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Abstract

In this note, I briefly review Lyre’s (2008) analysis and interpretation of the

Higgs mechanism. Contrary to Lyre, I maintain that, on the proper under-

standing of the term, the Higgs mechanism refers to a physical process in the

course of which gauge bosons acquire a mass. Since also Lyre’s worries about

imaginary masses can be dismissed, a realistic interpretation of the Higgs mech-

anism seems viable. While it may remain an open empirical question whether

the Higgs mechanism did actually occur in the early history of the universe and

what the details of the mechanism are, I claim that the term can certainly refer

to a physical process.
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1 Does the Higgs mechanism exist?

“Does the Higgs mechanism exist?” asks Lyre (2008), and comes to the conclu-

sion that “it certainly does not describe any dynamical process in the world”

(p. 130). He examines “the technical derivation” (p. 119) and finds that “the

whole story about the ‘mechanism’ is just a story about ways of representing

the theory and fixing the gauge” (p. 130). I disagree, and argue that Lyre’s

conclusions are based on an inadequate understanding of the concept. While

it may remain an open empirical question whether the Higgs mechanism did

actually occur in the early history of the universe and what the details of the

mechanism are, I claim that the concept can certainly refer to a physical pro-

cess. I present the Higgs mechanism in a way that emphasizes that it is not

only about “reshuffling degrees of freedom” (p. 119) but about the transition

between two distinct physical systems.

That the Higgs mechanism is only about “reshuffling degrees of freedom” is

Lyre’s first of “three observations” which make him particularly skeptical about

its reality (p. 125–126). The second observation reminds the reader that every
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Lagrangian which is involved in the description of the Higgs mechanism is, as a

matter of fact, invariant under the gauge transformations; only the individual

ground states of the system are not. Therefore, Lyre recommends not to speak

of a broken symmetry but rather of a hidden symmetry. In several respects, this

point about terminology (which also other authors have made) is well taken, and

I will not discuss it in the remainder of this article.

I will, however, touch on Lyre’s third observation which states that “[one of

the Lagrangians] does not allow for any quick, literal interpretation, since here

we are facing the obscure case of a φ-field with imaginary mass µ” (p. 126).

I will briefly describe why and under what conditions one can “read off” the

mass of the particles described by a Lagrangian from one of its coefficients.

The Lagrangian which, for Lyre, suggests an imaginary mass does not meet the

necessary conditions, and I agree with Lyre that, therefore, the “quick, literal

interpretation” cannot be applied. However, this does not mean that the mass

which would result from a correct calculation using this Lagrangian would be

imaginary.

2 Scalar electrodynamics

For the present purposes of reviewing Lyre’s analysis concerning the ontology

of the Higgs mechanism, I will not go into the details of the complete model

of spontaneous symmetry breaking of the electroweak interaction. The sim-

pler model of the electrodynamics of charged spinless particles also exhibits the

relevant features. I, like Lyre for the main part of his analysis, will therefore

restrict myself to this model. For the following exposition of this model, I use

the lecture notes by Wiese (2010, chapter 2) as my basis; Peskin and Schroeder

(1995, pp. 690–692), for instance, give a similar exposition.

The simplest version of the model is one in which the particles are free.
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The model contains a complex scalar field Φ = Φ1 + iΦ2, Φ1,Φ2 ∈ R and the

dynamics of this field and its quanta are described by the Lagrangian

L =
1

2
∂µΦ∗∂µΦ− V (Φ), (1)

where

V (Φ) =
m2

2
|Φ|2. (2)

From the Lagrangian of this most simple of systems we can derive the corre-

sponding Euler–Lagrange equations

∂µ
δL

δ(∂µΦi)
− δL
δΦi

= 0 i = 1, 2, (3)

which coincide, in this case, with the familiar Klein–Gordon equations for two

free, spinless, charged fields with quanta of mass m:

∂µ∂
µΦi +m2Φi = 0. (4)

In the next complex version of the model, the scalar particles interact directly

among themselves. The interaction is described by a power of 4 in the field’s

absolute value which is added to the potential V such that it now reads

V (Φ) =
m2

2
|Φ|2 +

λ

4!
|Φ|4, (5)

see, for instance, Peskin and Schroeder (1995, pp. 348–350). The parameter λ

measures the strength of the interaction and the factor 4! is introduced for con-

venience in the perturbative solution of the dynamical equations of the model.

