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Abstract

An interventionist account of causation characterizes causal relations in terms of changes
resulting from particular interventions. We provide an example of a causal relation for
which there does not exist an intervention satisfying the common interventionist standard.
We consider adaptations that would save this standard and describe their implications for
an interventionist account of causation. No adaptation preserves all the aspects that make
the interventionist account appealing.

1. Introduction

James Woodward’s (2003) account of causation characterizes causal relations in terms of
interventions. On this account, speaking very roughly, for a variable x to be a cause of vari-
able y, wiggling x must result in some change in y (possibly only in probability). Woodard’s
more circumspect description converts “wiggling” into a technical term. The intervention-
ist account has provided a pragmatic middle road, avoiding dubious metaphysical baggage
while still providing a conceptual clarity of what it takes to stand in a causal relation.
By building on the representation of causal relations in terms of graphical models, the
interventionist account also connects to causal inference procedures used in the sciences.

In this article we present an example that challenges the specific commitments an in-
terventionist endorses in characterizing a causal relation. The problem is neither entirely
new, nor is it a problem the interventionist cannot avoid. It does, however, illustrate some
of the details that may have gone unnoticed and forces any proponent of the interventionist
account to be explicit about the assumptions she intends to make in order to avoid the
uncomfortable implications we describe.

2. Interventionism

Woodward (2003, p. 55) provides the following definition of what it takes to be a direct

cause on the interventionist account:

Definition 1 (Direct Cause (Woodward)) A necessary and sufficient condition for x
to be a direct cause of z with respect to some variable set V is that there be a possible
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intervention on x that will change z (or the probability distribution of z) when all other

variables in V besides x and z are held fixed at some value by interventions.
1

Woodward provides other variations of this definition. We briefly return to these at the end
of the article. For now it will suffice to note that we do not consider them to be substantially
different for the present argument.

Definition 1 is most easily understood in terms of the representation of causal relations
in so-called causal Bayes nets (Spirtes et al., 2000; Pearl, 2000). In a causal Bayes net two
variables are connected by an arrow whenever there is a direct causal relation between those
variables. The resulting causal graph then gives rise to a probability distribution over the
variables that satisfies the well-known Markov condition. The Markov condition states that
each variable is probabilistically independent of its non-descendents given its parents in the
graph. One way of understanding Definition 1 is that it provides a criterion consistent with
the Markov condition for when a directed edge between two variables should be added to a
causal graph (see Woodward (2003, p. 59)).

Several aspects of Woodward’s definition are worth emphasizing: First, the definition
of a direct cause is relative to a set of variables V . While x may be a direct cause of z,
i.e. x → z, when we only consider the two variables V = {x, z}, it is possible that once we
include the variable y in our considerations, that the causal relation is in fact x → y → z,
so x is no longer a direct cause relative to the set of variables V = {x, y, z}, only an indirect
one. To avoid the requirement that all intermediary variables are included in V , the notion
of a direct cause is relativized to V .

Second, as the name of the account suggests, interventions play a special role. According
to Woodward, one of the features of an intervention is that it is an exogenous influence
that determines the value of the intervened variable and makes the intervened variable
independent of its normal causes (p. 96-98). This can be achieved by varying the variable
as in a randomized experiment, or by fixing the variable to a particular value. Although
there are further details, for our purposes here it will suffice to note that the interventions
Woodward proposes are of a particularly strong kind: they break the causal influences on the
intervened variables and are therefore often referred to as “surgical” interventions. For the
purpose of illustration, consider the effect of drinking wine on heart disease. One may worry
that the correlation between drinking wine and heart disease is due to some confounder –
a common cause of the two – such as socio-economic status (SES). But if one were to
perform a controlled experiment in which participants were randomly assigned to a wine

drinking or no wine drinking condition, then any influence of SES on wine drinking would
be broken. The randomized controlled trial is a “surgical” intervention on wine drinking.
We refer to the probability distribution arising from such an experiment as a “manipulated
distribution”. One of the advantages of surgical interventions is that they can be performed
without knowledge of the causal relations influencing the intervened variables. We need
not know whether SES is in fact a cause of wine-drinking or not in order to perform
the experiment. In Section 6 we will return to consider “softer” interventions that only
nudge the intervened variable but may not break the influences of its other causes. While
Definition 1 does not include an explicit restriction to surgical interventions, Woodward

1. Note that we have exchanged y for z from the original formulation to reduce confusion in the application
of the definition in the subsequent discussion.
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does not discuss soft interventions and his definition of an intervention in “Making Things
Happen” only permits surgical interventions (IV.I2, p. 98).

