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Abstract

The interpretation of tests of a point null hypothesis against an un-
specified alternative is a classical and yet unresolved issue in statistical
methodology. This paper approaches the problem from the perspective of
Lindley’s Paradox: the divergence of Bayesian and frequentist inference in
hypothesis tests with large sample size. I contend that the standard ap-
proaches in both frameworks fail to resolve the paradox. As an alternative,
I suggest the Bayesian Reference Criterion: (i) it targets the predictive
performance of the null hypothesis in future experiments; (ii) it provides
a proper decision-theoretic model for testing a point null hypothesis and
(iii) it convincingly accounts for Lindley’s Paradox.
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1 Introduction. Lindley’s Paradox.

Lindley’s Paradox is one of the most salient cases where subjective Bayesian

and frequentist inference fall apart. The paradox emerges in statistical tests of

point null hypotheses with high sample sizes.

Instead of starting with a theoretical definition of the paradox, we give an

example with real data (Jahn, Dunne and Nelson 1987). The case at hand

involved the test of a subject’s claim to possess extrasensory capacities (ESP)

that would enable him to affect a series of 0-1 outcomes generated by a randomly

operating machine (θ0 = 0.5). The subject claimed that these capacities would

make the sample mean differ significantly from 0.5.

The sequence of zeros and ones, X1, . . . , XN , was described by a Binomial

model B(θ,N). The null hypothesis asserted that the results were generated

by a machine operating with a chance of H0 : θ = θ0 = 1/2, whereas the

alternative was the unspecified hypothesis H1 : θ 6= θ0. The experimenters

decided to observe a very long series of zeros and ones, which would give us

enough evidence as to judge whether or not the null was compatible with the

data.

Jahn, Dunne and Nelson (1987) report that in 104.490.000 trials, 52.263.471

ones and 52.226.529 zeros were observed. A classical, Fisherian frequentist

would now calculate the z-statistic which is

z(x) :=

√
N

θ0(1− θ0)

(
1

N

N∑
i=1

xi − θ0

)
≈ 3.61 (1)

and reject the null hypothesis on the grounds of the very low p-value it induces:

p := PH0(|z(X)| ≥ |z(x)|)� 0.01 (2)

Thus, the data would be interpreted as strong evidence for extrasensory capac-

ities. Compare this now to the result of a Bayesian analysis. Jefferys (1990)

assigns a conventional positive probability P (H0) = ε > 0 to the null hypoth-

esis and calculates the Bayes factor in favor of the null (the ratio of prior and

posterior odds):

B01(x) :=
P (H0|x)

P (H1|x)
· P (H1)

P (H0)
≈ 19

Hence, the data strongly favor the null over the alternative and do not provide

evidence for the presence of ESP.

The divergence between Bayesians and frequentists can be generalized. Ar-

guably, what is most distinctive about the above example is the large sample

size. Now assume that we are comparing observation sets of different sample

size N , all of which attain, in frequentist terms, the same p-value, e.g., the

highly significant value of 0.01. This means that the standardized sample mean
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z(x) =
√
N(x̄ − θ0)/σ takes the same value for all observation sets, regardless

of the actual sample size. However, in that case, the Bayesian evaluation of the

data will become ever more inclined to the null hypothesis with increasing N .

Thus, a result that speaks highly significantly against the null from a frequentist

point of view can strongly support it from a Bayesian perspective. This prob-

lem has, since the seminal paper of Lindley (1957), been known as Lindley’s

Paradox.

Due to its prominence and its simplicity, Lindley’s Paradox is a suitable

test case for comparing various philosophies of statistical inference, and for re-

considering the goals and methods of testing a precise null hypothesis. In this

paper, I ask the following questions: First, which statistical analysis of the

ESP example is correct? Second, which implications has Lindley’s Paradox for

standard procedures of Bayesian and frequentist inference? Third, is there a

full decision-theoretic framework in which point null hypothesis tests can be

conducted without adopting a fully subjectivist perspective? I will argue that

both the standard Bayesian and the standard frequentist way to conceive of

Lindley’s Paradox are unsatisfactory, and that alternatives have to be explored.

In particular, I believe that José Bernardo’s Bayesian Reference Criterion holds

considerable promise as a replication-oriented decision model that fits our intu-

itions about Lindley’s Paradox.