For the model to be interpretable physically, the potential V must be bounded

from below. Otherwise the energy spectrum would also not be bounded from
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below and, accordingly, there would be no ground state of the system, which

clearly cannot be the case for any real system. For the purely quadratic poten-

tial of equation 2 there is thus no other choice than m2 > 0. For the potential

describing the self-interaction of the field Φ (see equation 5), however, m2 < 0

is possible also.

3 Spontaneous breakdown of a global symmetry

The model defined by equations 1 and 2 is globally symmetric with respect

to U(1) transformations Φ′ = eiqφΦ, where φ ∈ R is the parameter of the

transformation and the factor q is introduced for more convenient identification

of the charge of the particles. With m2 > 0, the Lagrangian from equation 1

and 5 describes a system of particles of approximately the mass m. The mass of

the particles is, in this version of the model, not exactly equal to m because of

the interactions among the particles. A more precise treatment of the mass has

to employ renormalization techniques, which, however, are not relevant for the

present discussion. However, this reminds us that the coefficient of the quadratic

term in the Lagrangian is equal to (half the square of) the mass of the particles

only as long as the potential is approximately quadratic (like equation 2 or, more

generally, like the potential of a harmonic oscillator). Only then do the Euler-

Lagrange equations approximately coincide with the Klein–Gordon equation,

on which our identification of the coefficient with the mass of the particle was

based, see Section 2.

For m2 < 0, the global U(1) symmetry of the model is spontaneously broken.

This means that the symmetry of the Lagrangian is still intact but the field

configurations which lead to a minimal value of V are not invariant under the

U(1) transformations any longer. Before, in the case of m2 > 0, the field

configuration with minimal V was simply Φ = 0. Now, with m2 < 0, there is no
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unique configuration which minimizes V . A whole class of field configurations,

Φ =

√
−6m2

λ
eiχ, (6)

yield a minimum value for V . χ is the real parameter which characterizes a

particular member of the class. For convenience, I will abbreviate
√
− 6m2

λ by

v such that the minimal configurations read veiχ.

In order to estimate the masses of the quanta of the interacting fields from

the coefficients in the Lagrangian, we have to restrict ourselves to only small

fluctuations around the field configurations for which the potential V is at its

minimal value, in other words, we have to perform a series expansion of the

Lagrangian around one of the points of minimal value of V . Only then can

we approximately equate the actual potential of equation 5 with the potential

of equation 2, which is more readily interpretable in terms of a Klein–Gordon

equation as discussed in Section 2. Because the Lagrangian is invariant under

(global) U(1) transformations, our results will not depend on which particu-

lar member of the class of minimal configurations we choose for our expansion

around it. A choice in which the expansion takes a particularly simple form is

Φ0 = v, that is we set χ = 0. We can expand around that particular configu-

ration of minimal V by substituting v + σ(x) + iπ(x) for Φ(x), where σ(x) and

π(x) are two real fields of which we only consider the infinitesimal excitations.

In terms of the newly introduced σ and π fields the Lagrangian takes the form

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ∂

µπ − 1

2
(−2m2)σ2 + . . . , (7)

where I left out higher order terms in the fields, which can be neglected for the

present purposes. This form of the Lagrangian, valid for small absolute values

of σ and π, allows us to read-off the approximate masses of the quanta of this
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system of self-interacting fields: zero for the quanta of the π field,
√
−2m2 for

the quanta of the σ field.1

We now also see that Lyre’s worries, based on his “third observation” (Lyre,

2008, p. 126), about the imaginary mass that would result from the identification

of the coefficient of |Φ|2 as (half the square of) the particles’ mass are unjustified.