Lastly, interventions in Definition 1 are existentially quantified, and modulated by the
operator “possible”. (In similar definitions Woodward has also used the term “hypothetical”
or “plausible”.) Woodward explains the motivation for the existential quantification as an
explicitly weak requirement to permit interactive causes as direct causes. For example, a
filled gas tank will only have an effect on the motor starting if the battery is also charged.
If the battery is dead, then despite a full tank the motor will not start. So although the gas
level has no effect on the motor starting when the battery is dead, it seems reasonable to
consider the gas level to be a direct cause of the motor starting since it makes a difference
for some setting of the battery charge. The existential quantification captures such cases
since it only requires that a change in x results in a change in z for some value assignment
to the variables in V \ {x, z}.

A full justification and characterization of “possible” (interventions) is more difficult.
Woodward discusses the issue in some detail in his Section 3.5. One motivation is to avoid
the charge that the interventionist account of causation would otherwise appear inapplicable
to causal relations in which an intervention does not seem feasible. For example, Woodward
maintains that the gravitation of the Moon is a cause of the tides despite the fact that an
intervention on the gravitation of the Moon does not appear feasible given our abilities (and
is arguably physically impossible if everything else is supposed to be held fixed). For now
we will rely on a suitably charitable reading and postpone the issue until Section 6.

Woodward may have intended Definition 1 to be couched in the context of additional
background assumptions, although he is not explicit about them. We will consider such
assumptions as we need them to handle the main example of this article.

3. Experimental Indistiguishability

Here, then, is the tricky case for the interventionist: Consider the two causal models T
(triangle) and C (chain) over the binary variables {u, v, x, y, z} in Figure 1. The variables
x, y and z are observed, while u and v are unobserved, hence the dashed arrows. The models
are identical except that in T the observed variable x is a direct cause of the observed variable
z, i.e. x → z, in addition to being an indirect cause of z via y. Table 2 specifies for each
model all the parameters of the conditional probability distribution of each variable given
its direct causes. Except for the (bold) parameters t9 and t13 of the conditional probability
of z given its causes, the parameterization of the two models are identical. Note that for
model C the parameters

p(z|u, v, x = 1, y) = p(z|u, v, x = 0, y) = p(z|u, v, y) ∀z, u, v, y,

so in model C the conditional distribution of z does not depend on x.

What, according to a proponent of the interventionist account, justifies the direct cause

x→ z in model T?

The answer is not as straightforward as it may seem. Definition 1 depends on the set of
variables we consider: If we take the perspective of a scientist who is only aware of the three

3



Eberhardt

T C
x

���
��

��
��

��
��

��
�

�� y

����
��
��
��
��
��
��

u

��

��

v

��

��

z

x �� y

����
��
��
��
��
��
��

u

��

��

v

��

��

z

Figure 1: Model (T )riangle (left) and (C)hain (right). u and v are assumed to be unob-
served variables, hence the dashed arrows.

parameter conditional probability terms T C
t1 p(u = 1) 0.3 0.3
t2 p(v = 1) 0.4 0.4
t3 p(x = 1|u = 1) 0.8 0.8
t4 p(x = 1|u = 0) 0.2 0.2
t5 p(y = 1|v = 1, x = 1) 0.8 0.8
t6 p(y = 1|v = 1, x = 0) 0.8 0.8
t7 p(y = 1|v = 0, x = 1) 0.8 0.8
t8 p(y = 1|v = 0, x = 0) 0.2 0.2
t9 p(z = 1|u = 1,v = 1,x = 1,y = 1) 0.65 0.8
t10 p(z = 1|u = 1, v = 1, x = 1, y = 0) 0.8 0.8
t11 p(z = 1|u = 1, v = 1, x = 0, y = 1) 0.8 0.8
t12 p(z = 1|u = 1, v = 1, x = 0, y = 0) 0.8 0.8
t13 p(z = 1|u = 1,v = 0,x = 1,y = 1) 0.9 0.8
t14 p(z = 1|u = 1, v = 0, x = 1, y = 0) 0.8 0.8
t15 p(z = 1|u = 1, v = 0, x = 0, y = 1) 0.8 0.8
t16 p(z = 1|u = 1, v = 0, x = 0, y = 0) 0.8 0.8
t17 p(z = 1|u = 0, v = 1, x = 1, y = 1) 0.8 0.8
t18 p(z = 1|u = 0, v = 1, x = 1, y = 0) 0.8 0.8
t19 p(z = 1|u = 0, v = 1, x = 0, y = 1) 0.8 0.8
t20 p(z = 1|u = 0, v = 1, x = 0, y = 0) 0.8 0.8
t21 p(z = 1|u = 0, v = 0, x = 1, y = 1) 0.8 0.8
t22 p(z = 1|u = 0, v = 0, x = 1, y = 0) 0.2 0.2
t23 p(z = 1|u = 0, v = 0, x = 0, y = 1) 0.8 0.8
t24 p(z = 1|u = 0, v = 0, x = 0, y = 0) 0.2 0.2

