrate in one moment on the deduction
of theorems from the axioms of group theory, and in the next consider the classes of
actual groups to which the theorems refer. Thus the Conceptual is in a certain sense

the subject matter of the Formal.

The above passage can be interpreted coherently if one reminds that “formal” in the contempo-
rary mathematical parlance implies “symbolic”. So Lawvere talks here about (possibly uninter-
preted) symbolic calculi, on the one hand, and their non-symbolic interpretations, on the other
hand. I would like to stress that although such a distinction makes perfect sense with respect to
our contemporary mathematics it does not apply to mathematics throughout all of its history.
It certainly does not apply to mathematics practiced before the 17th century when symbolic

methods were first introduced.

Later in the same paper Lawvere considers the “Theories” on equal footing with the Formal and
the Conceptual and suggests (without providing details) to think about these three things as a

pair of adjoint situations:

semantics

Theories®? =<——= Conceptual
structure

Formal <<= Theories

which compose into

Formal°® —= Conceptual
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I shall not try to reconstruct missing mathematical details but try to interpret these suggested
adjoint situations heuristically. The sense of the first one is clear: an interpretation of a given
theory in terms of appropriate concepts provides this theory with an appropriate semantics
while a reciprocal operation amounts to extraction of certain theoretical structure from a given
conceptual domain. This resembles the usual notions of semantics and structure but one should
keep in mind that Lawvere’s Theories are not formal theories in the usual syntactic sense but are
connected with the Formal through another pair of adjoint functors. Since in a different place
Lawvere describes theories as “invariant abstract concepts” it makes sense to qualify concepts
in

Theories®? =—= Conceptual

as (variable) concrete concepts and include under this latter title what Kant would call “represen-

tation” (like the curve produced as a graph of a given polynomial in Lawvere’s example).

As far as I can see the main purpose of this tripartition is to keep after Hilbert and Tarski
the distinction between a theory and its (various) semantics and at the same time distinguish
between the given theory and its (various) formal syntactic presentations. Crucially Lawvere’s
“invariant” notion of theory unlike the “semi-formal” notion of theory developed in Hilbert’s
Foundations of 1899 (which in a sense is also invariant with respect to the choice of its possible

formalization) is itself a mathematical object, namely, a category.
Recently Joyal summarized Lawvere’s tripartition as follows:

Ideally, every formal system of logic should exhibit three layers: a conceptual layer
which specifies a certain class C' of categories and functors, a semantic layer which
specifies natural examples of categories in C' (the semantic domains) and a formal
layer which specifies a language and a deduction system for constructing algebraically
the categories in C. The layers are not independent of each other and each clarifies
the others. But the conceptual layer has the central role as a kind of middle-man:

Formal layer — Conceptual layer — Semantic layer ([126], p. 19)

4.8 Categorical Logic and Hegelian Dialectics

As we have seen Lawvere critisizes the standard Hilbert-style Axiomatic Method by arguing
that this method fixes attention upon particular syntactic presentations of logical structures and

ignores the invariant content of logical and mathematical theories. Lawvere’s novel categorical
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logic aims at revealing this invariant content and putting the syntactic presentations at their
appropriate (modest) place. As Lawvere makes it explicit at many instances (some of which
are referred to below) his project is underpinned by Hegel’s philosophy and, in particular, by
Hegel’s distinction between the objective and the subjective logic [90]. I shall try now to persuade
the reader that Lawvere’s Hegelian perspective on science, mathematics and category theory is
indeed crucial for a philosophical understanding of his work. I would like to stress that in order
to appreciate the relevance of Hegel’s dialectical philosophy in categorical logic one does not
need to be a “Hegelian” - although this must go without saying it seems me appropriate to
make this remark in the present intellectual context of continuing ideological and cultural (and
very rarely properly philosophical) battles between the so-called “Analytic” and “Continental”
philosophical traditions, which make an echo of the Cold War and other more tragic episodes of
the passed century. It is also important to have in mind that in [153] Lawvere states explicitly
that he himself is not a Hegelian (p. 74, footnote 2). In a later work Lawvere describes his

understanding of the mutual impact of mathematics and philosophy as follows:

It is my belief that in the next decade and in the next century the technical advances
forged by category theorists will be of value to dialectical philosophy, lending precise
form with disputable mathematical models to ancient philosophical distinctions such
as general vs. particular, objective vs. subjective, being vs. becoming, space vs.
quantity, equality vs. difference, quantitative vs. qualitative etc. In turn the explicit
attention by mathematicians to such philosophical questions is necessary to achieve
the goal of making mathematics (and hence other sciences) more widely learnable
and useable. Of course this will require that philosophers learn mathematics and

that mathematicians learn philosophy. ([155], p. 16)

Interestingly, Lawvere shares with his philosophical adversaries including Russell and other An-
alytic philosophers the idea that mathematics allows to put philosophical distinctions and ar-
guments in a sharper and better disputable form, which allegedly allows for “doing philosophy
mathematically” - the view, which is denied by most of so-called Continental thinkers. (I don’t
want to make myself a subject to the Analytic/Contintental distinction, which is my view is
very ill-construed ' but I would like to remind that I am also not enthusiastic about the idea, of
using mathematical methods in philosophy. I explained some reasons for it the above Introduc-

tion.),

15While the expression “Analytic philosophy” is a self-description the expression “Continental philosophy” is
invented by Analytic philosophers in the second half of the 20th century and to the best of my knowledge has
been never used as a self-description.
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At the same time, as we shall shortly see, Lawvere’s disagreements with the basics of Analytic
philosophy are too profound for qualifying his work as a mere “formalization of Hegel’s dialec-
tics by means of modern logic”. This makes Lawvere’s philosophical thinking and its impact
onto mathematics quite unique in its kind. As a philosopher Lawvere inherits from different
schools of thought and remains remarkably unaffected by the unfortunate Analytic versus Con-
tinental distinction. I believe that today such a position is a sine qua non for doing philosophy

seriously.

Let me now turn to Hegel and, more specifically, to his distinction between the objective and

subjective logic. Here is a relevant passage:

What is to be considered is the whole Notion, firstly as the Notion in the form of
being, secondly, as the Notion; in the first case, the Notion is only in itself, the
Notion of reality or being; in the second case, it is the Notion as such, the Notion
existing for itself (as it is, to name concrete forms, in thinking man, and even in
the sentient animal and in organic individuality generally [..]). Accordingly, logic
should be divided primarily into the logic of the Notion as being and of the Notion as
Notion - or, by employing the usual terms (although these as least definite are most

ambiguous) into ’objective’ and ’subjective’ logic. ([90], 79)

Hegel’s Notion is a category that comprise both (i) the reality (aka being) and human (and more
generally also animal, as Hegel hints) (ii) thinking about reality. This notion of notion, which
is crucial for Hegel’s so-called “objective idealism”, is not of our primary concern here because
Lawvere rejects Hegel’s objective idealism ([153], p. 74) and does not use it. So the relevant
part of the content of the above quote is this: logic is divided into two parts one of which is
(i) the logic of being aka the objective logic, while the other is (ii) the logic of thinking aka the
subjective logic (it is called by this latter name because thinking requires a thinking subject).
Hegel’s subjective logic is what today (and also in Hegel’s times) is commonly called logic. Let

us first focus on the objective logic.

For explaining Hilbert’s notion of objective logic I cannot help but use a bit of Hilbert’s dialectical
method of definition - even if I'm trying now to reduce the use of this method to minimum in
order to make my explanation more accessible to people who are not used to it. This simply
amounts to saying that I am going to define this notion through several approximations rather

than give immediately a formal definition.
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In the first approximation I identify Hegel’s objective logic (=logic of being) with ontology. In
this first approximation the above quote simply tells us about the familiar distinction between
logic (in the usual sense of logic of thinking) and ontologyr. This a useful approximation but it

is by no means sufficient for our purpose.

At the next dialectical step we should distinguish between ontology as a part of metaphysics
(meaning the metaphysics of Aristotle, of Schoolmen, Wolf’s metaphysics or the contemporary
Analytic metaphysics) and the objective logic proper. As Hegel tells us a way to pursue a
dialectical reasoning consists in following the history of relevant notions. This is what we need

at this second step. The relevant historical character is Kant:

Recently Kant has opposed to what has usually been called logic another, namely, a
transcendental logic. What has here been called objective logic would correspond in
part to what with him is transcendental logic. He [Kant] distinguishes it from what
he calls general logic in this way, [a] that it treats of the notions which refer a priori
to objects, and consequently does not abstract from the whole content of objective
cognition, or, in other words, it contains the rules of the pure thinking of an object,
and [b] at the same time it treats of the origin of our cognition [..]. It is to this second

aspect that Kant’s philosophical interest is exclusively directed. ([90], 81)

So our second approximation amounts to saying after Hegel that the objective logic “corresponds
in part” to Kant’s transcendental logic. I find it actually useful in this second approximation to
boldly identify Hegel’s objective logic with Kant’s transcendental logic. As we shall see at the
final third step, the difference between the two is much neater than the difference between the

objective logic and the traditional ontology.

We have already encountered Kant’s notion of transcendental logic earlier in this book (see 1.3,
2.2). As Hegel reminds us in the above quote Kant distinguishes his transcendental logic from
the “general logic”, which is most often called today simply logic, by specifying that the tran-
scendental logic is not wholly topic-neutral: while the general logic deals with abstract logical
individuals the transcendental logic deals only with objects of possible experience, i.e., with
would-be empirical objects. This is why the general logic applies everywhere but the transcen-
dental logic applies only in mathematics and (mathematized) empirical sciences. Notice now
that there is a sense in which the transcendental logic provides a replacement for the traditional

metaphysical ontology.
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Let me explain this with an example. Doing the traditional metaphysics 16

one may stipulate that
all entities (or alternatively - only entities of a special sort called physical entities) live in space
and time, and then ask whether space and time are absolute or relational, elaborate on formal
properties of spatio-temporal relations and so on. Kant’s transcendental logic reformulates these
questions into questions about our thinking about space and time, i.e., into logical questions (in
the special “transcendental” sense of “logical”). Although some questions about space and time
can be asked and answered in both settings similarly, the two settings, generally, give rise to
different questions and different answers. This is why the difference between the two approaches
does not reduce to two different answers to the question Does the world (as we usually think about
it) really exist or it is a creation of our brains? This latter question belongs to the metaphysical

ontology rather than to the transcendental logic, and so from the point of view of transcendental

logic it is ill-posed.

The third approximation (that will be my last) is more difficult because here we touch upon the
heart of Hegel’s project: somehow to get rid of the subjective bent of Kant’s transcendental logic
without bringing back the traditional metaphysics. The main idea is to keep doing something like
logic (rather than the sort of speculative physics called metaphysics) but make it objective. 7.

In the following passage Hegel compares his objective logic with the traditional metaphysics and

at the same time describes it as an improved version of Kant’s philosophical “critique”:

The objective logic, then, takes the place rather of the former metaphysics which was

167 keep talking about the “traditional metaphysics” but not simply about “metaphysics” not for saying that
the metaphysics is doomed to be swept away by the future scientific progress (it is very hard to make today
such an optimistic prediction) but because Kant has a different and more specific notion of metaphysics, which is
irrelevant in the given context.

7The claim that Kant’s transcendental logic is “subjectively bent” is less evident and less simple than it may
appear. Natorp [189] denounces such a claim as a misinterpretation - although his argument can be perhaps
better understood as an attempt to improve on Kant rather than simply reconstruct his thought. However
Hegel’s understanding of Kant’s alleged subjectivism is far from being naive; here is a relevant passage, which
also provides a useful exposition of Kant’s understanding of objecthood:

An object, says Kant, is that in the notion of which the manifold of a given intuition is unified. But
all unifying of representations demands a unity of consciousness in the synthesis of them. Conse-
quently it is this unity of consciousness which alone constitutes the connection of the representations
with the object and therewith their objective validity and on which rests even the possibility of the
understanding. Kant distinguishes this unity from the subjective unity of consciousness, the unity
of representation whereby I am conscious of a manifold as either simultaneous or successive, this
being dependent on empirical conditions. On the other hand, the principles of the objective deter-
mination of notions are, he says, to be derived solely from the principle of the transcendental unity
of apperception. Through the categories which are these objective determinations, the manifold of
given representations is so determined as to be brought into the unity of consciousness. According
to this exposition, the unity of the notion is that whereby something is not a mere mode of feeling,
an intuition, or even a mere representation, but is an object, and this objective unity is the unity of
the ego with itself. In point of fact, the comprehension of an object consists in nothing else than that
the ego makes it its own, pervades it and brings it into its own form, that is, into the universality
that is immediately a determinateness, or a determinateness that is immediately universality. As
intuited or even in ordinary conception, the object is still something external and alien. When it
is comprehended, the being-in-and-for-self which it possesses in intuition and pictorial thought is
transformed into a positedness; the I in thinking it pervades it. ([90], 1293)

139



intended to be the scientific construction of the world in terms of thoughts alone.
If we have regard to the final shape of this science, then it is first and immediately
ontology whose place is taken by objective logic [..] But further, objective logic also
comprises the rest of metaphysics in so far as this attempted to comprehend with the
forms of pure thought particular substrata taken primarily from figurate conception,
namely the soul, the world and God [..]. [Objective lJogic, however, considers these
forms free from those substrata, from the subjects of figurate conception; it considers
them, their nature and worth, in their own proper character. Former metaphysics
omitted to do this and consequently incurred the just reproach of having employed
these forms uncritically without a preliminary investigation as to whether and how
they were capable of being determinations of the thing-in-itself, to use the Kantian
expression - or rather of the Reasonable. Objective logic is therefore the genuine
critique of them - a critique which does not consider them as contrasted under the
abstract forms of the a priori and the a posteriori, but considers the determinations

themselves according to their specific content. ([90], 85)

Observe that the price paid by Hegel for fixing Kant’s critical philosophy is high: along with
the subjective bend Hegel gets rid of Kant’s a priori versus a posteriori distinction; arguably
this step diminishes the role of empirical data in sciences and after all allows for the “scientific
construction of the world in terms of thoughts alone” in a new dialectical form. As far as I am
concerned this price is too high. However this critical remark does rule out Hegel’s dialectical
method of reasoning as such but rather rises the problem of how to use this method in the

modern science without compromising against the empirical character of this science.

Let us now turn to subjective logic. It requires for its explication a dialectical procedure of a
different sort because this kind of logic is most commonly simply identified with logic. Apparently
this common opinion did not change much since Hegel’s times - albeit the booming development

of logic during the last century perhaps made it a bit less “ossified” and more “fluid”:

This part of the logic which contains the Doctrine of the Notion [..] is issued under
the particular title System of Subjective Logic, for the convenience of those friends
of this science who are accustomed to take a greater interest in the matters here
treated and included in the scope of logic commonly so called, than in the further
logical topics treated in the first two parts [which cover the Objective Logic]. For
these earlier parts I could claim the indulgence of fair-minded critics on account of

the scant preliminary studies in this field which could have afforded me a support,
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material, and a guiding thread. In the case of the present part, I may claim their
indulgence rather for the opposite reason; for the logic of the Notion, a completely
ready-made and solidified, one may say, ossified material is already to hand, and
the problem is to render this material fluid and to re-kindle the spontaneity of the
Notion in such dead matter. If the building of a new city in a waste land is attended
with difficulties, yet there is no shortage of materials; but the abundance of materials
presents all the more obstacles of another kind when the task is to remodel an ancient
city, solidly built, and maintained in continuous possession and occupation. Among
other things one must resolve to make no use at all of much material that has hitherto

been highly esteemed. ([90], 1277)

So Hegel’s treatment of subjective logic has three basic aspects: (i) revealing the subjective
character of what is commonly called logic (i.e., the formal logic), (ii) “re-kindling the spontaneity
of Notion” in the common “ossified” logical categories and finally (iii) “passing out of subjectivity
into objectivity [90], 1441”; this latter dialectical procedure can be called the objectification of

logic.

As Hegel suggests in the last quote and elsewhere (see, for example, [90], 86) the very distinction
between the objective and the subjective logic should be thought of as dialectical to wit polemical.
What he really aims at is a transformation of the common notion of logic into what he calls the
objective logic or simply logic. A better name for subjective logic is the “logic of Notion”,
which is the third concluding part of Hegel’s (objective) logic. (Beware that the three parts
of Hegel’s logic - the logic of Being, the logic of Essence and the logic of Notion - are to be
thought of as consecutive stages of a single process of dialectical reasoning rather than three
parts of the same whole, which co-exist side by side in some intellectual space.) However since
Hegel’s notion of logic is very far from being common Hegel struggles (dialectically!) against
the common view and use such labels as “objective” and “subjective” in this struggle. Let me
however leave this very preliminary elucidation of Hegel’s logic at this point and turn back to
Lawvere. (The dialectical character of the above explanation implies its open-endedness, and

the interested reader is advised to pursue a further study of Hegel’s logic independently.)