2 Testing a precise null: frequentist vs. Bayesian
accounts

Lindley’s Paradox deals with tests of a precise null hypothesis H0 : θ = θ0

against an unspecified alternative H1 : θ 6= θ0 for large sample sizes. But why

are we actually testing a precise null hypothesis if we know in advance that

this hypothesis is, in practice, never exactly true? (For instance, in tests for

the efficacy of a medical drug, it can safely be assumed that even the most

unassuming placebo will have some minimal effect, positive or negative.)

The answer is that precise null hypotheses give us a useful idealization of

reality for the purpose at hand. This is also rooted in Popperian philosophy

of science: “only a highly testable or improbable theory is worth testing and

is actually (and not only potentially) satisfactory if it withstands severe tests”

(Popper 1963, 219–220). Accepting such a theory is not understood as endorsing

the theory’s truth, but as choosing it as a guide for future predictions and

theoretical developments.

Frequentists have taken the baton from Popper and explicated the idea of

severe testing by means of statistical hypothesis tests. Their mathematical

rationale is that if the discrepancy between data and null hypothesis is large
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enough, we can infer the presence of a significant effect and reject the null

hypothesis. For measuring the discrepancy in the data x := (x1, . . . , xN ) with

respect to postulated mean value θ0 of a Normal model, one canonically uses

the standardized statistic

z(x) :=

√
N

σ

(
1

N

N∑
i=1

xi − θ0

)

that we have already encountered above. Higher values of z denote a higher

divergence from the null, and vice versa. Since the distribution of z usually

varies with the sample size, some kind of standardization is required. Many

practitioners use the p-value or significance level, that is, the “tail area” of the

null hypothesis under the observed data, namely p := PH0
(|z(X)| ≥ |z(x)|).

On that reading, a low p-value indicates evidence against the null: the chance

that z would take a value at least as high as z(x) is very small, if the null were

indeed true. Conventionally, one says that p < 0.05 means significant evidence

against the null, p < 0.01 very significant evidence, or in other words, the null

hypothesis is rejected at the 0.05 level, etc. R.A. Fisher has interpreted p-values

as “a measure of the rational grounds for the disbelief [in the null hypothesis]

it augments” (Fisher 1956, 43).

Subjective Bayesians choose a completely different approach to hypothesis

testing. For them, scientific inference obeys the rules of probabilistic calculus.

Probabilities represent honest, subjective degrees of belief, which are updated

by means of Bayesian Conditionalization. A Bayesian inference about a null

hypothesis is based on the posterior probability P (H0|E), the synthesis of data

E and prior P (H0).

It is here that Bayesians and significance testers clash with each other. If

the p-value is supposed to indicate to what extent the null is still tenable,

we get a direct conflict with Bayesian reasoning. The analyses of Berger and

Delampady (1987) and Berger and Sellke (1987) show that p-values tend to

grossly overstate evidence against the null, to the extent that the posterior

probability of the null – and even the minimum of P (H0|x) under a large class

of priors – is typically much higher than the observed p-value. In other words,

even a Bayesian analysis that is maximally biased against the null is still less

biased than a p-value analysis. This has led Bayesian statisticians to conclude

that “almost anything will give a better indication of the evidence provided by

the data against H0” (Berger and Delampady 1987, 330). These findings are

confirmed by methodologists in the sciences who have repeatedly complained

about the illogic of p-values (and significance testing) and their inability to

answer the questions that really matter for science (Cohen 1994; Royall 1997;

Goodman 1999).
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Lindley’s Paradox augments this divergence of a Bayesian and a frequentist

analysis. In a Normal model, if P (H0) > 0 and N → ∞, then the posterior

probability of the null P (H0|x) converges to 1 for almost any prior distribution

over H1. More precisely:

Lindley’s Paradox: Take a Normal model N(θ, σ2) with known

variance σ2, H0 : θ = θ0, H1 : θ 6= θ0, assume P (H0) > 0 and any

regular proper prior distribution on {θ 6= θ0}. Then, for any testing

level α ∈ [0, 1], we can find a sample size N(α) and independent,

identically distributed data x = (x1, . . . , xN ) such that

1. The sample mean x̄ is significantly different from θ0 at level α;

2. P (H0|x), that is, the posterior probability that θ = θ0, is at

least as big as 1− α. Lindley (cf. 1957, 187)

One might conjecture that this Bayesian-frequentist divergence stems from

the unrealistic assumption that P (H0) > 0. But actually, the findings are

confirmed if we switch to an analysis in terms of Bayes factors, the Bayesian’s

standard measure of evidence. The evidence x provides for H0 vis-à-vis H1 is

written as B01 and defined as the ratio of prior and posterior odds:

B01(x) :=
P (H0|x)

P (H1|x)
· P (H1)

P (H0)
=
P (x|H0)

P (x|H1)
, (3)

which can alternatively be interpreted as an averaged likelihood ratio of H0 vs.