Figure 2: Parameters of the two models in Figure 1. The differences between the models
are shown in bold.
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observed variables x, y and z, then the set of variables under consideration is V = {x, y, z}.
It follows from Definition 1 that x is a direct cause of z if and only if there is an intervention
on x that results in a change in z while y is held fixed at 1 or at 0. It turns out that this
is not the case for either model T or model C. In fact, if u and v are not observed then it
can be verified that model T and C give rise to exactly the same distribution for

1. the passive observational distribution without interventions,

2. the manipulated distribution when only x is randomized,

3. the manipulated distribution when only y is randomized,

4. the manipulated distribution when only z is randomized,

5. the manipulated distribution when x and y are randomized simultaneously and inde-
pendently,

6. the manipulated distribution when x and z are randomized simultaneously and inde-
pendently, and

7. the manipulated distribution when y and z are randomized simultaneously and inde-
pendently.

Recall that identical joint distributions imply identical conditional and marginal distribu-
tions, so the fifth case includes as a conditional distribution the distribution when x is
manipulated and y is held fixed at 0 (or 1) by an intervention. Given the graphical struc-
tures in Figure 1, the reader may note that for all these distributions the two models have
exactly the same independence and dependence relations over V = {x, y, z}. The claim
here, however, is stronger: The models have identical (manipulated) distributions.

The two models are thus in principle indistinguishable by passive observational data or
by any (possibly simultaneous) surgical intervention on the observed variables. According
to Definition 1, one must conclude that x is not a direct cause of z relative to V = {x, y, z}
in either T or (obviously) in C. Should, then, the arrow x→ z in model T be omitted?

If instead of just the observed variables, we consider the enlarged set of variables V ∗ =
{u, v, x, y, z}, then in an experiment that intervenes on x and holds the variables other than
z fixed at u = v = y = 1, we have for model T

pT (z = 1|set(u = 1, v = 1, x = 1, y = 1))
= pT (z = 1|u = 1, v = 1, x = 1, y = 1)

= tT9 = 0.65

�= tT11 = 0.8
= pT (z = 1|u = 1, v = 1, x = 0, y = 1)
= pT (z = 1|set(u = 1, v = 1, x = 0, y = 1)),
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where the set(.)-operator fixes the variables at particular values by intervention. But for
model C we have, as expected,

pC(z = 1|set(u = 1, v = 1, x = 1, y = 1))
= pC(z = 1|u = 1, v = 1, x = 1, y = 1)

= tC9
= 0.8

= tC11

= pC(z = 1|u = 1, v = 1, x = 0, y = 1)
= pC(z = 1|set(u = 1, v = 1, x = 0, y = 1))

We see that in model T the probability distribution of z changes depending on x, while all
other variables are held fixed at some value. So by Definition 1, x is a direct cause of z
relative to V ∗ = {u, v, x, y, z} in T , but not in C.