As we already know from the above quote ([155], p. 16) Lawvere’s project involving Hegel’s
logic is twofold: Lawvere wants to (i) recast Hegel’s dialectical logic in mathematical terms
of categorical logic and (ii) use Hegel’s dialectical logic as a guide in his mathematical research
including his research in categorical logic. Lawvere also makes it clear that his strategy is to merge

(i) and (ii) into a single mathematico-philosophical project, so when I distinguish between (i)
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and (ii) and keep them apart, I'm clearly doing an opposite move. The reason I am doing it is the
following: just as in Chapter 2 I discussed various philosophical influences on and philosophical
interpretations of Hilbert’s Formal Axiomatic Method but did not discuss the impact of this
method on philosophy (which was indeed very significant), talking in this present Chapter about
Lawvere’s work I'm going to discuss only (ii) and leave (i) aside. Since in Lawvere’s work (i) and
(ii) are very closely merged my choice is a choice of perspective rather than a choice of material.
One and the same piece of Lawvere’s work can be usually seen both (i) as a piece of Hegelian
dialectics mathematized with the category theory and (ii) as a piece of mathematics inspired and
guided by Hegelian dialectics - and the author’s intention, as I understand it, is to synthesize
these two aspects into a single whole. Thus my choice to focus on (i) in this book makes my

perspective on Lawvere’s work special and deliberately incomplete.

Let us now see how Lawvere distinguishes between the objective and the subjective logic in the

context of categorical logic:

Arising [..] from the needs of geometry, category theory has developed such notions as

adjoint functor, topos, fibration, closed category, 2-category, etc. in order to provide

(i) a guide to the complex, but very non-arbitrary constructions of the concepts and

their interactions which grow out of the study of space and quantity.

It was only the relentless adherence to the needs of that basic subject that made cat-
egory theory so well-determined yet powerful. [..] If we replace “space and quantity”
in (i) above by “any serious object of study”, then (i) becomes my working definition
of objective logic. Of course, when taken in a philosophically proper sense, space and
quantity do pervade any serious field of study. Category theory has also objectified

as a special case

(ii) the subjective logic of inference between statements. Here statements are of
interest only for their potential to describe the objects which concretize the concepts.

([157], p. 16)

If we judge the above Lawvere’s definition of objective logic by Hegel’s standard we immediately
notice a gap (or rather a leap) in it: while Lawvere relates his objective logic to categories of space
and quantity directly, Hegel arrives to these categories only after some dialectical development
that begins with categories of Being, Nothingness and Becoming. However instead of trying to

find a place for these and some other missing Hegelian categories'® in the categorical logic I shall

18For such an attempt see [187].
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rather change the perspective (in accordance with my choice of perspective explained above) and
comment on Lawvere’s definition of logic as it stands using some key ideas coming from Hegel’s
logic but without assuming that Lawvere’s logic is supposed to represent Hegel’s logic fully and

faithfully.

Notice now how Lawvere relates the “study of space and quantity” and “any serious field of
study”. He, first, (a) tells us about a category-theoretic guide to conceptual constructions growing
out of the study of space and quantity, second, (b) tentatively defines the objective logic as a
category-theoretic guide to conceptual constructions growing from any serious field of study
and, finally, (c) states that “in a philosophically proper sense, space and quantity do pervade
any serious field of study”, so that (a) and (b) are in fact equivalent and one may think of
the objective logic as the logic of space and quantity without restricting the generality. This
micro-dialectics seems me quite remarkable and illuminating. Why Lawvere does not define the
objective logic as the logic of space and quantity to begin with? I suppose, because according to
the common opinion (formal) logic must apply in any serious field of study independently of its
subject-matter; so if Lawvere would say from the outset that his objective logic applies only to
the study of space and quantity one could think that this special logic applies only in a specific
field and for this reason perhaps even does not deserve the name of logic. This is why Lawvere
says first that the objective logic applies in any serious field of study and only then he makes it
clear that in the “philosophically proper sense” the logic of any serious field of study is the logic

of space and quantity.

What is then the philosophically proper sense in which “space and quantity do pervade any seri-
ous field of study”? Since Lawvere does not explain this I give my own explanation. It is useful
for my explanation to begin with Kant and Neo-Kantians and only then turn to Hegel. Remind
from 2.2 (a) Cassirer’s critique of Russell’s mathematical logicism, which stresses the fact that
Russell’s approach throws the general theory of magnitude away from the pure mathematics,
and (b) the related claim according to which logic and mathematics must not be “instruments
for building a metaphysical 'world of thought”’ but must apply only within the mathematized
empirical science. Both Cassirer’s claims are closely related because he assumes after Kant that
an adequate general mathematical theory of magnitude is necessary and sufficient for distinguish-
ing objects of (possible) experience from metaphysical “individuals”, which one may stipulate
for free. Talking about logic Cassirer has in mind Kant’s idea of transcendental logic, which
uses such a general theory of magnitude for this very purpose. Now by exchanging the general

theory of magnitude for the theory of space and quantity (which in the given context seems
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me unproblematic ) we can distinguish after Cassirer a philosophical sense in which this later
theory indeed pervade any serious field of study. If by a serious field of study we mean one that,
first, apply mathematics and, second, deal with empirical data then we need a general theory
of space and quantity in order to distinguish between those conceptual constructions, which can
possibly represent empirical objects, and those which can not.!?. As long as an appropriate
theory of space and quantity is built into a system of logic this system of logic can be described
as “logic of space and quantity” and at the same time apply in any serious field of study (but

not elsewhere).

The above Kantian reconstruction of Lawvere’s “philosophically proper sense” in which “space
and quantity pervade any serious field of study” does not involve any assumption according to
which the space and quantity are in some sense subjective, so this can hardly be a controversial
point here. It is unsatisfactory rather in a different respect: the very idea of a theory allowing for
the sharp distinction between useful and “metaphysical” (in the sense of “merely speculative”)
mathematical constructions is doubtful. Even if I strongly disagree with Wigner’s view according
to which the effectiveness of mathematics in natural sciences is “unreasonable” and must be
thought of as a “miracle” and the “wonderful gift”, I realize that we are not living an the Kantian
paradise where all sound mathematics applies in natural sciences and technologies immediately.
So we need a more flexible and more dynamic way of thinking about these issues than Kant’s
philosophy may provide. Here the model of Hegel’s dialectical logic becomes relevant. Rather
then be a device for philosophical critique of existing science like Kant’s transcendental logic
the categorical logic is conceived by Lawvere after Hegel as a dialectical tool for re-configuring
the foundations of modern science, which involve, in particular, the categories of space and
quantity and the way in which these categories are applied in empirical studies (in particular, in
measurement). Thus there is a further philosophically proper sense in which space and quantity
pervade any serious field of study: a progress in the general theory of space and quantity is a
necessary condition of the substantial progress in the fundamental empirical research. Since the
objective logic is supposed to be a guide for further progress in any serious field of study it must

qualify as a dialectical logic of space and quantity.

Lawvere’s theory of space and quantity is found in [155]. The idea is to think of presheaf
X : C°? — Set as a rule that assigns to every object ¢ of C' a set of maps X going from ¢ to
space X where this given object ¢ is “placed”, so ¢ plays here the role of “test space” or “shape”

and the bigger space X is determined in terms placements of this basic shape. A quantity is a

19Mathematics and logic themselves are serious fields of study insofar as they develop tools for dealing with
empirical data; thus they also deal with empirical data albeit indirectly.
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co-presheaf Y : C' — Set thought of as a rule that assigns to every object ¢ (a test space) the
set of incoming maps, each of which in its turn assigns certain “value” in this given space to
other objects. In [161] develops this theory further and, in particular, provides the categories of
space and quantity with metrics. A lot still remains to be done in order to make this conceptual
apparatus into a working tool for physicists and other scientists. During the last decade the
search for applications of category-theoretic methods in natural sciences became a field of active

research which I can not overview here.

As we have seen earlier Lawvere achieves an internalization of logic with respect to appropri-
ate categories in the sense that basic logical concepts such as propositional functions, logical
connectives, quantifiers, truth-values, theories and models, are understood as category-theoretic
constructions. In the above quote Lawvere describes this move in Hegelian terms as an “objectifi-
cation” of logic. The key idea here is that the “subjective logic of inference between statements”
(which, remind, is commonly identified with logic as such) must not be thought of as a self-
standing systems of laws and rules, which provides ultimate foundations of mathematics and
natural science, but must emerge as an aspect of basic conceptual constructions of science, which
involve categories of space and quantity, and perhaps some other. In my view, this is the most

important impact of categorical logic on the Axiomatic Method.

Let me to be clear at this point: the very idea that laws of logic are not self-standing is not
new. What we call today logical laws like the law of non-contradiction, Aristotle describes as
metaphysical laws. Aristotle’s syllogistics is equally grounded in his metaphysics and ontology.
Russell and other people who attempted to revive metaphysics in the 20th century grounded
their metaphysics onto the new mathematical logic rather than the other way round (this is why
Russell calls his metaphysical atomism “logical”). While Aristotle’s metaphysical views were
closely related to his own research in natural sciences the new logical metaphysics emerged in
the 20th century under the name of Analytic metaphysics stands wholly apart the contemporary
fundamental research in sciences but survives either in the form of self-contained intellectual
game, which combines playing with linguistic intuitions with some amount of formal rigor, or in
the form of applied discipline (applied ontologies in computer sciences). Thus the problem of
grounding logic remains today largely open. It becomes only more acute in the present situation
when we have got hundreds formal calculi, which are offered under the brand of “logic”. Hegel’s
notion of objectification of logic as a modern replacement for the traditional idea of grounding

logic in metaphysics suggests a strategy for solving this problem.
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4.9 Toposes and their Internal Logic

Now I shall demonstrate Lawvere’s dialectical method at work with an example of his axiomatic
treatment of the geometrical notion of topos. This is in fact something more than just an example
because it amounts to a mathematical discovery, which is important for our study on its own
rights. Remind Lawvere’s remark that “[t]Jhe formalism of category theory is itself often presented
in “geometric” terms” ([150], p. 283, already quoted in the introductory part of Chapter 4). As
we shall now see the link between categorical logic and geometry is not limited to the geometric
way of presentation but is more profound. It has been first made explicit in Lawvere’s paper

Quantifiers and Sheafs of 1970 which begins as follows:

The unity of opposites in the title is essentially that between logic and geometry, and
there are compelling reasons for maintaining that geometry is the leading aspect. At
the same time, in the present joint work with Myles Tierney there are important
influences in the other direction: a Grothendieck “topology” appears most naturally
as a modal operator, of the nature “it is locally the case that”, the usual logical
operators, such as V, 3, = have natural analogues which apply to families of geo-
metrical objects rather than to propositional functions, and an important technique
is to lift constructions first understood for “the” category S of abstract sets to an
arbitrary topos. We first sum up the principle contradictions of the Grothendieck-
Giraud-Verdier theory of topos in terms of four or five adjoint functors [..] enabling

one to claim that in a sense logic is a special case of geometry. ( [153], p. 329)

The unity of opposites in the title is that between logic and geometry because the term “quanti-
fier” refers to logic while the term “sheaf” refers to geometry. Since the geometrical background,
to which Lawvere refers here, is not generally known I'll try to present it briefly for the non-

mathematical reader.

The notion of topos first appeared in the circle of Alexandre Grothendieck about 1960 as a
twofold upgrade of the notion of topological space (for an informal explanation of the notion of
topological space see 3.4 above). The first upgrade amounts to considering a given topological
space T together with the sheafs of functions from open subsets of this space to some target
sets; a sheaf respects conditions, which allow for seeing the target sets as “momentary images” of
the same continually variable set varying over T'. (If the target sets are provided with an extra
structure, say, with the group structure, one may similarly think of groups continuously varying

over a given topological space.) In order to get from the notion of sheaf to that of topos we
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need first to render the former notion into category-theoretic terms. Think of T as a category
with objects open subsets of T' (opens for short) and morphisms set-theoretic inclusions of these
subsets, so in the resulting category there is at most one morphism going from one given object
to another (for any pair of opens U, V' we either do or do not have U C V; categories with at most
one morphism with a fixed domain and a fixed codomain are called partial orders). Then a sheaf
can be defined as a functor T°P — S from the category T°P obtained from T by the “reversal
of arrows” to the category of sets .S, which satisfies certain conditions assuring that the target
variable set varies (with respect to T') continuously. ° One gets now a basic example of topos by
considering the category of all sheafs on a given topological space together with maps between
those things (since sheafs are functors the maps are “functors between functors” aka natural
transformations). This topos can be naturally thought of as a space (or rather spacetime) of

sets continuously varying over T.

The second upgrade amounts to a generalization of the usual notion of topology. Given (usual)
topological space T one may always associate with a given open U its covering family Cyy which
is a collection of opens V; C U such that their union equals U (i.e., each point of U belongs to
at least one of V;); in particular, T itself is always covered by at least one collection of its opens.
Grothendieck observed that the notion of covering family makes sense not only for partial orders
but also for categories of more general sort and defined a covering family of a given object to
be a collection of incoming morphisms (not necessarily monomorphisms) closed under certain
operations. This led him to a more general notion of topology called Grothendieck topology
defined by distinguishing among all collections of morphisms sharing a codomain those, which
count as covering families of this given object. A category C' provided with a Grothendieck
topology J is called a site (C,J). A sheaf over a site is defined just like in the case of topological
space. The Grothendieck topos is a category of sheaves over some given site. For a systematic

introduction I refer the reader to [177], ch. 2-3.

The notion of topos invented by Grothendieck and developed by his collaborated mentioned by
Lawvere in the above quote was not originally supposed to have any special relevance to logic; the
discovery of such a special relevance is wholly due to Lawvere. This is what Lawvere, modestly
calls the “influences in the other direction” meaning the impact of logical considerations. Let us

see what this impact amounts to.

20The fact that the arrows must be reversed in this case was difficult to understand without using the category-
theoretical notion of functor; this was a major difficulty for earlier attempts to develop a “topology without
points” [124].
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In the beginning of his seminal paper [153] Lawvere provides his definition of topos usually called
today the definition of elementary topos ; the title “elementary” reflects the fact that Lawvere’s
definition unlike Grothendieck’s original construction almost straightforwardly translates into the
standard first-order formal language [185]. According to this definition an (elementary) topos T'
is CCC with a subobject classifier, which plays in a general topos the role similar to that played
by 2 (the two-point set) in the category of sets (which also qualifies as a topos in the sense of
Lawvere’s definition). 2 classifies subsets of a given set S in the sense that if one asks whether a
given element p € S belongs to subset U C S there are just 2 possible answers: yes and no; this
allows for identifying every subset U with a particular function u : S — 2, which sends every p
belonging to U to “yes” and every p not belonging to U to “no”. Correspondingly the set 2°
of all such functions is identified with the set of all subsets (the powerset) of set S. Given two
objects A, B of CCC the exponential object AP always exists but in order to get a distinguished
object Q playing the role of “object of truth values”, so that for all A Q4 represents the space
of subobjects of A, one needs an additional postulate. By a subobject of A one means here any
incoming monomorphism f, i.e., such f that for all g,h go f = ho f implies g = h (given the
composition is written in the geometrical order). Given two subobjects fi, f2 of the same object
A consider morphism h such that f; = h o fy; according to the definition of subobject there is
no more than one such morphism. This shows that subobjects of a given object are partially
ordered. In the case of the category of sets, which qualifies as a particular elementary topos, the
partial order of subobjects is the (complete) Boolean lattice while in the general case the lattice is
Heyting. For a systematic treatment see [185], and for the most complete compendium of topos
theory existing to the date and developed from the elementary viewpoint see [125]. Evidently
Lawvere’s earlier work on categorical axioms for set theory, which we reviewed in 4.1, helped
Lawvere to formulate his axioms for (i.e., the definition of) an elementary topos. It was Lawvere
but not Grothendieck who first thought of sheaves as continuously variable sets and observed
that the category of such things shares with the category of usual “static” sets a number of basic

properties.