The identification can only be made if small fluctuations are considered of a field

configuration for which V takes its minimal value. This is not the case for the

Lagrangian which we get from equations 1 and 5 with m2 < 0. The fact that

the parameter m2 is negative in that Lagrangian does, therefore, not mean that

the quanta described by it have imaginary mass.

4 Spontaneous breakdown of a local symmetry

For reasons not to be discussed here, one prefers models which exhibit even a

local symmetry, instead of a merely global one. In order to promote the global

U(1) symmetry, discussed above, to a local symmetry, one has to introduce a

gauge field and a covariant derivative. The gauge field will eventually describe

an interaction between the fields whereas, in the case of the global symmetry,

the interaction between the particles was direct and immediate.

The Lagrangian that describes a locally symmetric model of spinless charged

particles which interact through a gauge field is

L =
1

2
(DµΦ)∗DµΦ− V (Φ)− 1

4
FµνF

µν , (8)

where Dµ = ∂µ − iqAµ is the covariant derivative, Aµ the gauge field, q the

strength of the coupling of the scalar field to the gauge field (in other words:

the charge of the scalar field) and Fµν = ∂µAν − ∂νAµ the field strength tensor

1Remember m2 < 0. Therefore, −2m2 > 0 and
√
−2m2 positive and real.
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associated with the gauge field. The combination − 1
4FµνF

µν describes the

kinetic energy of the gauge field. For the purposes of our simplified model of

the electroweak interactions, Aµ is the electromagnetic field and its quanta the

photons. V (Φ) reads, as in the case of global symmetry, m2

2 |Φ|
2 + λ

4! |Φ|
4.

As in the case of global symmetry, the Lagrangian describes either the sym-

metric phase (if m2 > 0) or the broken phase (if m2 < 0). In the symmetric

phase, the field configuration which minimizes V is again just Φ = 0. The

masses are approximately given by the coefficients of the quadratic terms in

the Lagrangian. There are two fields, Φ1 and Φ2, which both have quanta of

mass m. Because there is no quadratic term of the gauge field, its quanta (the

photons) are massless.

In the broken phase, i. e. when m2 < 0, we have to do again the series

expansion around one of the field configurations which minimize V , i. e. around

veiχ for some χ ∈ R. Again, since the Lagrangian is U(1) symmetric, we can

set χ = 0 and perform the expansion around Φ0 = v and substitute Φ(x) by

v + σ(x) + iπ(x). However, now the Lagrangian is even invariant under local

U(1) transformations, and the difference between v+σ(x) and v+σ(x) + iπ(x)

is, in a first order approximation, just such a local U(1) transformation, albeit

an infinitesimal one: eiπ(x)/v ≈ 1+iπ(x)/v. Therefore, because of the symmetry

of the Lagrangian, any conclusion we draw from the Lagrangian will not depend

on this difference, and we can set π(x) = 0 and substitute Φ(x) just by v+σ(x).

Apart from higher order terms, we then obtain

L =
1

2
∂µσ∂

µσ − 1

2
(−2m2)σ2 +

1

2
q2v2AµA

µ − 1

4
FµνF

µν + . . . (9)

In this form, we see that the Lagrangian describes massive quanta of the σ

field and massive quanta of the gauge field. This is indicated by the quadratic

terms in these fields; the other terms describe the kinetic energy of the fields.
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global local

symmetric mσ = mπ = m mπ = mσ = m, mA = 0

↓∗

broken mσ =
√

2|m|, mπ = 0 mσ =
√

2|m|, mA = qv

Table 1: Approximate masses of the quanta which exist in the symmetric or
broken model of interacting spinless charged particles, in the case of global or
local symmetry. “mA” denotes the masses of the quanta of the gauge field, the
photons. The transition, denoted by the starred arrow, from the symmetric to
the broken phase, in the case of the local symmetry, is the Higgs mechanism.

Contrary to the case of the spontaneous breakdown of the global symmetry, we

see that here, in the case of local symmetry, we have a massive photon instead

of a massless Goldstone boson. Compared to the locally symmetric phase, the

difference is that we have a massive, instead of massless, photon and only one

massive scalar field, instead of two, see table 1.