So far there is nothing inconsistent with the interventionist account of causation: x is
a direct cause of z relative to some V ∗, but not relative to some other V . Nevertheless,
it may be surprising that the direct causal effect of x on y in model T is not detectable
by any surgical intervention on the observed variables V = {x, y, z}. The interventionist
account is, among other things, supposed to be a pragmatic account, supporting causal
explanations and closely related to how a scientist may go about establishing causal relations
(see Woodward (2003, Sections 1.9 and 3.1.8)). How then should we react to this example?
On the one hand, the scientist is given all the tools she may desire – any randomized
controlled trial on any set of the observed variables – but she is still in principle unable to
detect the direct cause x → z, unless she identifies the unobserved variables u and v first.
On the other hand, for the set of variables V that she observes, it appears from a pragmatic
perspective reasonable to claim that x is not a direct cause of z relative to V = {x, y, z}.
After all, what would be the point of maintaining that x is a (direct) cause of z in model T?
The above list of distributions that are identical for T and C shows that the direct causal
effect only makes a difference to the (surgically) manipulated distributions once u and v
are included in the set of variables under consideration. This, as we suggested before, was
part of the reason in the first place for relativizing the concept of direct cause to the set of
variables under consideration. Note, however, that unlike the shift from direct to indirect
cause that we discussed in the context of the relativization in Definition 1, when we change
the set of variables from V to V ∗, model T exhibits a shift from x as an indirect cause of
z, to x as an indirect and a direct cause of z, of which neither causal path involves the
variables u or v that were added into consideration.

4. Causal Sufficiency

A natural first reaction to this example is to blame the unobserved variables. A similar
example could not be constructed if all causal influences were observed.2 But Woodward is
careful not to endorse such a strong assumption. It would make the interventionist account

2. For the close reader, I literally mean “all” here, i.e. even noise terms. As will be seen in Figure 4 below,
similar cases are possible when particular unobserved noise terms are permitted.

6



Direct Cause

of a direct cause imapplicable to most scientific contexts, since it is generally not the case
that one observes all causal influences. Instead, Woodward explicitly endorses probabilistic
causal connections with unobserved “error terms”. These are common in the literature on
structural equation models where an effect is a function of its causes plus some unobserved
disturbance. Often these disturbance terms are taken to be independent of one another, only
influencing one variable each. In our models T and C, however, the unobserved variables
u and v influence two variables each; they are so-called confounders or latent common
causes. In the causal modeling literature the assumption of causal sufficiency draws the
line between independent disturbance terms and confounders: A set of variables is said to
be causally sufficient if it contains all common causes of the set of variables, i.e. there are
no latent confounders.

As Glymour notes in his review of “Making things happen”, Woodward does not consider
cases in which causal sufficiency is violated (Glymour, 2004), as is the case when only
V = {x, y, z} are observed in models T and C. Should Definition 1 consequently be read as
implicitly referring to a causally sufficient set of variables?

We do not think so. Apart from the fact that much of science, which the interventionist
after all wants to relate to, investigates causal claims among causally insufficient sets of
variables, there are reasons why the omission of causal sufficiency from Definition 1 may
have been deliberate. The statistician Ronald Fisher is generally credited (or blamed?)
for making randomized controlled trials the gold standard for causal discovery (Fisher,
1935). One of the advantages that Fisher recognized was that the manipulation of the
treatment variable according to a (causally) independent distribution made the treatment
variable independent of its normal causes, including any unobserved confounders of the
treatment and outcome. The same applies for Woodward’s interventionist account: The
surgical intervention on the potential cause breaks any confounding by unobserved variables
(as we noted earlier in the case of drinking wine, heart disease and SES ). The additional
assumption of causal sufficiency therefore appears redundant. Moreover, as can be seen
when considering the graphical structures of model T and C in Figure 1, in the manipulated
distribution when both x and y are subject to intervention, the causal influence of u on
x and v on y are broken by the interventions. Thus, in the setting of Definition 1 that
supposedly determines whether x is a cause of z, the set of variables V = {x, y, z} is in fact
causally sufficient. In this manipulated distribution u and v just function as independent
“disturbance terms” on z. The bottom line is that there are not only good reasons why
causal sufficiency would be a superfluous addition to Definition 1, but that even if it were
added, it would not solve the problem exhibited by model T .

The unobserved variables are thus the wrong target for blame here. The problem has
more to do with an independence relation between x and z that is not implied by the
causal structure. In the causal Bayes nets literature such cases are known to occur when a
particular assumption, known as causal faithfulness, is violated.