H1. Now, if the prior over H1, that is, the relative weight of alternatives to the

null, follows a N(θ0, σ̃
2)-distribution, then the Bayes factor in favor of the null

can be computed as

B01(x) =

√
1 +

Nσ̃2

σ2
e

−Nz(x)2

2N+2σ2/σ̃2 , (4)

which converges, for increasing N , to infinity as the second factor is bounded

(Bernardo 1999, 102). This demonstrates that the precise value of P (H0) is

immaterial for the outcome of the subjective Bayesian analysis.

This result remarkably diverges from the frequentist finding of significant

evidence against the null. What has happened? If the p-value, and consequently

the value of z(X) = c, remain constant for increasing N , we can make use of the

Central Limit Theorem: z(X) converges, for all underlying distributions with

bounded second moments, in distribution against N(0, 1). Thus, as N →∞, we

obtain that cσ ≈
√
N(X̄ − θ0), and X̄ → θ0. In other words, the sample mean

gets ever closer to θ0, favoring the null over the alternatives. For the deviance

between the variance-corrected sample mean z and H0 will be relatively small

compared to the deviance between z and all those hypotheses in H1 that are
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“out there”, in sharp contrast to a frequentist tester who will observe significant

evidence against H0.

In other words: as soon as we take our priors over H1 seriously, as an ex-

pression of our uncertainty about which alternatives to H0 are more likely than

others, we will, in the long run, end up with results favoring θ0 over an unspec-

ified alternative. Bayesians read this as the fatal blow for frequentist inference

since an ever smaller deviance of the sample mean x̄ from the parameter value

θ0 will suffice for a highly significant result. Obviously, this makes no scientific

sense. Small, uncontrollable biases will be present in any record of data, and

frequentist hypothesis tests are unable to distinguish between statistical signifi-

cance (p < 0.05) and scientific significance (a real effect is present). A Bayesian

analysis, on the other hand, accounts for this insight: as X̄ → θ0, an ever greater

chunk of the alternative H1 will diverge from X̄, favoring the null hypothesis.

Still, the subjective Bayesian stance on hypothesis tests leaves us with an

uneasy feeling. Assigning a strictly positive degree of belief P (H0) > 0 to the

point null hypothesis θ = θ0 is a misleading and inaccurate representation of

our subjective uncertainty. In terms of degrees of belief, θ0 is not that different

from any value θ0 ± ε in its neighborhood. Standardly, we would assign a

continuous prior over the real line, and there is no reason why a set of measure

zero, namely {θ = θ0}, should have a strictly positive probability. But if we set

P (H0) = 0, then for most priors (e.g., an improper uniform prior) the posterior

probability distribution will not peak at the null value, but somewhere else.

Thus, the apparently innocuous assumption P (H0) > 0 has a marked impact

on the result of the Bayesian analysis.

A natural reply to this objection contends that H0 is actually an idealization

of the hypothesis |θ− θ0| < ε, for some small ε, rather than a precise point null

hypothesis θ = θ0. Then, it would make sense to use strictly positive priors.

Indeed, it has been shown that point null hypothesis tests in terms of Bayes

factors approximate a test of whether a small interval around the null contains

the true parameter value (Theorem 1 in Berger and Delampady 1987). Seen

that way, it does make sense to assign a strictly positive prior to H0.

Unfortunately, this won’t help us in the situation of Lindley’s Paradox: when

N →∞, the convergence results break down, and testing a point null is no more

analogous to testing whether a narrow interval contains θ. In the asymptotic

limit, the Bayesian cannot justify the strictly positive probability of H0 as an

approximation to testing the hypothesis that the parameter value is close to θ0

– which is the hypothesis of real scientific interest. Setting P (H0) > 0 may be

regarded as a useful convention, but this move neglects that a hypothesis test

in science asks, in the first place, if H0 is a reasonable simplification of a more

general model, and not if we assign a high degree of belief to this precise value
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of θ.

This fact may be the real challenge posed by Lindley’s Paradox. In the

debate with frequentists, the Bayesian likes to appeal to “foundations”, but

working with strictly positive probabilities of the null hypothesis is hard to jus-

tify from a foundational perspective, and also from the perspective of scientific

practice.