5 The Higgs mechanism

Using table 1 we can see that the number of physical degrees of freedom is

unaffected by the spontaneous breakdown of the symmetry, either local or global.

In the case of the global symmetry, the number of degrees of freedom is two,

before and after the spontaneous breakdown of the symmetry, because each

scalar particle has one degree of freedom, irrespective of its mass. In the case

of local symmetry, it might seem, at first sight, that one degree of freedom is

somehow lost in the course of the spontaneous breakdown of the symmetry,

because in the symmetric phase there is a quantum of the π field while in the

broken phase there is none. However, the number of degrees of freedom of the

gauge field depends on whether it is massive or not. In the symmetric phase,

the photons are massless and thus have two physical degrees of freedom only.

In the broken phase, the photon has a mass and thus has three physical degrees
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of freedom.

The Higgs mechanism is the transition from the symmetric to the broken

phase in the case of a local symmetry, see table 1.2 This is the transition from

a state in which there are two massive scalar fields, σ and π, and a massless

gauge field, Aµ, to a state in which there is only one scalar field, σ, with massive

quanta, and a massive gauge field. The Goldstone boson, the massless quanta

of π, which appears in the broken phase of a global symmetry, does not appear

in the broken phase of a local symmetry. In a metaphorical manner of speaking,

one therefore often says that the Goldstone boson, which would appear if the

symmetry were global, is “eaten” by the photon which thus becomes massive.3

At the same time, this metaphor of eating might be responsible for the con-

fusion behind Lyre’s claim that the Higgs mechanism is nothing but a reshuffling

of degrees of freedom and as such cannot possibly refer to a physical process.

Such a claim can only be maintained if one means by “Higgs mechanism” the

transition from the system described by the Lagrangian of equation 8 (with

Φ(x) = v + σ(x) + iπ(x)) to the Lagrangian of equation 9. However, this is

clearly not a transition between two physically distinct systems, as Lyre cor-

rectly points out, but a mere transition from one description of the system

to another equivalent description. One might be tempted to apply the eating

metaphor to this transition, too, because in the first description the π field ap-

pears in the Lagrangian while in the second description it does not. However,

because of the local U(1) symmetry of the Lagrangian, it is the same physical

2 For some purposes, this statement may be over-simplified. The relation mA = qv (see
table 1) shows how the mass of the gauge boson depends on the strength of the coupling q of
the scalar field to the gauge field. The second row of table 1 shows how, in the broken phase,
the introduction of a gauge field and the requirement of a local symmetry, instead of only a
global one, leads to the disappearance of the (massless) Goldstone boson π. These observations
are emphasized in Higgs (1964) and Anderson (1963), for instance. Accordingly, in a more
complete characterization, the Higgs mechanism should be regarded as the combination of the
two processes of coupling the scalar field to the gauge field (going from left to right in the
second row of table 1) and the transition from the symmetric to the broken phase of a local
symmetry (going from top to bottom in the second column of table 1).

3To my knowledge, the metaphor goes back to Coleman (1985, p. 123).
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system, without π quanta, that is described in both cases.4 The only difference

between the two cases is that one form of the description (equation 9) clearly

shows that, in fact, there are no π quanta, while the other form of the description

(equation 8) is less directly interpretable.

None of Lyre’s worries, therefore, gives us reason to doubt that the Higgs

mechanism can have the same ontological status as any other mechanism of

spontaneous symmetry breaking, which we observe, for instance, in ferromag-

nets or superconductors. Lyre’s analysis concerns the transition between two

equivalent descriptions of the same physical system which should and, in fact,

usually is not called the Higgs mechanism.5 The proper understanding of the

term is that of a transition from a symmetric phase of a physical system to

an asymmetric (or broken) phase. In the course of this transition, one type of

massive charged spinless particle disappears and the gauge field, the quanta of

which are massless in the symmetric phase, becomes massive. Such a process

might or might not have happened in the cooling of the early universe6, but in

any case, whether it happened or not is a meaningful empirical question and is

not answered to the negative by Lyre’s conceptual argument.
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