As Lawvere notices in the above quote the concept of elementary topos is more general than that
of Grothendieck topos: there is a large class of elementary toposes, which are not Grothendieck.
In particular, every category (C°P,S) of all presheaves, i.e., of contravariant functors from a
small category C (without topology) to the category of sets, is an elementary topos but not
Grothendieck topos. However the topological aspect of topos is treated in the elementary setting

too: Grothendieck topology is recaptured as a modal operator satisfying simple axioms.
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Lawvere’s axioms for elementary topos helped many people outside the community of specialists
in algebraic geometry to enter into this field and make a fruitful research in it. Everyone who
learns today the topos theory begins with Lawvere’s axioms for elementary topos. This makes
Lawvere’s axiomatization of topos theory a true success story of Axiomatic Method in the 20th
century mathematics. Although Lawvere’s axiom for toposes are not given in a wholly formal-
ized form they allow for a natural formalization (without going the roundabout way through a
membership-based set theory) as it has been shown (or better to say done) by McLarty [185].

However I insist that this just one aspect of the story but not the whole story.

Remind from the above quote Lawvere’s claim that “in a sense logic is a special case of geometry”.
It is stunning if we think about it against the background of Hilbert’s Axiomatic Method. For
every modification of this method (either exemplified by Hilbert’s Foundations of 1899 or by any
modern textbook in the axiomatic set theory or even by [185]) assumes what I have called above
(2.2) the mathematical logicism in the large sense of the term, i.e., the view according to which
(some system of) logic provides a foundation of mathematical theories by helping formulate
axioms of this theory and then derive from these axioms some further theorems. Now Lawvere
tells us that “geometry [rather than logic!] is the leading aspect” and that there is a sense in
which logic is a special sort of geometry. I shall purport now to explain this claim both from a
mathematical and philosophical viewpoints, and then show that Lawvere’s dialectical Axiomatic

method indeed does not reduce to Hilbert’s.

When Lawvere talks in the above quote about logic as a special case of geometry he refers to
the internal logic of a given topos. We have already discussed the idea of internalization of logic
in category theory meaning the possibility to construe basic logical concepts including logical
connectives and truth-values by category-theoretic means. This sense of being internal remains
wholly relevant when we talk about the internal logic of a topos but what is special about the
topos logic is the fact that toposes (unlike CCCs in general) have also a reach geometrical content
(this is particularly true in the case of Grothendieck toposes) and thus provide a dialectical inter-
play between geometry and logic. So in his [153] Lawvere not only axiomatized the topos theory
by bringing into this difficult geometrical theory the logical clarity of first-order logic: he also
discovered that toposes, which were earlier invented by Grothendieck as geometrical categories,
are also appropriate for “doing logic in them”, i.e., that toposes are not only geometrical but
also logical categories! In particular, Lawvere shows how his earlier invented notion of quantifier
as adjoint to substitution (see 4.3) is geometrically realized in any topos. (This particular result

gave the paper its title.) I would like to mention here that the internal logic of a given topos
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can be presented in the usual way with a symbolic syntax (called the Mitchell-Bénabou language
or internal language) and the corresponding semantics of that language (called the Kripke-Joyal

semantics) associated with that topos, see [177], p. 296 - 318).

How the two aspects of Lawvere’s axiomatization of topos theory - (i) the logical clarification of
the geometrical notion of topos with first-order axioms and (ii) the internalization (and hence
the “geometrization”) of logic in a topos) - relate to each other? It is fair to say that they relate
dialectically but one may want to be more specific here. McLarty’s book [185] shows how this
relationships looks like when one develops Lawvere’s theory of elementary categories and toposes
with the standard Formal Axiomatic Method 2'. In the Preface to his book McLarty describes

his general logical framework as follows:

Our metatheory avoids excluded middle and choice so it is sound in any topos, except

when we are explicitly concerned with constructions in Set. ( [185], p. vii)

After introducing categories and toposes (in a semi-formal way) McLarty comes to the internal
logic of toposes (Chapter 14) and then in Chapter 16 titled “From the Internal Language to
the Topos” he shows how a given topos can be described internally in terms of its own internal
language. The internal view on a topos, generally, does not fully coincide with the external view
- in spite of the fact that the “external logic” (i.e., the metatheory) is of the same sort that
the internal logic of the given topos, as this is indicated in the above quote. It is suggestive to
compare this effect with a similar situation in geometry where one may describe one and the
same space S either extrinsically as embedded into some outer spaces T or intrinsically in terms
of embedding of a “test spaces” P in S. Draw a straight line L one a sheet of paper and then
fold the paper. Extrinsically L is no longer straight but intrinsically it has not changed. So the

extrinsic and the intrinsic views on the situation are no longer the same (see 8.8 below).

Coming back to Lawvere I suggest that the geometrisation of logic in topos theory can be
philosophically interpreted as a way of objectification of logic (in the Hegelian sense of the
term explained above). This may work, of course, only if the geometrical notion of topos itself
proves objective in the appropriate sense. And this requires a topos to be not just an abstract
mathematical concept but a concept providing a connection between the geometrical intuition
and the world of experience, between the pure mathematics and the natural sciences. Lawvere

clearly states that establishing of such a connection is indeed his aim:

21 Arguably, unless this theory is treated in this way it does not deserve the title of “elementary”. I would not
like to make an issue of this terminological point; I use the expression “elementary topos” interchangeably with
“Lawvere topos”.
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[E]xperience with sheaves, permutation representations, algebraic spaces, etc. shows
that a “set theory” for geometry should apply not only to abstract divorced from
time, space, ring of definition, etc., but also to more general sets, which do in fact

develop along such parameters. ( [153], p. 329)

(By categories of “more general sets” Lawvere means here toposes: remind the metaphor of sheaf

as a continuously variable set.)??

It is appropriate to ask: How it is possible to combine Hegel’s dialectical logic with the Axiomatic
Method? How Lawvere manages to do this? As far as one thinks about the Axiomatic Method in
Hilbert’s vein any combination of this method with Hegel’s dialectical logic seems to be impossible
for the following simple reason: while on Hegel’s account the “subjective” logic of inference is the
concluding element of a dialectical process, which involves categories of Magnitude (Lawvere’s
Space and Quantity) at an earlier stage, on Hilbert’s account such a subjective logic of inference
is supposed to be fixed from the outset and then used for an axiomatic introduction of further
categories including that of Magnitude. Remind however that in ([158], p. 213, see the quote in
the introductory part of Chapter 4) Lawvere describes the Axiomatic Method as the “unification
and concentration” of mathematical practice; obviously this description is much broader than
Hilbert’s notion of Axiomatic Method, which we thoroughly studied in Chapter 2. So we have

no reason to assume that Lawvere’s Axiomatic Method is the same as Hilbert’s.

Lawvere’s co-authored textbooks [164] and [163] give some more hints about Lawvere’s Ax-
iomatic Method. Both books begin with an introduction of basic category-theoretic concepts at
the example of the category of finite sets and their mappings (i.e., functions) and end up with
the elementary topos. Logic in the usual sense of logic of inference appears (or rather emerges)
only at this final stage in the form of the internal logic of elementary topos. Throughout the
exposition mathematical concepts are given appropriate physical meanings, in particular, spatial
and temporal meanings. Thus the structure of this exposition fits the idea of objective logic:
first one builds an empirically meaningful system of objective categories, and only then on this
objective basis introduces a system of subjective logic, which involves truth-values, types, con-
nectives, quantifiers and the rest of the usual formal logical machinery. This subjective logic not

only reflects the general features of the corresponding objective categories but is also fine-tuned

221t is not immediately clear how a purely mathematical study in sheaf theory and algebra may have a bearing
onto the physical time and the physical space. However the context of Lawvere’s work makes it clear that Lawvere
speaks here about time and space as objective physical categories rather than metaphors or subjective intuitions.
So I can see two possible answers. Either Lawvere believes that a serious mathematical study brings about
objective - and hence physically relevant - results even if this study is pursued quite independently of any physical
considerations. Or he intends to bring himself this objective meaning into the field by establishing a connection
with natural sciences through such basic categories as time and space (and quantity).
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by specific objective features of each given example: in particular, the set (or more generally the
object) of truth-values of the internal logic L of given topos T is determined by this very topos,
which is an objective and physically meaningful conceptual construction. Thus in the accordance

with Hegel the subjective logic emerges here on the top of the objective one.

One may argue that in order to cover all this material “more accurately” one should replace
the informal introduction of categories and toposes given in [164] and [163] by a more formal
treatment - or at least to make sure that such a routine formalization is unproblematic and then
skip it. After all, so the argument goes, the basic category and topos theory requires proving
a number of theorems, and one cannot possibly prove anything without using one system of
“underlying” logic or another. If one doesn’t specify any such system of logic this means that
one takes it for granted, perhaps even without knowing about it. To make this underlying
logic explicit is a purpose of logical analysis; such an analysis is necessary for clarification and

justification of proofs.

The argument sounds convincing but we may further ask: What justifies one’s choice of the
underlying logic? and How the principles of one’s favorite logic are grounded? One may re-
ply that these are Big Philosophical Questions that must be not meshed with mathematics; if
these questions can by reasonably answered at all the answers cannot possibly be mathematical
answers. What mathematician can and must do is to fix some reasonable system of logic on
pragmatic grounds and do mathematics with it. Then he may try the same with a different

system of logic.

Lawvere’s ambition, as I understand it, is to give to the aforementioned Big Questions not only
philosophical but also mathematical answers. On the philosophical side he relies onto Hegel’s
idea of objective logic. And on the mathematical side he uses the category theory for building
objective categories, which ground logic (i.e., the subjective logic of inference) and give logic
a particular shape (which turns to be variable at a certain degree). True, a presentation of
objective categorical constructions requires following some basic logical rules. This is particularly
true when we are talking about an aziomatic presentation. However this only reflects the fact
that every presentation is subjective - including the case when the presented thing is itself
objective. So the above argument does not really demonstrate the foundational significance of the
subjective logic. It only shows that some subjective logic L is needed for presenting mathematical
theories. Lawvere’s Hegelian requirement is that L must be grounded in mathematical structures,
which reflect objective empirical features of our world, and thus count as an aspect of objective

logic.
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A possible way out of this dialectical circle is McLarty’s bootstrap: in his presentation he uses
from the outset a logic without the rule of excluded middle, which is sound in any topos; using
this basic logic he introduces categories and toposes and the notion of internal logic of a topos.
Thus it turns out that the basic logic used from the beginning of the exposition can be an
internal logic of any topos. This allows for developing the general theory of categories and
toposes internally in any topos: every theorem of the general “external” theory still holds true
in every internal version of the theory - albeit the internal version typically comprises theorems,
which do not hold externally, i.e., in the general case. From a logical point of view this is
perfectly consistent (notwithstanding my earlier arguments against equating the “external” with
the “general”). So McLarty’s book [185] shows how one can meet formal requirements of Hilbert’s
Axiomatic Method without buying its usual philosophical underpinning. I would like to stress
however that a formal treatment of topos theory like one presented in McLarty’s book by itself
does not reveal the objective character of this theory and of this logic. In Chapter 9 I shall
interpret Lawvere’s work differently and describe the New Axiomatic Method that better captures

the original features of Lawvere’s axiomatic reasoning.
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Conclusion of Part 1

In his textbooks [164] and [163] Lawvere and his co-authors stress the objective character of
the category theory in general and of the categorical logic in particular by suggestive real-life
examples relevant to the practice of modern science; in other places Lawvere also stresses the fact
that the category theory has emerged from a wide mathematical practice of “structural” mathe-
matics (see Chapter 8) and helped to “unify and concentrate” this practice in textbooks. All of
this qualifies as an evidence for the claim of objectivity of the categorical logic. However much
more, in my view, remains to be done in order to re-configure the standard notion of Axiomatic
Method, which has been designed on very different philosophical principles. Here Euclid’s ex-
ample can be helpful. Euclid’s geometry as presented in Euclid’s Elements is a systematically
organized discipline, which played the role of paradigmatic example of the systematic organi-
zation of knowledge for quite a while after it was first created. This remarkable organization
was achieved by Euclid not with some “background logic”, about which he was not aware, or
which he decided to hide from us, but rather by internal mathematical means, which I tried to
describe in Chapter 1. During the time of its flourishing Euclid’s geometry also justly qualified
as the only empirically justified theory of physical space; as such it served both the fundamental
physics and technology. It is only relatively recently that it proved insufficient on both accounts.
Hilbert’s Formal Axiomatic Method designed as a replacement for Euclid’s method of organiz-
ing mathematical knowledge (which after Hilbert’s suggestion we also conveniently call by the
name of Axiomatic Method) does not qualify as an adequate replacement because of its formal
character: it makes no difference between the case when a given axiomatic theory contains a
valuable piece of knowledge and the case of a purely fictitious theory having to epistemic value
at all. True, Hilbert’s studies in foundations of mathematics allowed for a great progress in
logic through the application of mathematics to systems of formal symbolic logic and formal
mathematical theories built with these logical systems. So we have learned a great deal about

such formal systems - including the fact that some key questions about them, which in Hilbert’s
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view could be easily answered, in fact can not. But however valuable this new knowledge might
be for its own sake it can not constitute a sufficient basis for designing a general method of
building scientific theories and, in particular, of anything deserving the name of foundations of
mathematics. Since the Formal Axiomatic Method does not take into account any other features
of theories except formal, building a meaningful theory by this method turns to be a matter
of pragmatic, aesthetic or some other prejudged choice - or perhaps just a matter of good luck
and the so-called “scientific intuition”. After Cassirer and Lawvere I believe that this formal
turn makes science basically irrational, and that the right choice can be made only theoretically,

albeit not merely speculatively.

Thus the problem of replacement of Euclid’s Axiomatic Method remains wide open. Lawvere’s
work is a unique attempt to solve this problem with the novel mathematical technique of cate-
gorical logic. A further progress in this field requires a systematic study of the relevance of the
categorical logic in the natural sciences and in the modern technologies, which I cannot include

this book.
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Part 11

Identity and Categorification
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Chapter 5

Identity in Classical and

Constructive Mathematics

5.1 Paradoxes of Identity and Mathematical Doubles

Changing objects (of any nature) pose a difficulty for the metaphysically- minded logician known
as the Paradox of Change. Suppose a green apple becomes red. If A denotes the apple when
green, and B when it is red then A = B (it is the same thing) but the properties of A and B are
different : they have a different color. This is at odds with the Indiscernibility of Identicals thesis
according to which identical things have identical properties. A radical solution - to explain away
and/or dispense with the notion of change altogether was first proposed by Zeno around 500 BC
and remains popular among philosophers (who often appeal to the relativistic spacetime to justify
Eleatic arguments). Unlike physics, mathematics appeared to provide support for the Eleatic
position : for some reason people were more readily brought to accept the idea that mathematical
objects did not change than to accept a similar claim about physical objects - in spite of the fact
that mathematicians had always talked about variations, motions, transformations, operations

and other process-like notions just as much as physicists.

The Paradox of Change is the common ancestor of a family of paradoxes of identity which might
be called temporal because all of them involve objects changing in time. Chrisippus’ Paradoz,
Stature, The Ship of Theseus belong to this family [43]. However time is not the only cause of
troubles about identity: space is another. The Identity of Indiscernibles (the thesis dual to that

of the Indiscernibility of Identicals) says that perfectly like things are identical. According to
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legend in order to demonstrate this latter thesis, Leibniz challenged a friend during a walk to
find a counter-example among the leaves of a tree. Although there are apparently no perfect
doubles among material objects, mathematics appears to provide clear instances immediately:
think about two (different) points. But the example of geometrical space brings another problem:
either the Identity of Indiscernibles thesis is false or our idea of perfect doubles like points is
incoherent. In what follows I shall refer to this latter problem as the Paradox of Doubles.
Mathematics looks more susceptible to this paradox than physics. However were she living
today, Leibniz’s friend might meet his challenge by mentioning the indiscernibility of particles in

Quantum Physics [66]

The example of two distinct points A, B (Fig. 5.1) does not, it is usually argued, refute the
Identity of Indiscernibles because the two points have different relational properties: in Fig. 5.1

A lies to the left of B but B does not lie to the left of itself *:

As *B

Fig. 5.1

The difference in the relational properties of A and B amounts to saying that the two points have
different positions. However the example can be easily modified to meet the argument. Consider

two coincident points (Fig. 5.2): now A and B have the same position.

A=B

Fig. 5.2

It might be argued that coincident points are an exotic case, one which can and should be
excluded from mathematics via its logical regimentation. But this is far from evident - at least
if we are talking about classical Euclidean geometry. For one of the basic concepts of Euclidean
geometry is congruence, and this notion (classically understood) presumes coincidence of points:
figures F, G are congruent iff by moving G (without changing its shape and its size) one can

make F' and G coincide point by point.

The fact that geometrical objects may coincide differentiates them significantly from material

solids like chairs or Democritean atoms. The supposed impenetrability of material solids counts

IThese relational properties of the two points depend on their shared space: the argument doesn’t go through
for points living on circle. I owe this remark to John Stachel.
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essentially in providing their identity conditions [173]. Thus, identity works differently for ma-

terial atoms and geometrical points.