The bottom line of all is that the subjective Bayesian analysis fails to explain

why hypothesis tests have such an appeal to scientific practitioners, and even

to those that are statistically sophisticated. Similarly, the Bayesian has a hard

time to explain why informative and precise, but improbable hypotheses should

sometimes be preferred over more general alternatives. How can the subjectivist

model that we are less interested in the truth of H0 than in its usefulness?

3 The BRC approach to hypothesis testing

This section presents a proposal for a fully Bayesian decision model for hypoth-

esis testing that survives the criticisms raised against the subjectivist approach

and gives a satisfactory treatment of Lindley’s Paradox. The main idea is to

decouple the idea of testing a precise null hypothesis H0 from the truth of this

hypothesis. Instead, we view the statistical test as making a decision on whether

or not we should treat the null hypothesis H0 : θ = θ0 as a proxy for the more

general model H1 : θ 6= θ0. In other words, we test whether the null is compat-

ible with the data using a specific utility structure, going back to the roots of

Bayesianism in decision theory.

Thus, we have to extend Bayesian belief revision to Bayesian decision models

and add a proper utility dimension. This allows for much more flexible treat-

ments than the traditional zero-one loss model that is implicitly presupposed

in inference to the most probable hypothesis. In the remainder, I sketch a sim-

plified version of Bernardo’s Reference Bayesian Criterion (1999, section 2-3) in

order to elaborate the main ideas of philosophical interest.

In science, we generally prefer hypotheses on whose predictions we may rely.

Therefore, a central component of the envisioned decision model depends on

the expected predictive accuracy of the null. Hence, we need a function that

evaluates the predictive score of a hypothesis, given some data y. The canonical

approach consists in the logarithmic score logP (y|θ) (Good 1952): if an event

considered to be likely occurs, then the score is high; if an unlikely event occurs,

the score is low. This is a natural way of rewarding good and punishing bad

predictions.

A generalization of this utility function describes the score of data y under

parameter value θ as q(θ, y) = α logP (y|θ)+β(y), where α is a scaling term, and
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β(y) is a function that depends on the data only. Informally speaking, q(·, ·) is

decomposed into a prediction-term and a term that depends on the desirability

of an outcome, where the latter will eventually turn out to be irrelevant. This

is a useful generalization of the logarithmic score. Consequently, if θ is the true

parameter value, the utility of taking H0 as a proxy for the more general model

H1 is∫
q(θ0, Y ) dPY |θ = α

∫
logP (y|θ0)P (y|θ) dy +

∫
β(y)P (y|θ) dy.

The overall utility U of a decision, however, should not only depend on the

predictive score, as captured in q, but also on the cost cj of selecting a specific

hypothesis Hj . Ceteris paribus, H0 should be preferred to H1 because it is

more informative, simpler, and less prone to the risk of overfitting (in case

there are nuisance parameters). Therefore it is fair to set c1 > c0. Writing

U(·, θ) =
∫
q(·, Y ) dPY |θ − cj , we then obtain

U(H0, θ) = α

∫
logP (y|θ0)P (y|θ) dy +

∫
β(y)P (y|θ)dy − c0

U(H1, θ) = α

∫
logP (y|θ)P (y|θ) dy +

∫
β(y)P (y|θ)dy − c1.

Note that the utility of accepting H0 is evaluated against the true parameter

value θ, and that the alternative is not represented by a probabilistic average

(e.g., the posterior mean), but by its best element, namely θ. This is arguably

more faithful than subjective Bayesianism to the essential asymmetry in test-

ing a point null hypothesis. Consequently, the difference in expected utility,

conditional on the posterior density of θ, can be written as∫
θ∈Θ

(U(H1, θ)− U(H0, θ)) P (θ|x) dθ

= α

∫
θ∈Θ

(∫
log

P (y|θ)
P (y|θ0)

P (y|θ)
)
P (θ|x) dy dθ +

∫
β(y)P (y|θ) dy

−
∫
β(y)P (y|θ) dy + c0 − c1

= α

∫
θ∈Θ

(∫
log

P (y|θ)
P (y|θ0)

P (y|θ) dy
)
P (θ|x) dθ + c0 − c1.

This means that the expected utility difference between inferring to the null hy-

pothesis and keeping the general model is essentially a function of the expected

log-likelihood ratio between the null hypothesis and the true model, calibrated

against a “utility constant” d∗(c0 − c1). For the latter, Bernardo suggests a

conventional choice that recovers the well-probed scientific practice of regarding

three standard deviations as strong evidence against the null. The exact value
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of d∗ depends, of course, on the context: on how much divergence is required to

balance the advantages of working with a simpler, more informative, and more

accessible model (Bernardo 1999, 108).