5. Faithfulness

Although Definition 1 does not include any explicit mention, causal faithfulness is a common
assumption associated with causal discovery methods. Faithfulness states that all the inde-
pendence relations in the probability distribution over the variables in V are a consequence
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Figure 3: If the causal effect along the two paths from a to c cancel each other out exactly,
then the model violates the faithfulness condition.

of the Markov condition. Violations of faithfulness are well known to result in situations
where particular causal relations cannot be detected. One of the most common and well-
understood violations of faithfulness occurs when there are two paths between variables
that cancel each other out exactly. Consider the three variables W = {a, b, c} and suppose
that they are causally related as shown in Figure 3. If each variable is determined by a
linear function of its causal parents (plus some independent noise term) and the correlation
between a and c due to the causal path a → b → c cancels out exactly the correlation due
to the direct effect of a → c, then a and c will appear independent despite the fact that
they are multiply causally related. Linearity plays no specific role other than that it is easy
to understand. The following binary parameterization for the causal structure in Figure 3
results in a similar violation of faithfulness:3

p(a = 1) 0.2
p(b = 1|a = 1) 0.6875
p(b = 1|a = 0) 0.2188

p(c = 1|a = 1, b = 1) 0.6
p(c = 1|a = 1, b = 0) 0.92
p(c = 1|a = 0, b = 1) 0.2
p(c = 1|a = 0, b = 0) 0.84

Variable a will be (unconditionally) independent of c. Consequently, if b were not observed,
then a and c would appear independent (violating faithfulness) in the passive observational
distribution and in the manipulated distribution intervening on a, and would appear inde-
pendent for an intervention on c (though not violating faithfulness in this case, obviously).
Unless b is also observed, the causal paths from a to c are undetectable even with surgical
interventions.

In the causal discovery literature it is standard practice, and often quite reasonable,
to assume that the faithfulness assumption is not violated: As is intuitive from the linear
example involving canceling paths, a violation of faithfulness depends on a very specific
constellation of parameters to render two causally connected variables independent. The
situation is similar in the binary case. This intuition is supported by a measure-theoretic
result that shows that with respect to Lebesgue measure over the set of linearly indepen-
dent parameters of a multinomial distribution that is Markov to the graph, a violation of
faithfulness has measure zero (see Theorem 7 in Meek (1995)).

3. This parameterization was constructed by marginalizing over a noisy-or model where b is a negative
(inhibiting) cause of c (Hyttinen et al., 2010).
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Given that the model in Figure 3 exhibits a similar shift from no causal relation between
a and c to a direct and indirect causal relation between the two variables depending on
whether b is observed, should model T also just be understood as a similar, but more
elaborate example of a violation of faithfulness?

On the one hand, the cases are similar: Model T constitutes a relatively straightforward
violation of faithfulness. In its standard form, faithfulness only refers to the passive ob-
servational distribution, and since the models in Figure 1 do not exhibit any (conditional)
independencies in the passive observational distribution, they do not violate the standard
formulation of faithfulness. However, it is natural to extend faithfulness to apply to all
manipulated graphs and their interventional distributions as well. Model T clearly violates
this stronger version of faithfulness, since it leaves x and z independent in the distribution
where x and y are simultaneously subject to an intervention, even though x is a direct
cause of z (as determined by the intervention on the full causal graph including u and v).
As with violations of standard faithfulness, model T exhibits a particular constellation of
parameters that can be characterized by an algebraic constraint on the parameters, and
Meek’s measure theoretic argument can be similarly applied to show that such a violation
has measure zero (see Appendix). From a measure theoretic point of view then, faithfulness
can be strengthened so that cases such as model T count as a violation, while violations
of faithfulness remain measure-zero events. Definition 1 could thus be restricted to such
“strongly” faithful causal relations, thereby avoiding T by excluding a space of parameters
that has measure zero.

On the other hand, despite its measure theoretic rarity, there are a few additional
points worth noting about T . First, for any parameterization of the “chain”-model C that
satisfies the constraint (t5 = t7) ∨ (t6 = t8), it is easy to construct a parameterization of
model T that will result in identical passive observational and manipulated distributions (as
listed in Section 3) over the observed variables V = {x, y, z}. Moreover, in practice such a
constraint need only hold approximately since the test to distinguish the two is only based
on a finite sample size. If one considered the possibility of an additional third unobserved
variable between x and y, then there are even more ways in which the parameters can satisfy
constraints to make the models indistinguishable from one another. So while formally an
event of measure zero, there are many situations where one may think one has discovered
a model with the structure among the observable variables resembling that of model C,
but where in fact there is another model that additionally has an x → z edge which is in
principle undetectable given any passive observation or surgical intervention on the observed
variables.4

Second, note that the violation of faithfulness exhibited by T is not a case of canceling
paths. In particular, note that when model T is subject to a surgical intervention on both
x and y simultaneously, then the x → y, the v → y and the u → x edge are broken. Thus,
in this manipulated model there is only one path from x to z, namely the direct effect of
x → z that remains. Still, this direct effect is not detectable by any surgical intervention
or passive observation.5

4. We currently do not know the general conditions of when this occurs in arbitrary structures, nor do we
have a more precise measure theoretic account.