This fact shows that Euclidean geometrical space cannot be viewed as a realistic model of the
space of everyday experience as is often assumed. One needs the third dimension of physical
space to establish in practice the relation of congruence between (quasi-) 1- and 2-dimensional

material objects through the application of a measuring rod or its equivalent.

We see that the alleged contradiction with the Identity of Indiscernibles is not the only difficulty
involved here. Indeed the whole question of identity of points becomes unclear insofar as they are

b2

allowed to coincide. Looking at Fig. 5.2 we have a surprising freedom in interpreting “=" sign.

2

Reading “=" as identity we assume that A and B are two different names for the same thing.

b2

Otherwise we may read “=” as specifying a coincidence relation between the (different) points
A and B. It is up to us to decide whether we have only one point here or a family of superposed
points. The choice apparently has little or no mathematical sense. One may confuse coincidence
with identity here without any risk of error in proofs. However this does not mean that one can
just assimilate the notions of identity and coincidence. For identity so conceived would be very
ill-behaved, allowing for the merger of different things into one and the splitting of one into many.
(Consider the fact that Euclidean space allows for the coincidence of any point with any other

through a suitable motion.) Perhaps it would be more natural to say instead that the relations

of coincidence and identity while not identical in general, coincide in this context?

For an example from another branch of elementary mathematics consider this equation: 3 = 3.
Just as in the previous case there are different possible interpretations of the sign “=" here. One

”

may read “=" either as identity, assuming that 3 is a unique object, or as a specific relation
of equality which holds between different ”doubles” (copies) of 3. Which option is preferable
depends on a given context. There is a unique natural number x such that 2 < z < 4; z = 3.
Here “=" stands for identity. But when one thinks about the sum 3+ 3 or the sequence 3,3, 3, ...
it is convenient to think of the 3s as many. In this latter case 3 = 3 still holds but now “=” is
being read as equality rather than identity. Again the choice looks like a matter of convenience

rather than of theoretical importance.

Similarly, in one sense cube is a particular geometrical object, while in a different sense there
exist (in some suitable sense of “exist”) many cubes. When one proves that there exist exactly
5 different regular polyhedrons, and says that the cube is one of them, one speaks about the
cube in the first sense. When one considers a geometrical construction, which comprises several

cubes, one thinks about the cubes in the second sense. However no distinction between the
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two meanings of the term ”cube” can be found in standard textbooks, and it is not even clear

whether such distinction can be sharply made.

The above examples might make one think that the notion of identity simply plays no significant

?

role in mathematics. 2 X 2 = 4 remains true independently of whether the sign ”=" is read as
equality, or as identity, whether equality is treated as identity, or identity is weakened to equality.
It looks as if here one may choose one’s interpretation according to personal taste or preferred

philosophical position.

However such a liberal attitude to identity in mathematics looks suspicious from the logical point
of view. Claims of existence and uniqueness of mathematical objects satisfying given descriptions
(definitions) play an important role in mathematics. Such a claim means that a given description
indeed picks out (identifies) an object, not just a property. The standard definition of the wunit
of a given group G is an example. Obviously a claim that such-and- such an object is unique
makes sense only if its identity conditions are fixed. But as we have seen they may in fact be
very loose. It is clear that 3 is the only natural number bigger than 2 and smaller than 4 but it
is not clear that 3 indeed refers to an unique object. But how can mathematics hang together
as a body of knowledge if it apparently does not meet Quine’s “no entity without identity”

requirement?

The unit of a group G is defined as the element 1 € G such that for any element 2 € G (including
1itself) 1® z = 2 ® 1 = z, where ® is the group operation. The existence of 1 is guaranteed
by definition but its uniqueness is proved. Suppose 1’ is another element of the group satisfying
the same condition: 1’ ® x = x ® 1’ = . Then taking first z = 1, and then z = 1’ we have

'el=101=1=1"

There are several ways to approach this problem. I now explore them.

5.2 Types and Tokens

The remedy, which readily comes to mind on the part of anyone familiar with contemporary
Analytic metaphysics, is that of the type/token distinction. Consider another example, which
prima facie looks very like the above mathematical cases. There are 26 letters in the English
alphabet, and the letter a is one of them. In the last phrase the letter a is referred to as a
particular thing, namely a particular letter of the alphabet. But in this phrase itself there are

five such things. Hence the letter a is not a particular thing. The standard way of dissolving
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this puzzle is to say that here we have one a-type and five a-tokens.

In explaining the distinction, one starts from tokens: an a-token is a piece of paper with typo-
graphic pigment, or another material object (e.g. a piece of printer’s type) representing the letter
a. Obviously a-tokens are many. The second step is to explain what the a-type is. Let me however
show instead that the type/token distinction does not fix the problem of identity of mathematics
anyway: whatever mathematical types might be they do not correspond to well-distinguishable

tokens.

The natural number 3 (which I write in bold for further references) indeed looks like a type but
the 3s, which we find in the series 3,3,.. or in the formula 3+3 do not look like tokens from the
viewpoint of standard examples (like particular chairs). For formula 343 may be applied to many
different situations: one might add 3 chairs to 3 chairs, 3 points to 3 points, or even (taking a
liberal attitude) 3 chairs to 3 points. Arguably such application amounts to instantiation of both
3s (in formula 3+3) by certain sets of objects. That is certainly not how good tokens behave: the
fact that types can be instantiated but tokens cannot is essential; if we allow for the instantiation
of tokens by other tokens we either lose the type/token distinction or must provide it with a new

relational sense (which looks like an interesting project but I cannot pursue it here).

The case of points (or more structured geometrical figures like triangles) at first sight looks more
promising. Apparently points are well-distinguishable tokens of the same type. Unlike the case
of numbers it is common in mathematics to denote different point-tokens by different labels such
as A and B. However this works only until coincident points are taken into consideration. For
in the case of coincident points we cannot distinguish a singular point-token from a stock of
point-tokens. It is tempting in this case to think of the stock of points as a “place” occupied
by a family of singular point-tokens. But this again involves a reiteration of the type/token
distinction on another level as in the case of 3-tokens. Point-locations initially considered as
tokens can themselves be instantiated by second-order tokens stocked there. Once again this
destroys the usual distinction between point-tokens and the point-type. It is a condition of
acting as a (classical) token that the object so acting have determinate identity conditions - as
concrete symbols like printed numerals do. But our hypothetical number- and point-tokens do
not meet this condition. So the type/token distinction (at least in its usual form) does not help
us to handle the identity issue in mathematics. (This also makes me doubt how well it works

outside mathematics.)
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5.3 Frege and Russell on The Identity of Natural Num-

bers

Frege considered it a principal task of his logical reform of arithmetic to provide absolutely
determinate identity conditions for the objects of that science, i.e. for numbers. Referring to the

contemporary situation in this discipline he writes in the Introduction to his [58]:

How I propose to improve upon it can be no more than indicated in the present work.
With numbers [..] it is a matter of fixing the sense of an identity. (English translation

[63], p.Xe)

Frege makes the following critically important assumption : identity is a general logical concept,

which is not specific to mathematics:

It is not only among numbers that the relationship of identity is found. From which
it seems to follow that we ought not to define it specially for the case of numbers.
We should expect the concept of identity to have been fixed first, and that then from
it together with the concept of number it must be possible to deduce when numbers
are identical with one another, without there being need for this purpose of a special

definition of numerical identity as well. (Ibid., p.74e)

In a different place [60], [62] Frege says clearly that the concept of identity is absolutely stable

across all possible domains and contexts:

Identity is a relation given to us in such a specific form that it is inconceivable
that various forms of it should occur (p.254 in the edition [62], my translation from

German)

Frege’s definition of natural number, as modified by Russell [212] later became standard. I
present it here informally in Russell’s simplified version. Intuitively the number 3 is what all
collections consisting of three members (trios) share in common. Now instead of looking for a
common form, essence or type of trios let us simply consider all such things together. According
to Frege and Russell the collection (class, set) of all trios just is the number 3. Similarly for

other numbers?2.

Isn’t this construction circular? Frege and Russell provide the following argument which they

claim allows us to avoid circularity here: given two different collections we may learn whether

2Following Russell [212] T use here words class, collection, and set interchangeably ignoring their technical
meanings if any. This terminological freedom is helpful for rethinking the concept of set (or class etc.) without
smuggling in ready-made solutions through the existing terminology.
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or not they have the same number of members without knowing this number and even without
the notion of number itself. It is sufficient to find a one-one correspondence between members of
two given collections. If there is such a correspondence, the two collections comprise the same
number of members, or to avoid any reference to numbers we can say that the two collections
are equivalent. I shall follow current usage in calling this equivalence Humean (see [119], book
1, part 3, sect. 1). Now we check that this relation is indeed an equivalence in the usual sense,

and define natural numbers as equivalence classes under this relation.

This definition reduces the question of identity of numbers to that of identity of classes. This
latter question is settled through the axiomatization of set theory in a logical calculus with
identity. Thus Frege’s project is realized: it has been seen how the logical concept of identity
applies to numbers. (In fact this does not work that smoothly as I show in 5.8 below.) In
an axiomatic setting “identities” in Quine’s sense (that is, identity conditions) of mathematical
objects are provided by an axiom schema of the form VzVy(z = y < ...) called in [132] the
Identity Schema (IS).

This does not resolve the identity problem though because any given system of axioms, generally
speaking, has multiple models [17]. The case of isomorphic models is similar to that of equal
numbers or coincident points (naively construed): there are good reasons to think of isomorphic
models as one and there is also good reason to think of them as many. So the paradox of
mathematical doubles reappears. Thus the logical analysis a la Frege-Russell certainly clarifies
the mathematical concepts involved but it does not settle the identity issue as Frege believed it

did.

In the recent philosophy of mathematics literature the problem of the identity of mathematical
objects is usually considered in the logical setting just mentioned: either as the problem of
the non-uniqueness of the models of a given axiomatic system or as the problem of how to fill
in the Identity Schema. For my present purposes it is important, however, to return to the
problem in its original informal version, which inspired Frege and Russell 100 years ago. Such
a return to the starting point is, in my view, helpful and perhaps necessary if one wishes (as I
do) to consider the Category-theoretic approach to identity discussed in this paper as a viable
alternative to the approach taken by Frege, Russell and their followers. At the first glance the
Frege-Russell proposal concerning the identity issue in mathematics seems judicious and innocent
(and it certainly does not depend upon the rest of their logicist project): to stick to a certain
logical discipline in speaking about identity (everywhere and in particular in mathematics). The

following historical remark shows that this proposal is not so innocent as it might seem.
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5.4 Plato

Given a sequence like 3,3,3,.. mathematicians conveniently talk about multiple copies of the
same number (similarly about copies of a given set, or space) . Such talk about copies carries
echoes from Plato. A glance at Plato’s philosophy of mathematics shows some features which
might be attractive for a mathematician resistant to the logical regimentation of talk of identity
in different contexts proposed by Frege and Russell. If I understand Plato correctly, according to
him identity applies only to the immutable ideas, and only ideas exist. (So Plato’s view in this
respect is in accord with Quine’s dictum about no entity without identity [199], p. 23.) Material
things don’t exist but become ( they change, come into and go out of being ) and hence have no
proper identities: this is another possible way out of the Paradox of Change. Mathematical things
occupy an intermediate position between material stuff and ideas: they involve a weaker sort of
becoming and a softer form of identity. In the case of numbers such “soft identity” is equality.
Things in the three layers of Plato’s ontology are partially ordered by “distorted copying” where
ideas are the maximal elements, mathematical objects are distorted copies of ideas, and material
objects are distorted copies of mathematical objects (and hence also of ideas). The distortion
of self-identical ideal numbers amounts to their replacement by families of equal mathematical
numbers. For example, there is a unique ideal number 3 and an indefinite number of its equal
mathematical copies. In other words numbers in mathematics are defined up to equality but not

up to identity 3.

There are multiple passages where Plato speaks of “X itself”, “X (thought of) through itself”
and “Idea of X” interchangeably or explains the latter through the former. For example in his
Symposium (210-211) Plato does this with the notion of Beauty, and in Phedon (96-103) with
number 2. (In this latter dialog Socrates rejects the view that 2 could be thought of as sum of
two units pointing to the fact that 2 can be equally obtained through division of given unit into
two halves. Since each of the two operations is the reverse of the other none of them can be
viewed as bringing 2 about. So one needs to think of the idea of 2 independently of operations of
this sort.) I interpret these passages in the sense, which seems me straightforward: the “identity
to itself” applies to ideas but neither to material things, nor to mathematical things (as they are
usually thought of). To see that Plato’s “idea of 2” is indeed something else than mathematical
number see last chapters of Aristotle’s Metaphysics where the author criticizes the Unwritten

Doctrine developed by Plato in the later period of his life [55]. Here the distinction between ideal

3Plato’s philosophy of mathematics should not be confused with the Mathematical Platonism in the sense
of [12], which has little if anything to do with historical Plato. For an introduction to Plato’s philosophy of
mathematics see [195].
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and mathematical numbers is made explicit. Aristotle stresses the fact that each ideal number is
unique while their mathematical copies are many (Met. 987b) and the fact that ideal numbers

are not a subject of arithmetical operations (Met. 1081a-1082b).

Thus unlike Frege Plato does not suppose that the notion of identity applies to whatever there is
(or whatever occurs) indiscriminately. Instead Plato thinks of identity as a specific property of
things he calls ideas and notices the fact that in mathematics the identity requirement is relaxed
(through the talk of an “intermediate” character of mathematical objects). In what follows I
shall show that this Platonic insight is particularly appealing in the context of our contemporary

Category-theoretic mathematics.

Plato hints at the following division of labor: mathematicians work on equalities whilst philoso-
phers take care of identities. In the case of arithmetic this is exactly what mathematicians (and
philosophers like Frege) have been doing for centuries. In geometry however the situation is more
complicated because equality in this discipline may mean - and historically did mean - different

things.

Euclid uses the term “equality” (Greek ison) in the sense of equicompositionality (of plane
geometrical figures ) but there are other equivalencies in geometry, which may be considered as
better “working substitutes for identity”: for example congruence, (geometric) similarity, and
affinity. For there is a sense in which the “same figure” means a figure of the same shape and the
same size, and there is another sense in which it means only a figure of the same shape, and the
notion of ”same shape” can itself also be specified in different ways. In addition geometry unlike
arithmetic allows for the identification of its objects (of geometrical figures) by directly naming
them, usually through naming of their most important points. This allows us to distinguish
two different triangles ABC and A’B’C’ which are the “same” in any of above senses. There is
apparently no clear argument, which would allow us to choose one of these senses of the same
as basic and eliminate the others as an abuse of the language. In particular, as I have shown in
5.1, the pointwise specification of figures cannot do this job. So the situation in geometry (even

classical geometry!) is exactly that which [179] describes for a different purpose:

There is no equality in mathematical objects, only equivalences! (p. 8)
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5.5 Definitions by Abstraction

To pursue his project of reducing the various informal meanings of ”the same” in mathematics to a
standard notion of identity captured in a universal logic Frege proposed the method of ” definition

by abstraction”. In his [58] Frege gives the following example of such definition:

The judgment “line a is parallel to line b”, or, using symbols a//b , can be taken as
identity. If we do this, we obtain the concept of direction, and say: “the direction
of line a is identical with the direction of line b”. Thus we replace the symbol // by
the more generic symbol =, through removing what is specific in the content of the

former and dividing it between @ and b. (translation [63], p. 74e)

Notice that the procedure as described here by Frege involves a change of notation: in the
formula a = b the symbols a, b no longer stand for lines but denote the same direction. Calling
this formal procedure definition by abstraction Frege suggests its interpretation. The idea is that
the procedure picks out a property common to all members of a given equivalence class. In 6.1

I shall show that this procedure can be interpreted differently.