Wrapping up all this, we will reject the null if and only if Eθ[U(H1, θ)] >

Eθ[U(H0, θ)] which amounts to the

Bayesian Reference Criterion (BRC): Data x are incompatible

with the null hypothesis H0 : θ = θ0, assuming that they have been

generated from the probability model (P (·|θ), θ ∈ Θ), if and only if∫
θ∈Θ

P (θ|x)

(∫
log

P (y|θ)
P (y|θ0)

P (y|θ) dy
)
dθ > d∗(c0 − c1). (5)

This approach has a variety of remarkable features. First, it puts hypothesis

testing on firm decision-theoretic grounds. Second, accepting the null, that is,

using θ0 as a proxy for θ, amounts to claiming that the difference in expected

predictive success of θ0 and the true parameter value θ will be offset by the fact

that H0 is more elegant, more informative and easier to test. Hence, BRC does

not only establish a tradeoff between different epistemic virtues: it is also in

significant agreement with Popper’s view that “science does not aim, primar-

ily, at high probabilities. It aims at high informative content, well backed by

experience.” (Popper 1934/59, 399). Third, the approach is better equipped

than subjective Bayesianism to account for frequentist intuitions, since under

some conditions, e.g., in Lindley’s Paradox, the results of a reference Bayesian

analysis agree with the results of a frequentist analysis, as we shall see below.

Fourth, it is invariant of the particular parametrization, that is, the final infer-

ence does not depend on whether we work with θ or a 1:1-transformation g(θ).

Fifth, it is neutral with respect to the kind of prior probabilities that are fed

into the analysis.1

4 Revisiting Lindley’s Paradox

We now investigate how Bernardo’s approach deals with Lindley’s Paradox and

return to the ESP example from the introduction. It turns out that the BRC

quantifies the expected loss from using θ0 as a proxy for the true value θ as

substantial. Using a β(1/2, 1/2) reference prior for θ (Bernardo 1979), the

expected loss under the null hypothesis is calculated as d(θ = 1/2) ≈ log 1400 ≈
7.24. This establishes that “under the accepted conditions, the precise value

θ0 = 1/2 is rather incompatible with the data” (Bernardo 2012, 18).

1BRC implies that some parameters, such as d∗, which have to be chosen conventionally
or context-dependent. Hence, a charge of “arbitrariness” could be made. However, this
flexibility is, in my opinion, an asset of a general decision-theoretic model, not a drawback, as
a comparison with Expected Utility Theory makes clear.

9



We observe that the results of a reference analysis according to BRC agree

with the results of the frequentist analysis, but contradict the subjective Bayesian

results. One might thus object that Bernardo’s Bayesianism is purely instru-

mental : that is, it makes use of Bayesian notation and assigns a “probability”

over θ, but it ends up with conventional, automated inference procedures that

recover frequentist results.

Let us get back to the experiment. Of course, the rejection of the null

hypothesis does not prove the extrasensory capacities of our subject; a much

more plausible explanation is a small bias in the random generator. This is

actually substantiated by looking at the posterior distribution of θ: due to the

huge sample size, we find that for any non-extreme prior probability function,

we obtain the posterior θ ∼ N(0.50018, 0.000049), which shows that most of the

posterior mass is concentrated in a narrow interval that does not contain the

null. These findings agree with a likelihood ratio analysis: if we compute the

log-likelihood ratio Lθ̂,θ0 of the maximum likelihood estimate θ̂(x1, . . . , xn) = x̄

versus the null, we obtain (using the Normal approximation)

logLθ̂,θ0(x1, ..., xN ) = log
P (x̄|θ̂)
P (x̄|θ0)

= log
P (x1 = θ̂|θ̂)N

P (x1 = θ̂|θ0)N

= log

(
1√

2πσ2

)N
− log

((
1√

2πσ2

)N
e−

N
2σ2

(θ̂−θ0)2

)

=
N

2σ2
(θ̂ − θ0)2 N→∞−→ ∞. (6)

This analysis clearly shows that the likelihood ratio with respect to the maxi-

mum likelihood estimate speaks, for large N , increasingly against the null (in

our case: logLθ̂,θ(x1, ..., xN ) ≈ 6.53), in striking disagreement with the Bayes

factor analysis.