As our earlier quotations from Frege’s [58] clearly show, in treating an equivalence E “as identity”
Frege does not mean to replace identity by something else. He aims at the exact opposite: to in-
troduce identity where mathematicians usually use only equivalencies. Definition by abstraction
is problematic from the logical point of view [219]. But I want to stress a different point. Even
if definition by abstraction were justified logically it would not provide what a mathematician
normally looks for. Frege’s direction (not to be confused with orientation!) is hardly an inter-
esting mathematical notion; this concept might play at most an auxiliary role in geometry and
can easily be dispensed with. The idea of a family of parallel lines does the same job as Frege’s
abstract direction but is more convenient and more intuitive. Similarly it is more convenient to
think of a natural number as a family of equal doubles rather than a unique abstract object.
Such abstract numbers would be much like Plato’s ideal numbers. Plato certainly had a point
in arguing that such things do not belong to mathematics! Frege would most likely answer that
the question of convenience does not matter because his proposal is logically justified and the

more traditional mathematical practice and parlance is not.
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5.6 Relative Identity

The Theory of Relative Identity is a logical innovation due to Geach ([71], ch.7) motivated by the
same sort of mathematical examples as Frege’s definition by abstraction. Like Frege Geach seeks
to give a logical sense to mathematical talk “up to” a given equivalence E through replacing F
by identity but unlike Frege he purports, in doing so, to avoid the introduction of new abstract
objects (which in his view causes unnecessary ontological inflation). The price for the ontological
parsimony is Geach’s repudiation of Frege’s principle of a unique and absolute identity for the
objects in the domain over which quantified variables range. According to Geach things can be
same in one way while differing in others. For example two printed letters aa are same as a type
but different as tokens. In Geach’s view this distinction does not commit us to a-tokens and
a-types as entities but presents two different ways of describing the same reality. The unspecified
(or absolute in Geach’s terminology) notion of identity so important for Frege is in Geach’s view

is incoherent 4.

Geach’s proposal appears to account better for the way the notion of identity is employed in
mathematics since it does not invoke “directions” or other mathematically redundant concepts.
It captures particularly well the way the notion of identity is understood in category theory.

According to Baez and Dolan [11]
In a category, two objects can be “the same in a way” while still being different (p.7)

so in category theory the notion of identity is relative in Geach’s sense. But from the logical
point of view the notion of relative identity remains highly controversial. Let z,y be identical
in one way but not in another, or in symbols: Id(z,y)&—Id' (x,y). The intended interpretation
assumes that x in the left part of the formula and x in the right part have the same referent, where
this last (italicized) same apparently expresses absolute not relative identity. So talk of relative
identity arguably smuggles in the usual absolute notion of identity anyway. If so, there seems

good reason to take a standard line and reserve the term “identity” for absolute identity.

We see that Plato, Frege and Geach propose three different views of identity in mathematics.
Plato notes that the sense of the “same” as applied to mathematical objects and to the ideas
is different: properly speaking, sameness (identity) applies only to ideas while in mathematics
sameness means equality or some other equivalence relation. Although Plato certainly recognizes
essential links between mathematical objects and Ideas (recall the ideal numbers) he keeps the

two domains apart. Unlike Plato Frege supposes that identity is a purely logical and domain-

4For recent discussion see [43].
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independent notion, which mathematicians must rely upon in order to talk about the sameness
or difference of mathematical objects, or any other kind at all. Geach’s proposal has the opposite
aim: to provide a logical justification for the way of thinking about the (relativized) notions of
sameness and difference which he takes to be usual in mathematical contexts and then extend it

to contexts outside mathematics.
As Geach puts it

Any equivalence relation ... can be used to specify a criterion of relative identity.
The procedure is common enough in mathematics: e.g. there is a certain equivalence
relation between ordered pairs of integers by virtue of which we may say that x and
y though distinct ordered pairs, are one and the same rational number. The absolute
identity theorist regards this procedure as unrigorous but on a relative identity view

it is fully rigorous. ([71], p.249)

5.7 Internal Relations

In his paper “The classification of relations” of 1899 [217] Russell says:

Mr. Bradley has argued much and hotly against the view that relations are ever
purely “external”. T am not certain whether I understand what he means by this
expression but I think I should be retaining his phraseology if I described my view

as the view that all relations are external. (p.143)

In arguing that relations are, generally, internal Bradley [26] means roughly the following: the
relata of a given relation cannot, generally, be thought of independently of each other and of the
relation in question. (So relations, if any, such that their relata can be thought of independently

are external.) Bradley makes indeed a stronger claim:

Relations exist only in and through a whole, which cannot in the end be resolved into
relations and terms. [..] The opposite view is maintained (as I understand) by Mr.
Russell. But for myself, I am unable to find that Mr. Russell has ever really faced

this question (4b., p.127)

5Notice that in Bradley’s view there is no duality between external and internal relations since internal relations
are not supposed to be defined independently of their relata which would be an absurdity. (See [120] for further
discussion.)
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As we can see each of the two authors admits that he hardly understands arguments of the
other. Since Russell’s outright rejection of internal relations they have been under great sus-
picion amongst Analytic philosophers. Today the neglect of internal relations is not only the
consequence of underlying inclinations in systematic metaphysics but also a matter of available
logical means. For the main tradition of (modern) logical systems is developed in keeping with
Russell’s rejection of internal relations, so one may ask whether or not the standard modern
notion of n-placed relation as n-placed predicate can be possibly understood as internal relation.
Let us see. Consider the standard procedure of interpretation of given relation R(z,y) in given
domain D. Here z,y are logical variables which take their values among members of D that is
usually thought of as a class of individuals. When z,y take values a,b from D R(a,b) takes a
certain truth value (usually true or false) just like function f(z,y) = x +y takes value 3 when x
takes value 1 and y takes value 2 (and + is interpreted in the usual way). Noticeably the substi-
tution of a, b for x,y is proceeded uniformly for any binary relation and in this sense it doesn’t
depend on R. To put it in other words the substitution is formal: one first substitutes a, b for
x,y and then looks for the true-value of R(a,b). So relata a,b are assumed here independently

of R. This meshes well with Russell’s view according to which all relations are external.

But can R(z,y) be possibly understood as internal? Consider relation NEXT (m,n) between
natural numbers which says that number m is followed by number n. Arguably natural numbers
cannot be correctly thought of without NEXT. This means that this relation is internal. But
this claim apparently has nothing to do with the order in which NEXT is interpreted: nothing
prevents one to pick up numbers 1, 2, substitute them for m,n in NEXT (m,n) and then see
that NEXT(1,2) is true. Thus the logical machinery involved here allegedly has no bearing on
the metaphysical controversy between the external and internal understanding of relations. So

given relation R(x,y) might be internal as well as external.

However the above argument is not convincing. For it involves an interplay between the formal
analysis of the concept in question and implicit assumptions made about this concept. As far as
we already know what are natural numbers then we can claim, of course, that 1 is followed by
2. We can also write down this truth in a more fashionable way as NEXT(1,2). Formal logic is
used in this case for description of a ready-made concept. In such a case logic has no bearing on
how the concept in question is built, and so it is metaphysically neutral. But when logic is used
for concept-building like in the case of foundations of mathematics then specific features of logical
apparatus get directly involved into emerging concepts. In practice the distinction between the

two ways of applying logic can hardly be ever made rigidly: the major application of logic is a
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logical reconstruction of given background (in particular of common mathematical practice) but
not an external description of ready-made concepts nor creation of new concepts from nothing.
Logical reconstruction is making of new concepts from something. I will not elaborate this point
here and only notice that foundations of mathematics obviously involve concept-building even if

it has a descriptive function too (with respect to the common mathematical practice).

Is it possible to stipulate the relation NEXT between natural numbers without assuming a
fulfledged notion of natural number in advance? A positive answer is given with Hilbert’s ax-
iomatic method. One assumes some class of individuals N as domain of binary relation (two-
placed predicate) NEXT(m,n), and stipulates certain formal properties of NEXT as axioms.
The idea is that a system of axioms of this kind will turn abstract individuals into numbers. Or
to put it more accurately, elements of given class N will be thought of as natural numbers as far

as they verify some properly chosen axioms. Think about Peano’s arithmetic.

Is this procedure indeed compatible with the internalist account of relations? The answer is not
trivial, in my view. On the one hand, there is obvious reason to think of NEXT introduced ax-
iomatically as internal: unless NEXT (with its formal properties) is taken into account elements
of N are thought of as abstract individuals but not as numbers. But on the other hand, the
stipulation of relata of NEXT as individuals is incompatible with a strong version of internalism
about relations according to which these relata cannot be thought of without its relation at all,
not even as abstract “things” without properties. So the standard logical apparatus is indeed

incapable to represent relations which are internal in this strong sense.

Apparently Bradley defends such a strong version of internalism about relations when he says
that “a whole [..] cannot [..] be resolved into relations and terms”. True, this radical position
undermines the very notion of relation, so after all Russell’s account of relations should be
probably preferred. However Bradley’s remark points to a real problem which shows that the
notion of relation (or at least in its Russell’s restricted version) is far less powerful than it seems.
Notice that any axiomatic theory built by the standard Formal Axiomatic Method assumes its
objects (for example sets) to be individuals. However we have seen that the identity of basic
mathematical objects like points, circles or natural numbers is highly problematic. The blunt
stipulation of such things as individuals doesn’t resolve the problem but turns it into a new form:
given two classes N and N’ (N’ might be a “copy” of N) both satisfying axioms of arithmetic
which of the two classes is the class of natural numbers [17] ? ( See also Chapter 8 below.) I
suppose that in order to get a satisfactory solution of the identity problem in mathematics we

should give up the idea that mathematical objects always form classes and look for different ways
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of getting multiple objects into a whole. In the next Section I analyze the notion of class and

show its limits.

5.8 Classes

Sets of chairs or crowds of people are usually considered as a paradigm cases for our thinking
about the notion of many. There are different examples though. Think about clouds in the sky
or waves at see surface. One can always count persons or chairs or at least in principle so. But
one can hardly count clouds and waves. The problem is not that they are too many but that
there is no definite criterion for distinguishing one from another. Clouds and waves are certainly
many but this kind of many is in general not countable. For a mathematical example think
about families of equal numbers or of coincident points: the question of the cardinality of such
multiplicities (to choose a term for many with the broadest meaning) is apparently senseless.
In what follows I shall specify the sense of “countable” relevant to this context. I shall term
the wanted concept weak countability in order to avoid confusion with countability in the usual

set-theoretic sense.

In his [212], Chapter VI , Russell distinguishes between extensional and intensional “genesis of
classes”: the former proceeds through the “enumeration of terms” while the former proceeds as
follows: one takes a predicate P(z) and considers class {x | P(z)} consisting of all such z that
P(z) is true ¢ . For example class {1,2,3} can be defined either through the direct enumeration
of its elements 1,2,3 (extensional genesis) or as the class of natural numbers smaller than 4
(intensional genesis). According to Russell the extensional genesis of classes through enumeration
is possible only when the number of elements (terms) is finite. However Russell claims that this
constraint is only “practical” and “psychological” but not logical and theoretical. In particular

he says:

[L]ogically, the extensional definition appears to be equally applicable to infinite
classes, but practically, if we were to attempt it, Death would cut short our laudable
endeavor before it had attained its goal. Logically, therefore, extension and intension

seem to be on a par. (ib., p 69)

After claiming the essential equivalence of extensional and intensional viewpoints Russell goes

ahead and claims the priority of extension:

SThe principle according to which for each given predicate P(x) there exists class {z | P(x)} is called the
Comprehension Principle.
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A class [..] is essentially to be interpreted in extension. [..] But practically, though
not theoretically, this purely extensional method can only be applied to finite classes.
[..] [Allthough any symbolic treatment must work largely with class-concepts and
intension, classes and extension are logically more fundamental for the principles of

Mathematics. (ib. p.81)

These arguments are not convincing. True, theories often extend domains of possible application
of available practical means through relaxing certain constraints. For example, since Ancient
times people tend to think about distances between celestial bodies and between pebbles on sand
on equal footing. In many cases such theoretical extension works and allows for improvement of
existing practical means; in other cases taking practical constrains into theoretical consideration
allows for improvement of theories (think about Gauss’ work in geodesy which motivated his
geometrical discoveries). However I cannot see how this might help to settle the issue of extension
and intension. What Russell says about Death is irrelevant: an immortal god would no better
succeed to accomplish the task of finishing enumeration of an infinite series than a mortal human
because the enumeration of an infinite series has no end. So to the contrary of Russell’s opinion,
the difficulty of the infinite enumeration is not practical nor psychological but certainly theoretical
and logical. Russell refers to the mathematical (Cantorian) notion of infinite set but he misses
an essential point of Cantor’s invention. In his [29] Cantor says roughly the following. Count
1,2,3,..This counting never ends - not practically nor theoretically - but we may stipulate a
new ideal object w as the limit of this process just like we stipulate an irrational number r
as a limit of a series of its rational approximations. Then w can be understood as a number
of all (finite) natural numbers, and so the talk about the set of all natural numbers becomes
reasonable. Cantor proposes here a specific extension of the usual finitary enumeration, and I
don’t think that the philosophical distinction between the theory and the practice much clarifies

this Cantor’s proposal.

Observe that Cantor’s invention has no immediate bearing on the issue of predication, so Russell’s
idea that a predicate may bring about anything like Cantorian set (remind that Russell doesn’t
distinguish between sets and classes) is a very strong independent hypothesis. The following
development of logic and set theory imposed well-known constraints upon the use of classes but
these commonly accepted constraints, in my view, are not sufficient. Set-theoretic “antinomies”
including Russell’s paradox forced Zermelo [255], [91] to restrict Russell’s “intensive genesis”
through the Aussonderungsaxiom, which allows for “genesis” of set S with property P only

when one is given another set M such that P is definite on M (which is tantamount to saying
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that P has definite truth-value for every element of M ; then S comprises all those elements x of
M for which P(x) is true). Russell changes his mind about classes already in 1906 [214], [213],
[91] by putting forward No Class Theory according to which what one needs in logic is only a
domain U of individuals but not any longer classes constructed out of U. In 1908 [215], [91]

Russell changes his mind again and puts forward his type theory.

Bernays in his [18] purports to save Russell’s early liberal notion of class through a formal
distinction between classes and sets. According to Bernays sets are classes having a specific
property of being individuals, that is, capable of being elements of other classes. For sets Bernays
accepts an improved version of the Aussonderungsaziom (which he proves as a theorem). However
classes in Bernays’ view are formed by properties “automatically”, so one even doesn’t need a
quantifier for it and can simply write { | P(x)} to denote the class of all z such that P(z) is
true (this class can be a set or a proper class dependently on predicate P). Moreover Bernays
doesn’t exclude the possibility that classes can be produced in other ways not mentioned in his

theory 7:

This point of view suggests also to regard the realm of classes not as fixed domain of
individuals but as an open universe, and the rules we shall give for class formation
need not to be regarded as limiting the possible formations but as fixing a minimum

of admitted processes for class formation. ( [18], p. 57)

Bernays’ liberal notion of class remains very popular among mathematicians. People have learnt
that the notion of set shouldn’t be applied without caution but thanks to Bernays they feel free
to talk about classes of anything. This has changed the way of thinking even about elementary
mathematical concepts. The idea that the Euclidean plane contains the class of all circles would
sound completely weird in the 19th century but today’s mathematical students usually don’t feel
any inconvenience about it. In the eyes of many this freedom of thinking about infinite collections

(“Cantorian Paradise”) is a very important achievement of mathematics of 20th century.

A usual worry about such extensional representation of mathematical concepts concerns the issue
of infinity: why we need such huge collections where we can do well with only few examples?
Now I want to stress a different point. It concerns the fact that thinking of, say, circles on the
Euclidean plane, as forming a class we are obliged to take circles as full-fledged individuals with
definite identity criteria. But as I have tried to show in the beginning of this Chapter such

criteria are hardly available.

"The distinction between proper classes and sets has been introduced earlier by von Neumann. See Fraenkel
’s Historical Introduction to [18], p.32-33
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Before I elaborate on this crucial point let me make a methodological remark. When I criticize
the class-based representation of mathematical concepts I do not assume that there exist the
only right way to represent mathematical concepts. I believe that mathematical concepts are
exactly what we think about them, and that there is a sense in which the same concepts can
be represented differently. The class-based representation is a way of thinking about mathemat-
ical concepts which proved to be in many ways successful. My critical efforts directed against
this approach aim at revealing its hidden assumptions and constraints and at giving place for
alternative approaches, which look more promising. When I say “circles are not individuals” I
mean that the class-based representation of circles clashes with what people usually think about
circles in many standard contexts. I recognize that this clash alone provides no strong argument
against the class-based representation: perhaps we should fix the traditional way of thinking
about mathematical objects rather than modern formal methods. However in 6.2 I shall show
that these traditional intuitions support some important contemporary mathematical develop-
ments, so in order to promote these developments we need to elaborate on these intuitions rather

than rule them out.

5.9 Individuals

Bernays understands the notion of individual in the logical sense as an element of a domain of
quantification, that is, an element of some class. The extensionality property of classes (which
Russell rightly stresses as indispensable) implies that individuals so understood (elements of
classes) must have unproblematic identity criteria. To see this remind how the Axiom of Exten-

sionality is written in ZF":

EXT :VaVy(Vz(z €x <z €y) > x =)

Informally this axiom says that sets are wholly determined by their elements. Although the
identity of sets is introduced in ZF independently of EXT the intuitive appeal of this axiom
certainly depends of the fact that it can be used for “checking identity”: given two sets one can

check whether or not they are the same through checking their elements .

8To make EXT into an instance of Keranen’s identity schema (5.3) we need to replace the implication by the
biconditional:
EXT :VaVy(Vz(z €z = z€y) >z =1)

EXT' is true in ZF but is not used neither as a definition nor as an axiom for the reason of logical parsimony.
In fact ZF allows for another instance of the identity schema obtained from EXT' by the reversal of €:

INT :YaVy(Vz(r €z oy € 2) oz =1y)
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Remark however that in ZF there is no distinction between sets and elements as different types:
elements of sets are also sets. So EXT reduces the question about identity of given pair of sets
to the question about identity of some other pairs of sets. If given sets x,y are infinite then
checking the identity « = y through EXT reduces the problem to checking an infinite number
of identities. Prima facie this doesn’t look helpful. In fact EXT is helpful for checking identity
x = y only when the questions about identity of elements of x,y have obvious answers or at
least are easier to answer. If identity of elements of x,y is just as problematic as identity of =,y

themselves then EXT looses all of its appeal.

Bernays assumes the extensionality of classes but in order to avoid quantification over classes he

modifies EXT into this open formula

EXTCl:Vz(z€x e 2z€y) o x=1y)

which he uses as the definition of identity (equality) of classes (here x,y are classes while z ranges
over sets). So the extensionality of classes in Bernays’ account becomes also automatic and
doesn’t require a special axiom. Anyway EXTCI provides classes by definite identity conditions
just like sets. However according to Bernays certain classes (proper classes) cannot be elements
of other classes. Why not? Because it is known that making classes elements of other classes
in certain cases leads to contradiction. But this is a mere recognition of the fact but not an
explanation of the phenomenon. The colloquial explanation according to which proper classes
are “too big” or “over-comprehensive” [18]) for being elements of something bigger (because

there is nothing bigger?) certainly cannot be viewed as satisfactory.

Here is my explanation, which implies a substantial revision of Bernays’ point of view. I sup-
pose that multiplicities like “all sets” cannot be viewed as individuals because their elements
are not individuals either and hence have no definite identity conditions. Such multiplicities
cannot be thought as classes (or as elements of other classes) on the pain of loosing the sense
of extensionality. Although we can think about all sets in a way we cannot think of all sets as

individuals.

Indeed, in the traditional (pre-Cantorian) mathematics the individuation is always finitary and
associated with naming: one stipulates, for example, points A, B,C,.. (some of which might
appear to be identical) but not an infinite set of individual points. This doesn’t, of course,

preclude one of speaking, say, about “any point of given line”; the difference with the modern

Taking INT as giving the sense of identity brings about rather unusual way of thinking about sets, which I
developed in my [206].
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point of view is that this expression doesn’t commit one to an infinite set of points. Cantor’s
notion of infinite set is based on the assumption that individuals can form not only finite but also
infinite collections. In other words he assumes that thinking about all points of given line we can
still think of these points as individuals like A, B, C. Cantor provides the following justification of
this view. He shows that a properly generalized procedure of counting (enumeration) of elements
of given set works in the infinite case too. (This applies to all infinite sets but not only for
sets which are countable in the usual technical sense, see about Bernays’ Numeration Theorem
below.) This doesn’t really prove that elements of infinite sets are individuals in precisely the
same sense in which elements of finite sets like {A, B,C} count as individuals but this shows
that at least one essential feature of finite sets is preserved in the infinite case, namely, the fact
that elements of infinite sets may be brought into one-to-one correspondence just like elements
of finite sets {A, B,C} and {D, E, F'}. This gives indeed a reason to think of elements of infinite

sets as individuals by analogy with the finite case.

I shall call multiplicities having a cardinality weakly countable and require classes to be weakly
countable. Given this additional requirement for classes I shall call elements of given class
individuals. Thus my hypothesis is that weak countability implies (at least a weak form of) indi-
viduation. Equating the weak countability with having certain cardinality I take the most liberal
attitude possible intended to preserve the whole of Cantorian set theory. More constructively-
minded people might prefer to equate the weak countability with the usual countability, or even

to insist that infinite enumeration is impossible.

This hypothesis is in accord with Russell’s point that all classes are in a certain sense “de-
numerable”. Unlike Russell Bernays says nothing about enumeration of classes but proves for
sets his Numeration Theorem ( [18], p.138) which improves upon Cantor’s infinitary enumera-
tion in terms of formal rigor and states that every set has a certain cardinality. The theorem
doesn’t hold for proper classes. Nevertheless Bernays assumes that proper classes consist of well-
distinguishable elements, and that the extensionality property holds for proper classes. In my
view this assumption is ungrounded. Just like Russell in [212] Bernays apparently thinks that a
mere predication brings about some sort rudimentary enumeration. I don’t think that this view

is tenable.

Consider predicate human for example. The collective term humans unlike the term all presently
living humans is not associated with any particular group of people. The expression all humans
does not make much sense unless it is further specified (we cannot count all future generations).

Nevertheless we can speak about humans as a multiplicity. When we talk about sets in math-
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ematics the situation is not different. Multiplicities of all sets or of all singletons don’t deserve
the name of classes because such multiplicities have no definite cardinalities and hence there is
no reason to think of their elements as individuals. (Remind that according to Bernays every set

as an element of the class of all sets is an individual.)

Bernays disqualifies Russell’s aforementioned definition of cardinal numbers as classes of equiva-
lent sets because he wants to define cardinal numbers as sets. Hence the idea to identify cardinal
numbers with certain ordinals. This technical solution causes Benacerraf’s problem already men-
tioned: why we should call cardinal number one particular set of given cardinality rather than
another? Such a definition of cardinal number differs drastically from Frege’s and Russell’s earlier

proposals discussed in 5.3 above.

Thus my point is that weak countability required by classes shouldn’t be always taken for granted
and expected to be found everywhere in mathematics. As the phenomenon of “mathematical
doubles” suggests many mathematical objects might be accountable in terms of internal relations
(in particular internal equivalences) which don’t allow for considering these object as full-fledged
independent individuals. Moreover the unique multitask notion of individual (and hence the
unique notion of identity) should be likely given up in favor of various specific structures. Some

structures of this sort appear in the Intuitionistic mathematics as we shall now see.

5.10 Extension and Intension

Consider after Frege [59], [61] expressions “Morning Star” and “Evening Star”: they have dif-
ferent meanings but refer to the same object, namely to planet Venus. Now if we think about
Morning Star and Evening Star as predicates then the previous remark translates as follows: the
two predicates have different intensions but one and the same extension. For a simple math-
ematical example think of predicates Equilateral Triangle and Isogonal Triangle (meaning the
usual Euclidean figures). Clearly the two predicates have different intensions. However they
have the same extension: a given triangle is isogonal if and only if it is equilateral. Importantly,
this latter claim is not an immediate consequence of the two definitions but a theorem based
on some further geometrical assumptions (cf. Theorems 5, 6 of of the First Book of Euclid’s

Elements).

The intension/extension distinction has a long history that I shall not try to overview here.
However I shall make few remarks about the fate of this traditional distinction in the 20th

century logic. The most characteristic feature of logic developed during this period is its formal
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character described in 2.3 above. The formalization of logic in the beginning of the 20th century
in works of Frege, Russell and their followers put extension-related and intension-related logical

notions in very unequal positions. Fitting [56] describes the situation as follows:

In classical first-order logic intension plays no role. It is extensional by design since

primarily it evolved to model the reasoning needed in mathematics.

By classical first-order logic Fitting means, of course, the formal predicate logic of Frege and
Russell. The second sentence should be understood in the context of another remark of the

author, according to which

Mathematics is typically extensional throughout - we happily write “3 +2 =24 3”

even though the two terms involved may differ in meaning.

Thus since mathematics is extensional throughout and the modern (classical) logic is designed
to model the mathematical reasoning intension has no place in this logic. So when intension
shows up in a non-mathematical context the classical logic doesn’t help to account for it and as

a result the notion of intension appears to be problematic or even mysterious.

I agree with Fitting, of course, that Frege-Russell’s logic gives no place for intension but I don’t
quite agree with his explanation of this fact. First of all I cannot see that “mathematics is
extensional throughout”. The equality 3+ 2 = 2+ 3, as well as the above example of equilateral
and isogonal triangles, demonstrates, in my view, that the intension/extension distinction is
relevant to mathematics: expressions 3 + 2 and 2 + 3 have different meanings but refer to the
same object, namely to the number 5. So by writing “3 4+ 2 = 2 + 3” one does not necessarily
ignore the difference between meanings of the two terms. Similarly, the theorem according to
which a given triangle is equilateral if and only if it is isogonal does not involve and does not
require the ignorance of the fact that concepts of being equilateral and being isogonal are different
(in their intensions)! On the contrary, if being equilateral would simply mean being isogonal then
there were no theorem. Similarly, if the expression “Morning Star” would simply mean the same
thing as the expression “Evening Star” then the claim that Morning Star and Evening Star is one
and the same planet would be trivial while in fact it is not. Thus I cannot find any significant
difference between mathematical and real life examples in this respect. In my view the principle
reason why early systems of formal logic (like Frege-Russell logic) are purely extensional (in the

sense that they don’t treat intension explicitly) is rather the following.

In the real life ¥ some objects are used as signs, which refer to some other objects. This setting

9By the “real life” I understand here the domain of intended applications of logic. I assume that this domain
is sufficiently large to include usual linguistic examples as well as simple mathematical examples.
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is straightforwardly modeled by mathematical means with taking some mathematical objects to
be sings and some other mathematical objects to be referents of those signs. In this way one gets
both a formal syntar and formal semantics. Mathematics simply reflects in this case a broader
“real life” situation providing us with important epistemic and practical advantages similar to

those obtained through application of mathematics in natural sciences and technology.

Let us now see how intension can be taken into a formal account. A way to do this is to assume
after Frege that in addition to signs and their referents there exist such things as meanings and
then find an appropriate symbolic representation of meanings. Let Mp and Rp be the meaning
and the reference of a given predicate P. Symbolic expressions “Mp” and “Rp” stand for (i.e.,
refer to) some mathematical objects (Mp and Rp) which represent the meaning and the referent
of P correspondingly: these mathematical objects are specified by semantics of our logic. Remind

2

that the symbolic expressions “Mp” and “Rp” not only refer but also mean something. If, for
example, the meaning of P is represented by some specific function then the meaning of Mp
includes a definition of this function. The meaning of P and the meaning of Mp are, generally,

different.

Now observe that a purely extensional formal logic is natural in a sense, in which any intensional
logic construed along the above lines is not. While a purely extensional formal logic simply
reflects a broader “real life” context an intensional logic construed as above does not do this
because it maps real life meanings to mathematical objects (i.e., referents of certain concepts)
but not to mathematical meanings. In other words, an intensional logic so construed treats
intension by extensional means, and in a sense reduces the former to the latter. In my view this
lack of naturalness is a reason why in a formal mathematized setting the logical intension always

looks more problematic than the logical extension.

Although the above argument does not rule out the possibility of representing meanings by
certain mathematical objects (examples of intensional logics designed in this way are given in
[56]) it points to a general difficulty of this approach and suggests this obvious alternative:
to represent real life meanings directly by mathematical meanings rather then by mathematical
objects of some sort. The problem is, of course, that we don’t really know what is a mathematical
meaning: it appears to be no less elusive than the real life meaning. As we shall now see this
straightforward way of formalizing intension can nevertheless work with the price of a substantial

reconsideration of Frege’s meaning/reference distinction.

Frege (see [59], [61]) has introduced his distinction between meaning and reference trying to

clarify questions like this: Is the Morning Star the same thing as the Evening Star or not?
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Frege’s answer is roughly the following: as it stands the question is ambiguous and has no
definite answer; in order to get a yes-know answer one should specify whether one asks this
question about the meaning of “Morning Star” (resp. “Evening Star”) or about the reference
of “Morning Star” (resp. “Evening Star”). Thus the initial ambiguous question splits into two
questions each of which has a definite answer: (i) Do expressions “Morning Star” and “Evening
Star” have the same meaning? (No); (ii) Do expressions “Morning Star” and “Evening Star”
have the same referent? (Yes). Notice that this solution is in line with Frege’s idea that the
identity relation is unique and applies indiscriminately to meanings, referents and what not.
Now consider the following alternative solution. One agrees that the question “Is Morning Star
the same thing as Evening Star?” has no yes-no answer but instead of distinguishing between
meaning and referents one distinguishes between two different identity relations by saying that
there is a sense of identity in which Morning Star and Evening Star are the same and there is
another sense of identity (i.e., a different identity relation) in which Morning Star and Evening
Star are different. One wants to speak here about the identity of meaning (intensional identity)
and the identity of reference (extensional identity) without positing meanings and references as
separate entities. This sounds like Geach’s relative identity (5.6) but now I am talking about a
very different approach. In the next Section I show how this idea is realized formally in Martin-
Lof’s type theory. As we shall see this theory allows for representing intensional aspects of real

world examples by intensional mathematical notions.

5.11 Identity in the Intuitionistic Type Theory

The intuitionistic type theory with dependent types developed by Martin-Lof [183] involves two
kinds of identity relations 1°. First, we have here a notion of definitional equality of types (written
A = B) and of terms belonging to the same given type (x = y : A). Corresponding rules assure
that the definitional equality is an equivalence relation and that definitionally equal types and
terms are mutually interchangeable through substitution in the usual way. Second, we have here
a notion of propositional equality Id(z,y) that reads as a proposition saying that objects z,y
of type A are equal. This second kind of identity (equality) does not apply to types. It does not

apply to terms belonging to different types either.

10The standard version of this theory involves four different kinds of identity ([183], page 59). Following Awodey
and Warren [9], [7] I simplify the original account by deliberately confusing some syntactic and semantical aspects.
Then we are left with the following two forms of identity described above in the main text. The version of type
theory presented in [249] applies the definitional equality also to contexts. For simplicity I don’t consider the
type-theoretic notion of context in this paper. For a more recent exposition of Martin-Lo6f’s theory and discussion
of related philosophical issues see [79] and [229]
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If two terms x,y of given type A are definitionally equal they are interchangeable through sub-
stitution and hence also propositionally equal. If the converse is also the case (i.e. if any
propositionally equal terms are definitionally equal) the corresponding version of the theory is
called extensional; otherwise it is called intensional. In the extensional theory the difference
between the two kinds of identity is trivial: even if it can be formally maintained it is wholly
redundant from a pragmatic viewpoint. However in the intensional theory this difference turns

to be fruitful and mathematically non-trivial as we shall later see.

Frege’s logic accounts for forms of reasoning about things as they (supposedly) are without
accounting for how we come to know these things and without accounting (at least in the special
case of identity statements) for the justification of one’s claims. Martin-Lo6f’s constructive logic
in its turn is designed as an instrument of inquiry, which never appeals to an entity without
specifying explicitly the way, in which one comes to know this entity. The name constructive
refers here to the fundamental epistemic assumption behind this logic according to which the
best way to know a thing is to construct (or perhaps reconstruct) it. Since the Intuitionistic
Type theory is designed for dealing primarily with purely mathematical reasoning rather than
with reasoning in natural sciences, this epistemic assumption reduces to the maxim according to
which any mathematical object (that one may want to consider for purely mathematical or some
other purposes) must be explicitly constructed rather than simply found somewhere in Nature
or on the Platonic Heaven. However a similar constructive approach in natural sciences is well-
known too; it dates back at least to Kant’s First Critique [129] and has a continuing history
afterwards. For a version of the constructive approach in natural sciences, which is developed
against the background of the 20th century physics, I refer the reader to Fraassen’s doctrine
of Constructive Empiricism [57). Whether or not the Intuitionistic Type theory or some other
system of constructive logic can be indeed applied in physics and other sciences remains an open
question, which I shall not tackle here. Instead I present below an alternative informal analysis
of Frege’s Venus example, which shows that the non-standard notion of identity used in the

Intuitionistic Type theory makes good sense in the real life too.

Suppose that at certain point of history astronomers observe what they call the Morning Star
(MS) and the Evening Star (ES). Behind these two names there is, of course, a strong epistemic
assumption according to which every morning they observe one and the same object (M.S) and
every evening they observe another object (ES). In the following story I shall not try to make

explicit possible grounds of this assumption but simply take it granted.