If we revisit Jeffery’s analysis in the light of these observations, we note two

contentious features, already touched upon previously. The first concerns the

utility structure that is imposed by basing inference exclusively on the posterior

distribution. We have seen in the previous sections that such a zero-one loss

function, and a positive prior probability P (H0) may not be adequate assump-

tions for deciding whether a hypothesis should be judged as compatible with

the data; therefore we should also be wary of judgments based on such assump-

tions. Second, a Bayes factor comparison effectively compares the likelihood of

the data under H0 to the averaged likelihood of the data under H1. However,

this quantity is strongly influenced by whether there are some extreme hypothe-

ses in H1 that fit the data poorly. Compared to the huge amount of data that

we have just collected, the impact of these hypotheses (mediated via the con-

ventional uniform prior) should be minute. These arguments explain why most
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people would tend to judge the data as incompatible with the precise null, but

fail to see a scientifically interesting effect.

From the vantage point of whether the experimental effect is likely to be

replicated – and this is a question scientists are definitely interested in – the

BRC approach is more adequate. After all, it focuses on expected future success,

and not on past performance. H0 is not accepted because it is considered likely

to be true, but because it is sufficiently likely to be predictively successful.

Frequentists may object that Bernardo’s approach is a very complicated way

to obtain a simple result. After all, if we use confidence intervals instead of p-

values, we will be able to appreciate the small effect size as well as the fact that

the data are incompatible with the null hypothesis. A similar point can be made

in Mayo’s (1996) error-statistical framework: only a small discrepancy from the

null hypothesis is warranted with a high degree of severity, but no discrepancy

that points to a substantial extrasensory influence rather than to a tiny bias in

the machine. Hence, Lindley’s Paradox seems to vanish in thin air if we only

adopt the right frequentist perspective.

To this point I have a twofold reply: First, confidence intervals and severity

functions are, on a mathematical level, intimately connected to p-values and

Neyman-Pearson error probabilities. Therefore they share a lot of the founda-

tional problems of p-values, some of which have been mentioned above (see Roy-

all 1997, for an elaborate discussion). A fully convincing reply to these criticisms

is still pending. Second, confidence intervals do not involve a decision-theoretic

component; they are interval estimators. They do not determine whether a

precise null hypothesis should be accepted or rejected. (The case is a bit more

complicated for Mayo’s error statistics, but as I understand her, the kind of

inferences she wants to make is about severely warranted discrepancies from the

null, and not about decisions to accept or to reject a point null hypothesis.) If

we take statistical tests to be serious decision problems, if the word “test” is

more than a dummy for our preferred inference problem, then those frequentist

techniques do not provide a convincing account of hypothesis testing.

5 Conclusions

We have demonstrated how Lindley’s Paradox – the extreme divergence of

Bayesian and frequentist inference in tests of a precise null hypothesis with

large sample size – challenges the standard methods of both Bayesian and fre-

quentist inference. Neither frequentist significance tests nor subjective Bayesian

inference provides a convincing account of the problem. Therefore, I have intro-

duced Bernardo’s Bayesian Reference Criterion (BRC) as a full Bayesian, albeit

not subjectivist model of testing a precise null hypothesis. It turns out that
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BRC gives a sensible Bayesian treatment of Lindley’s Paradox, with a focus on

predictive performance and likely replication of the effect in deciding whether

to accept or to reject the null. The motivation of BRC also exhibits a notable

similarity to ideas voiced by Karl Popper.

Of course, Bernardo’s reference Bayesian approach is not immune to objec-

tions. But anyway, BRC underlines that Bayesian inference in science need not

necessarily infer to highly probable models – a misconception that is perpetu-

ated in post-Carnapian primers on Bayesian inference and that has attracted

Popper’s understandable criticism. To provide some evidence: Howson and

Urbach (1993, xvii) claim that “scientific reasoning is essentially reasoning in

accordance with the formal principles of probability” and Earman (1992, 33)

even takes, in his exposition of Bayesian reasoning, the liberty of announcing

that “issues in Bayesian decision theory will be ignored”. As argued in the pa-

per, such a purely probabilistic Bayesianism falls short of an appropriate model

of scientific reasoning.

In other words, Bayesianism should not be separated from its decision-

theoretic component that involves, beside the well-known probabilistic repre-

sentation of uncertainty, also a utility function of equal significance. Failure to

appreciate this fact is, to my mind, partly responsible for the gap between the

debates in statistical methodology and confirmation theory. This paper makes

an attempt to bridge it.
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