So far our astronomers take MS and ES to be two different objects. Now suppose that they
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get a new evidence, which suggests that M S and ES are different appearances of one and the
same planet. It may be, for example, a data obtained from a new telescope. With these new
data in hand the astronomers develop a new theory, which accounts for the new and the old data
about M'S and ES and on this basis provides a theoretical ground for the statement that M S
is identical to ES. On this basis they make a new linguistic convention by replacing the older

names M S and ES by the new single name “Venus”.

In terms of Intuitionistic Type theory the above setting can be formalized rather straightfor-
wardly. First, one needs a type A (for “astronomy”) of observable brighting spots (“stars”) s;
on the sky and some notion of identity of such things, which allow one to identify a given star s
observed today with the same star observed yesterday. In spite of the fact that this identity is
epistemically non-trivial in the given context we take it to be definitional. Then for every pair of
stars s1, so we form another (dependent) type Ida(s1,s2) elements (terms) of which (if any) are
evidences (proofs) that s; and sg are identical. This latter notion of identity is propositional and
it should not be confused with the former (definitional) identity. When s;andsg are definition-
ally identical they are also propositionally identical: in this case the definitional identity s = so
plays the role of evidence (proof) of their propositional identity. However Id (s, s2 may be also
inhabited, i.e., s1, s can be propositionally identical, when they are not definitionally identical.
The Venus example is a case in point: although MS and ES are definitionally different they
are propositionally the same. Thus type Ida(MS, ES) must be inhabited by an independent
evidence like one obtained by our astronomers with the new telescope. For a further reference I

denote this evidence Ej.

We see how the distinction between the definitional identity and the propositional identity can
apply to a physically meaningful context. This is however is not yet the end of our story: higher

identity types of the Intuitionistic Type theory suggest the following development.

Suppose that another group of astronomers makes independent observations trying either to
confirm or to refute the claim of the first group that M.S and ES is the same planet Venus. This
other research group obtains evidence Fs, which in fact supports the claim of the first group.
Now the question is whether the second group has simply repeated the observations made by the
first group or obtained a genuinely new evidence supporting the claim. This latter question has
an epistemic impact on the claim of identity of M.S and ES and hence must be treated in the
same context: if the two evidences are independent this provides a stronger support to the claim.
The type Ids(MS, ES) of evidences (of identity of M.S and ES) is equipped with a definitional

identity of such evidences. However it may once again turn out that two evidences, which are
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definitionally different, turn to be propositionally the same. For that reason we form higher
type Idrq,(ms,es)(E1, E2) and see whether or not it is inhabited. If it is inhabited by several
(definitionally) different terms one may need to consider identity types of the third order, and
so on. In 6.9 I show that the complex structure, which arises in this way, may be described as a
groupoid of identities. Here I want to suggest that it better reflects the complexity of empirical

inquiry than Frege’s universal notion identity, which wholly ignores this complexity.

A Fregean may argue that what I discuss here is an epistemological issue (How we come to know
an identity statement?) which is not Frege’s problem. I don’t think that this claim is historically
correct. The following quote shows that epistemic concerns make part of Frege’s inquiry into the

notion of identity (equality):

Equality gives rise to challenging questions which are not altogether easy to answer.
Is it a relation? A relation between objects, or between names or signs of objects? In
my Begriffsschrift 1 assumed the latter. The reasons which seem to favor this are the
following: a = a and a = b are obviously statements of differing cognitive value; a = a
holds a priori and, according to Kant, is to be labeled analytic, while statements of
the form a = b often contain very valuable extensions of our knowledge and cannot
always be established a priori. The discovery that the rising sun is not new every
morning, but always the same, was one of the most fertile astronomical discoveries.
Even to-day the identification of a small planet or a comet is not always a matter of

course. ([61], 56)

I cannot see that Frege provides a satisfactory answer to this epistemic concern. His theory
of meaning and reference applies equally in the context where the meaning and the reference
are known and in the context where these things are merely assumed; it doesn’t reflect the
epistemic difference between the two situation. The multi-level type-theoretic propositional
identity considered above does this job by requiring an explicit proof of (or reason) why certain
things are equal and by making such proofs (reasons) into proper elements of the identity of the
given entity. The topological interpretation of this construction presented in 6.9 will allow for

an intuitive grasp of this construction.

The above discussion provides an insight onto this crucial question: In which sense if any the
concept of identity is fundamental? First of all we should admit that unless some identities are
fixed one cannot communicate (and arguably cannot even produce) any coherent thought. This
is clear because any language - no matter how “informal” and how metaphoric - requires a local

stability of certain phonetic, written, syntactic and (last but not least) semantic patterns. In
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order to use a language one needs to recognize and reproduce patterns of all these sorts. In any
natural language such a local stability is combined with a non-trivial global dynamics: languages
evolve in time and interact in space. Fixing semantic patterns requires fixing identities of entities,
which are not purely linguistic (like Sun, Morning Star and what not). The scientific discourse
demonstrates a similar contrast between the local stability and the global dynamics but in this
case the contrast is sharper: locally (say, in a given scientific publication) the meaning of terms is
fixed more rigidly than the meaning of words in the common speech while globally the scientific
language evolves more rapidly than the everyday language (since science itself evolves more
rapidly than more traditional human institutions like religion, family, etc.). Thus any reasonable
discourse and, in particular, any scientific discourse requires fixing some basic identities some of

which are linguistic and some of which are not.

These fixed identities must be locally stable in the following sense: once one assumes an identity
a = b one is forced to preserve it until the accomplishing of the given piece of reasoning. What
exactly counts as an accomplished piece of reasoning is a tricky question, which I shall not treat
here systematically. In the process of inquiry it often happens that one rejects certain earlier
made assumptions (for example, in the light of new evidences). Such revisions may be or be not
justified but in any event they are not regulated by rules of logical inference, which are supposed
to draw some consequences from given assumptions without changing these assumptions. In
this sense any logical reasoning is conservative: it preserves assumptions and reaches some new
conclusions. (I understand now “logic” in the usual sense, which does not include the dialectical
logic and similar non-conservative schemes.) Thus there is no way to assume a = b and then

argue that a and b are different: this would be a sheer contradiction.

This conservativity does not mean, however, that all identities are (locally) fixed “once and
for all”. Some identities may be not found among assumptions of the given reasoning but be
obtained as conclusions of this reasoning. In this respect identities, or more precisely propositions
expressing identities, behave just like all other propositions. Now we should take into account
that assumptions may play different roles in reasoning. Often one wants to chose as assumptions
some fundamental propositions, which may serve as grounds for some further conclusions but
cannot be themselves obtained as conclusions made on some “deeper” grounds (at least at the
given stage of knowledge). In this case the assumptions qualify as “first principles”. However in
other cases assumptions serve rather for bootstrapping one’s reasoning; in such cases they are
no more “fundamental” than conclusions (even if their logical role is not the same as the role

of conclusions). Definitional identities in the Intuitionistic Type theory seem to belong to this
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second category of assumptions. The fact that the Morning Star seen yesterday and the Morning
Star seen today is one and the same “star” is an assumption, which on the one hand, fixes a
linguistic convention, and on the other hand, identifies a continuing series of regularly observed
phenomena as the appearance of one and the same object (the Morning Star). Mutatis mutandis
this applies to the Evening Star too. The fact that we take the identities of the Morning Star
and of the Evening Star to be definitional reflects a stage of knowledge: this is where the given
reasoning begins; the reasons why one series of phenomena is made into the Morning Star and
the other series of phenomena is made into the Evening Star are left behind. Then one obtains
an evidence that the Morning Star and the Evening Star is one and the same planet Venus.
This latter identity in the given context qualifies as propositional. It reflects a further stage of
knowledge. Arguably it is more fundamental than the former definitional identities. (The true
reason why the Morning Star observed yesterday is the same thing as the Morning Star observed
today is the fact the Morning Star is Venus!). Notice that the progress of knowledge achieved
with the new propositional identity (M S = ES) is strictly conservative in the sense that it does
not require to revise the assumed definitional identities. (The discovery that M.S = ES does
not contradict the fact that MS observed yesterday and M S observed today is one and the
same object.) This allows one to incorporate the change of knowledge into an inferential logical

scheme.
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Chapter 6

Identity Through Change,
Category Theory and Homotopy

Theory

6.1 Relations versus Transformations

The replacement of the equivalence xEy by the identity = y discussed by Frege (5.5) allows
for an interpretation, which differs from Frege’s. Namely, equivalence E can be understood as
an invertible transformation (rather than relation), which turns z into y and vice versa; then the
identity = becomes the identity through this transformation. If E is the relation of Euclidean
congruence then the corresponding transformation is the (Euclidean) motion; thinking about E
as motion (rather than congruence) one says that y is the same object 2 but subject to translation
and/or rotation in the Euclidean space. Here x and y are said to be the same in the same sense
of “same” in which, for example, an adult yesterday and today is the same person. So we think
here geometrical figures in much the way we think of a substantial continuant - as an entity
capable changing its states and/or positions. Such a “substantialist” interpretation works also

for Frege’s example of parallel lines !.

The substantialist reinterpretation of mathematical relations may look like an exercise in old-

fashioned metaphysics but it appears surprisingly fruitful from the mathematical point of view.

IFor a more up-to-date account of the notion of substance and of identity through change see [251].
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For in mathematics the language of transformations is not formally equivalent to that of relations
as one might expect but is actually far richer. Given equivalence xEy there are, generally speak-
ing, many distinguishable transformations turning x into y while zFEy only says that one such
transformation exists. So here the underlying naive metaphysics matters mathematically. The
difference becomes particularly evident in the case of (global) invertible transformations of a given
geometrical space. In the language of relations the existence of such transformations amounts
only to the claim that a given space is equivalent to itself. But in fact such transformations
contain the most basic information about the corresponding space. This was first recognized by
Klein [134] when he formulated a new research program in geometry (known today as “Erlangen

Program”) as follows:

Given a manifold and a group of transformations on it one should investigate the
structures on the manifold with respect to those properties that respect the transfor-

mations of the group. ([134], p.7, my translation from German)

It is not the notion of a substantial form surviving through transformations that is the major
issue in the new framework for the study of geometrical structure proposed by Klein. Rather
there is something of a different sort, which also remain unchanged through the transformations.
That something is the structure(s) or forms of the transformations themselves. I refer to the fact
that invertible geometrical transformations like Euclidean motions form algebraic groups under
composition. This fact remains completely hidden from view when one uses the language of
relations. Thus the traditional metaphysics of substance and form fulfills a mathematical need
which the new Frege-Russell metaphysics does not - whatever might be said in favor of the latter

against the former for philosophical reasons.

Let me next specify some terminology, which will be useful for what follows. We have considered
three different ways of thinking of what is involved in operating with an (arbitrary) equivalence

relation xFy:

1. Extension: Consider equivalence classes formed of those things equivalent under the relation

E

2. Abstraction: Replace the relation xEy by identity = y, and read x,y anew as standing
for a (relational) property common to all and only members of the same equivalence class

under F

3. Substantivation: Think of the given relation as an invertible transformation of relata into

each other, and read F as identity through this transformation
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In the case of Humean relation H one may proceed from 1) to 3) through the following steps.

Given certain class of classes z,y, .. equivalent by H

e think of the one-one correspondences between elements of given classes x,y as invertible

transformations (isomorphisms) f,g... turning elements of z into elements of y and con-

versely (the invertibility implies that different elements of « turn into different elements of

y and vice versa);

e think of z, y as different states of the same underlying substratum X, and think of (auto)morphisms

f,9g,... as changes of X;

e similarly identify all classes equivalent to z and y with X.

A non-trivial fact, which makes mathematical sense of this metaphysical exercise, is that the

automorphisms of X form a group called its permutation group or symmetric group. To see

better what we gain and what we might lose in switching from relations to transformations

consider the following table:

Extensional reading

Substantional reading

Write  ~ y for “class x is equivalent (isomorphic)

to class y”

Write f : X — X or simply f for an isomorphism

from a class X to itself (automorphism)

~ is an equivalence relation.

Automorphisms of X form a group.

~ is transitive, i.e., z ~ y and y ~ z implies = ~ z.

Given automorphisms f, g there exists a unique au-
tomorphism fg resulting from the application of g

after f.

~ is reflexive, i.e., every class z is isomorphic to itself:

T~ T.

There exist an identity automorphism 1 such that for

any automorphism f we have 1f = f1 = f.

~ is symmetric, i.e., if x ~ y then y ~ x.

every atomorphism f has an inverse f~! such that

frt ==

Let me now comment on each raw of this table separately.

Raw 1

Classes x,y from the left column are identified in the right column through Frege’s abstraction

and denoted by the same symbol “X”. Notice that  ~ y is a proposition but f: X — X is a

(mathematical) object, namely a particular morphism (function). Proposition x ~ y says that

there exists an isomorphism between x and y, while f is such an isomorphism. It is helpful to

forget for the moment about the abstraction and think of f as an isomorphism of the form z — .
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Then the translation from the left to the right cell of this raw can be described as an instantiation:
while the left cell tells us that an isomorphism of certain form exists the right cell points to such
an isomorphism. When x and y are identified through abstraction f turns into an automorphism
of the form X — X. The instantiation of a given concept provides a concrete instance (concrete
object) that falls under this given concept. This shows that translation from the left to the right
column involves a double conceptual transformation, namely, it involves concretization (of the

notion of isomorphism) along with abstraction (over given isomorphic classes).

Given an object of certain type one may always claim that an object of this type exists (in
some appropriate sense of “exists” - we are now talking about the existence of mathematical
objects and the present argument does not depend on any particular theory of mathematical
existence). But one may be also in a position to describe further properties of the given object,
including those properties, which this given object does not share with all other objects of the
same type. In other words a given object may also have some detectable specific properties.
As we shall briefly see this is a case in point: the language of transformations allows one not
only to claim that certain isomorphisms exist but also to describe specific properties of such
isomorphisms. This shows that the right cell contains some information, which is not found the
left cell. However if z ~ y does not hold we still have a proposition, which tells us something
useful. Such information cannot be provided by means used in the right column: given no
authomorphism of the appropriate type one has nothing to talk about here (unless one brings
into consideration some further relevant objects like morphisms of more general sorts). This
shows that translation between the language of relations and the language of morphisms is not

wholly transparent in either direction.

Raw 2

As the following comments make clear there is an interesting conceptual link between the notion
of equivalence relation, on the one hand, and the notion of (algebraic) group, on the other
hand. In order to show this I take the standard definition of equivalence relation (as transitive,
reflexive and symmetric relation) and compare this definition with a category-theoretic (rather
than standard set-theoretic) definition of group as a group of transformations. The following

three raws of the table establish a piecewise correspondence between the two definitions.

Raw 3
In order to see more precisely how works the translation from the left to the right cell it is once
again helpful to begin with the instantiation. In the left cell we have £ ~ y and y ~ z; by

instantiation we get f : £ — y and g : y — z correspondingly. By the transitivity property
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we also have x ~ z (in the left cell), which by instantiation gives us fg : * — z (in the right
cell). Now identifying x,y, z through abstraction we get the situation presented in the right cell.
Observe however that the transitivity property of ~ does not reflect the fact that composition

fg is uniquely defined by f and g.

Raw 4

The reflexivity property of relation = amounts to the fact that for any given class z admits at
least one automorphism. Generally, classes admit many authomorphisms. While every element
of any given abstract class x is indiscernible from any other element of the same class, if any, (in
the sense that the concept of class doesn’t assume that every element of class has some particular
properties, which may allow one to distinguish this given element of the given class from another
element of the same class) automorphisms A, of a given class x are not all alike (except the
trivial case when family {4;} consists of a single element; notice that by reflexivity of relation ~
family {A;} cannot be empty). For {4;} contains a distinguished automrphism called identity
automorphism, which sends every element of x into itself (but not only z to itself). Other
automorphisms of x permute its elements and so don’t have this property. The same property
of the identity authomorphism can be described in terms of composition as this is shown in the

right cell; this definition implies that the identity automorphism is indeed unique.

Proposition 2 ~ x in the left cell tells us that the family {4;} of automorphisms of class z is
not empty. The right cell provides a concrete instance of such automorphism, namely 1. This
concrete instance has a specific property (namely, the property of being identity automorphism),
which automorphisms of a given class do not have in general. This specific property is not
chosen arbitrary because every class has the identity automorphism but not not every class has
automorphisms of other sorts (the empty class and the class consisting of a single element do
not). Thus, once again, one can observe that the right cell contains more information than
the left: while the left cell tells us only that every class admits an automorphism the right cell

specifies that every class admits an automorphism with a specific property.

Let’s now see how abstraction works in this case. Given a family {z;} of isomorphic classes it
is easy too check that families of automorphisms {A;} corresponding to these classes are also
isomorphic in the sense that there exists a one-to-one correspondence between members of {4;}
and {A;}. However this notion of isomorphism turns to be too weak to make good mathematical
sense in this latter case. When isomorphic classes x;,z; are identified through abstraction it
doesn’t matter which element of x; is identified with which elements of x;. In other words, such

an identification can be made through any one-to-one correspondence between the elements of
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the two classes. This is because elements of a given class are indiscernible in the sense that the
concept of class doesn’t assume that an element of class has some specific properties, which may
allow one to distinguish this given element from any other element of the given class. However
each family A; contains a distinguished automorphism id; called identity automorphism, which
sends every element of z; into itself. Otherwise this distinguished automorphism can be defined
in terms of composition (without referring to elements) as this is shown in the right cell and called
the unit (of the given group of automorphisms). If families A; and A; are identified merely as
classes through some arbitrary one-to-one correspondence between their elements the difference
between identity automorphisms and other automorphisms is ignored, so what we get is again an
abstract class rather than an abstract family of automorphisms. To prevent this it is necessary
to identify the identity ¢d; of the first family with the identity id; of the second family rather
than with any other member of this latter family. Unless an one-to-one correspondence between
members of {A;} and {A;} has the specific property just mentioned it hardly deserves to be
called isomorphism and cannot be used for an appropriate abstraction. This property (avoiding
confusion of identity automorphisms with other automorphisms) is necessary but not sufficient
for formulating the new notion of isomorphism. What one needs here is, of course, the notion
of group isomorphism defined in 8.5 below. Automorphisms of a given class is not just another

class or a family but a group in the sense explained in the right column of the table.

Raw 5

The symmetry property of relation ~ described in the left cell consists of the following: given
an isomorphism of the form = — y there exists an isomorphism of the form y — x. The
notion of inverse automorphism not only provides an instance of isomorphism of the latter form
(modulo the identification of x,y through abstraction) but also describes a specific property of

this isomorphism.

Does the approach outlined above provide any viable alternative to Frege’s project of settling
the question of identity in mathematics by external logical means? Prima facie it seems that the
notion of identity through change (transformation) invoked here remains completely informal
and not likely to be helpful in avoiding paradoxes mentioned in 5.1. However I claim we have
here a new formal concept of identity as the unity of a group of transformations. This group-
theoretic notion of identity meshes well with the metaphysical intuition that any changing entity
contains a core invariant through changes. Merging equivalence classes x,y, .. into one “class-
substance” X indiscriminately, we recover a notion of identity as a particular transformation

(and one unique for a given group) which we may speculate is connected with the notion of
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[13)

repetition. Here the notion of “repetition of the same” is thought of as giving meaning to the
notion of ”the same” rather than the other way round (cf. [39]). This group-theoretic identity is
obviously relative in Geach’s sense: objects can be identical up to a transformation of one type
but different up to a transformation of a different type (5.6). It is not immediately clear whether
this group-theoretic identity has anything to do with the logical notion of identity, which was

Frege’s concern. But at least we get a well-defined identity concept here, and one which makes

the metaphysical intuitions behind it precise.

There are at least three objections, which can be brought against the suggestion that we should
take this group-theoretic notion of identity as a serious candidate for the philosophical explication

of the notion of identity either inside or outside mathematics.

1. The logical (and metaphysical) notion of identity should apply to the widest possible do-
main of entities, so one can say which things in a given domain are the same and which

differ. But group-theoretic identity is relevant to a single object, namely its group.

2. Group-theoretic identity 1 does not allow us to form propositions like A = B “A is
identical to B”. Generally, the group-theoretic identity 1g like any other element of a
given group G is a particular mathematical object while identity is a basic logical concept.
In the group theory like elsewhere in mathematics the role of logical identity is played
by mathematical equality =. For the sake of the argument we can now ignore subtle
differences between the logical identity and mathematical equality discussed in the last
Chapter. Anyway 1g and = have little if anything in common except the common name
and some vague metaphysical intuitions behind it. For theoretical reason we need to
distinguish the two things sharply and reflect the distinction in the terminology rather

then allow ourselves to be led by confusing terms and the vague metaphysics.

3. In particular the group-theoretic identity 1 like any mathematical object needs certain
identity conditions. These identity conditions matter essentially, for example, when one
proves the uniqueness of the identity of a given group. Proposition “there exist 14 such that
for any f € G we have 1¢f = flg = f"” takes the logical identity (equality) = for granted.
Hence one needs a prior logical notion of identity to cope with the group-theoretic notion
of identity, so no way the latter can be a candidate for the normalization or mathematical

explication of the more general notion.

In what follows we will see that these problems can be partly fixed through generalizing the

concept of group up to that of category.
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6.2 How To Think Circle

Arguably the best way to explain what is circle is to show one:

Fig. 6.1

However this wouldn’t work for one who tries to grasp the notion of circle from scratch because
the above circle has some specific features (like its size and its position on this book’s page),
which other circles may not have; so a beginner cannot possibly learn from this or any other single
example which features of the given picture are generic and must be taken into consideration
when one thinks and talks of circles, and which in the given context are superficial and thus must
be ignored. The above picture alone doesn’t allow one to see it as circle unless one is already
familiar with the concept of circle, i.e., already knows how circles look like. Only when a learner
is shown multiple figures and told which of them do qualify as circles (in spite of differences
in size, color, position, etc.) and which do not qualify as such (in spite of some resemblance
with circles like in the case of ovals) he may learn how correctly identify circles among figures of

different shapes.

The above story about learning the concept of circle reveals the following important feature of
this and other similar concepts. Every particular circle represents the concept of circle just as
well as any other particular circle; there is no sense in which a given circle ¢; is a better or
worse circle than another given circle cs: as circles ¢; and co are strictly equivalent. Yet it is an
essential feature of circles that such things are many and so this feature is an essential element
of the circle concept. It is equally essential that circles belong to a broader genus of things

like a geometrical figure and that this broader genus contains things of other types like ovals,
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etc2.

What are general concepts and what are their particular instances and how concepts relate to
their instances is a question that has been discussed in philosophy throughout it history at least
since Plato’s times. The modern distinction between types and tokens as well as the modern
Fregean notion of abstraction (as the identification of members of equivalence classes modulo
some equivalence relation) discussed in the last Chapter are rather traditional in this respect
even if they come with some modern symbolic techniques. My purpose of mentioning here this
very general issue is to point to a relatively new way of tackling it, which originates from the

19th century geometry.

Informally the idea is the following. Given two arbitrary items c¢; and ce, which are supposed
to instantiate the same concept C' (think about circles) consider transformations of the form f :
¢1 — ¢o (which may be or be not invertible). Then by specifying a type T of such transformations
and by choosing a single generic instance ¢* one may describe the whole extension F¢ of concept
C by saying that it consists of those and only those items, which are obtainable from c¢* through
some transformation of type T. (Notice that if these transformations are all invertible then E¢x
can be similarly obtained from any its element, i.e., every element of E¢ turns to be generic.
Otherwise this, generally, is not the case.) For example, it may be specified that by moving a
given circle and scaling it (changing its size without changing the shape) one always obtains a
circle while transformations of other sorts turn a circle into something else. Such a description
(appropriately improved) is sufficient for understanding what is circle in general and thus it fairly

presents the general concept of circle?.

One may object that the suggested way of thinking about the concept of circle through trans-
formations is not independent because it requires the specification of an appropriate type of
transformations: thinking about circles as generated by a generic circle through appropriate
transformations one no longer needs the circle-type but still needs a transformation-type. This
is a faire point but there are in fact ways to tackle the problem. First, transformations can
be specified in terms of composition with other transformations, see 6.1 above. So the notion

of composition of transformation provides means for distinguishing some transformations from

2In Plato’s view the distinction between better and worse “copies” of the generic “ideal circle” makes sense.
However I assume here that at least among mathematical circles no similar distinction can be made: every
mathematical circle is a circle, period.

3Since motions and scalings are invertible any circle is generic. In order to see how this condition may brake
assume a convention according to which a point counts as circle (of zero radius) and scaling (in the more liberal
sense of the term than above) allows for shrinking a circle (of a non-zero radius) into a point. Such conventions
are abundant in mathematics and there is nothing wrong with them. However it is clear that a zero-radius circle
(point) is not generic because scaling (liberally understood) and moving of a point always brings back a point,
and so no circle with a positive radius can be obtained from a point through these transformations.
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some others. Second, one may think about types of transformations again in terms of transfor-
mation (of the second level). Consider transformation f : ¢; — ¢z taking one circle into another
and another transformation g : ¢; — co of the same type. Then consider a second-level trans-
formation « : f — g which takes f into g. Geometrically f and g can be thought as paths in a
geometrical space (for simplicity consider the case when f and g are motions); then « is a trans-
formation of one path into another. Then one may specify an appropriate type for second-level
transformations, point to a generic first-level transformation f* (or a number of such generic
transformations) and finally describe first-level transformations as those transformations, which
are obtained from f* through second-level transformations of the appropriate type. A similar
procedure can be applied to second-level transformations. The fact that we get here an infi-
nite regress from a mathematical viewpoint doesn’t make the whole procedure pointless: one
may think of an infinite structure involving transformations of n-th without assuming that n
is bounded. In 6.9 I describe a mathematical structure, which realizes this idea in a precise

form.

Let me now come back to the problem of identity. When an entity undergoes a transformation
it always remains unclear (at least at the linguistic level) whether this transformation produces
a new different entity or only a different state of the same entity. This gives rise to paradoxes
about identity similar to those mentioned in 5.1. As I have already stressed in 5.1 in mathe-
matics such ambiguities about identity are also ubiquitous. Instead of trying to fix this problem
by imposing some external logical regimentation I shall rather explore the possibility of using
transformations themselves for it. An identity transformation, which leaves a transformed object
as it is without producing any change in it may be thought of as an auxiliary formal notion like
zero or empty set. However one may also tentatively think of it as a means, which determines
the identity of its object. More generally one may try to use transformations (in some mathe-
matically refined sense of the term) for controlling identity. Think again about circles. As far
as we are talking about Euclidean circles living on Euclidean plane there is a natural criterion
of identity (leaving now aside the problem of coinciding figures stressed in 5.1), which in terms
of transformations can be described as follows: rotations of a given circle about its center and
the identity transformation count as self-transformations while all other available transforma-
tions (always of type T') transform the given circle into another circle. If one now manages
to distinguish identity transformations and appropriate rotations from other transformations of
type T without using identity conditions for circles established otherwise then such a distinction

between different kinds of transformations may serve for introducing such identity conditions
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independently. Let me now bring into discussion some more mathematics and see whether this

project is viable.

6.3 Categorification

Circles together with their mutual transformations give us a toy example of a category in the

sense of Chapter 4, i.e., in the general mathematical sense of the term.
Generally, a category comprises:
e Class of its objects A, B,C, ...;

e For each ordered pair of objects A, B class of morphisms f: A— B,g: A — B,..; given
f:A— B, Ais called domain of f and B is called codomain of f;

e Composition fg of morphisms f, g such that the codomain of f equals the domain of g (see

the diagram below); the composition is associative : h(gf) = (hg)f = hgf;

e Identity morphisms 14 associated with each object A and defined by the following condition
: for all morphisms f,g, 14 = f and gla = g (provided the compositions 14f and glu

exist).

When in a categorical diagram any arrow A — C' equals to any other arrow between objects A
and C' obtained through composition of other arrows shown at this diagram the diagram is said

to be commutative. For example, saying this triangle

7 X

A h

C

is commutative is simply tantamount to saying that fg = h. Morphisms resulting from compo-
sition of shown morphisms can be omitted at a commutative diagram when this doesn’t lead to

an ambiguity. For example, saying this square

A—21s

B
f Ti
D

C h

is commutative is tantamount to saying that fg = hi.
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Now the above construction with circles can be described as category C' where objects are
circles and morphisms are mutual transformations of circles (motions and scalings) some of
which transform a given circle into itself while some other transform a given circle into another
circle. Composition of such transformations understood in the usual way obviously satisfies the
conditions mentioned in the above definition of the notion of category. Notice that our category of
circles C' has the following additional property not assumed in the general definition of category :
all its morphisms (transformations) are invertible . The invertibility (aka reversibility) is a basic
property of all usual geometrical transformations (like motion or scale transformation) in virtue

of which such transformations form groups.

In the category-theoretic terms just introduced the invertibility of transformation (morphism)
f: A — B amounts to existence of transformation (morphism) g : B — A (called the inverse of
f) such that fg =14 and gf = 1. In category theory this property is taken as the definition
of isomorphism, so isomorphisms are invertible morphisms by definition. A category like C' such
that all its morphisms are isomorphisms is called groupoid. Thinking of objects of a groupoid
“up to isomorphism” one gets a group. (So group is a category with only one object such that
all its morphisms are isomorphisms.) However such identification causes a lost of information,
namely the lost of distinction between morphisms of objects to themselves (automorphisms) and
morphisms of objects to other objects. Thus groupoids provide an important counter-example
against the widespread belief according to which in categories all isomorphic objects can be

always viewed as identical.

The full strength of the notion of category is revealed through the case when morphisms between
objects are not all invertible, that is, are not all isomorphisms. A basic example is the category
of sets having sets as objects and functions between sets as morphisms (see 4.1 above). Fur-
ther examples are obtained through equipping sets with various structures like group structure
or topological structure. Then morphisms are required to “preserve” or “respect” the corre-
sponding structure: so in the category of groups morphisms are homomorphisms of groups, and
in the category of topological spaces morphisms are continuous transformations. (The precise
definitions are given below in 8.5 where the idea of “preservation of structure” is critically re-
considered.) Using these common examples one should not forget that categories of structured
sets don’t cover all categories of interest as shows the example of Grothendieck topos from 4.9.
Our circle category C' also belongs to this latter sort (unless a circle is construed as a structured

set of its points).

Thus the upgrade of the notion of group up to that of category involves two independent
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steps:
1. introduction of multiple identities (multiple objects) instead of unique identity (unique
object);
2. allowing for non-invertible morphisms.
This upgrade can be shown with the following diagram *:

Groups Groupoids

Y

”~
Monoids Categories

Examples of categories given so far are concrete categories. This means that objects of such
categories are specified in advance (usually this means that they are construed a la Bourbaki as
structured sets), so a category could be seen as a structure over and above given class of its specific
objects. However category theory allows for a different approach: starting with the general notion
of category one specifies its algebraic properties to the effect that the structure of morphisms
between objects and their compositions determines properties of these objects. The specification
of given abstract category amounts to the requirement that certain morphisms exist and certain
diagrams commute. As it has been already explained in 4.1 a properly specified abstract category
“turns into” the category of sets [146] in the sense analogous to that, in which logical variables

in axiomatic systems like ZF turn into sets under its intended interpretation.

At the early stage of category theory people often opposed categorical foundations of set theory to
the standard foundations as “external” approach to “internal”. The idea is that while in the case
of standard foundations sets are reconstructed though their elements, that is, “from inside”, in
categorical foundations sets are taken as black boxes interacting through morphisms (functions),
so what sets are is ultimately determined in “sociological” terms of their mutual behavior. This

is a right point as far as it concerns basic intuitions about sets but from the formal point of view

4In the standard set-theoretical setting monoid is defined as set M provided with a binary operation ® and
unit (identity element) 1. The existence of inverse elements is not required.
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such intuitions are not essential. The relation of membership x € y taken as basic in ZF and its
likes can be read in both senses - from the left to the right and from the right to the left - and
this makes no formal difference (although the intuition behind the extensionality axiom makes
the former “internal” reading preferable). At the same time it is not correct that the categorical
approach doesn’t allow one to “look inside an object”: in particular the relation of membership
can be perfectly reconstructed by categorical means. In both cases objects of given theory (in
particular sets) are first taken as abstract individuals and then “interactions” between the objects
tell us “what these objects are”. A real difference between the two approaches (and this is my
second remark) concerns how exactly these “interactions” are accounted mathematically. In
the standard axiomatic approach they are interpreted as relations, and relations in their turn
are formalized as predicates (like the two-place predicate €). In the categorical approach the

“interactions” are accounted for as morphisms (transformations) °.

Since categories represent concepts in a specific way the mathematical use of the term “cat-
egory” is after all not in odd with how this term has been used throughout the history of

philosophy.

6.4 Are Identity Morphisms Logical?

In the last Chapter we considered the complicated interplay between the “usual” mathematical
equality and the “usual” (Fregean) logical identity. Then in 6.1 we introduced into the play
the notion of identity transformation (as the unit of a group of transformations) and finally in
6.3 generalized this latter notion up to that of identity morphism in a category. In 6.1 we
also suggested that the notion of iden