5. Also, T is not a case of “single path unfaithfulness”, as described by McDermott (1995, p. 531). In that
case an intermediary variable with at least three states is needed.
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p(s = 1) 0.8
p(w = 1) 0.5

p(r = 1|s = 1, w = 1) 0.2
p(r = 1|s = 1, w = 0) 0.8
p(r = 1|s = 0, w = 1) 0.8
p(r = 1|s = 0, w = 0) 0.2

Figure 4: A simple model with a noisy xor-parameterization. If w is not observed, then no
surgical intervention on s or r can reveal the s→ r edge.

The violation of faithfulness that T exhibits is more similar to a model with a noisy xor -
parameterization.6 Consider the model in Figure 4 and its parameterization. If w is not
observed, then s and r would appear independent in the passive observational distribution
and in the manipulated distribution with an intervention on s, even though s is a direct
cause of r. In Figure 4, however, the violation of faithfulness depends on the particular
parameter of p(w = 1) = 0.5. For any other (non-extreme) value of that parameter, the
direct cause of s → r is detectable. In constrast, due to its extra complexity, model T is
not sensitive to a specific value of its parameters, even though it is sensitive to the relations
among its parameters (see Appendix). Nevertheless, model T and the model in Figure 4
share many similarities. In particular, in both cases the violation of faithfulness and the
resulting undetectability of a direct causal effect is due to an averaging effect when summing
over the unobserved variables. This is easily seen for the model in Figure 4:

p(r = 1|s = 1) =
�

w

p(r = 1|s = 1, w)p(w)

= 0.8× 0.5 + 0.2× 0.5
=

�

w

p(r = 1|s = 0, w)p(w) = p(r = 1|s = 0)

Simiarly, obviously, for r = 0, hence s ⊥⊥ r.

The case is similar for model T when summing over the unobserved variables u and v.7

Violations of faithfulness, at least those resulting from canceling-paths, are widely dis-
cussed in the causal inference literature and familiar to proponents of the interventionist
framework (Woodward, 2003, p. 49-50). So it may seem surprising that none of the inter-
ventionist definitions of a causal relationship include the faithfulness condition. It would
have provided a simple way to avoid all the problematic examples we have discussed so

6. I am grateful to Dominik Janzing for pointing this out.
7. Despite the fact that the source of the phenomenon lies in this averaging effect, one should not misun-

derstand the problem that model T illustrates as one pertaining exclusively to population level causal
claims. One could always interpret the probabilities as individual propensities. But, of course, the
discovery of individual causal propensities is unclear if one does not have some assumption about how
propensities relate to some population of instances.
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far. Our guess is that the faithfulness assumption was deliberately omitted to avoid other
problems. First, in many cases violations of faithfulness are detectable once interventions
are considered. For example, in the graph of Figure 3, if a, b and c are observed, then a and
c would be unconditionally independent (due to the violation of faithfulness), but depen-
dent given b. Given only passive observational data one may then incorrectly conclude that
a → b ← c is the true model. But an intervention on b would easily resolve the confusion
despite the unfaithfulness. Woodward uses an almost identical example to motivate his
interventionist account (Woodward, 2003, p. 53). Thus, one could maintain the view that
sometimes interventions can be used to overcome violations of faithfulness, and for those
cases where they do not – such as model T , or when b is not observed in the model in
Figure 3, or for the model in Figure 4 – there is a pragmatic reason not to infer a causal
relation, since the causal relation makes no difference under any surgical intervention or
passive observation of the observed variables.

Second, it is well known that deterministic causal relations trivially violate faithfulness.
If Definition 1 depended on faithfulness, it would not apply to deterministic causal relations.
Again, suitable surgical interventions can in many cases be used to identify even determinis-
tic causal relations (Richardson et al., 2007; Glymour, 2007), so requiring faithfulness would
seem like an unnecessarily strong restriction. For completeness we provide in the appendix
parameterizations of models T and C that are deterministic, but exhibit the same failure
of detectability of the x → z edge for all surgical interventions on the observed variables.
Obviously, these examples also show that the maximal change in the direct causal effect
that is not detectable can be as high as 0 vs. 1. In general, the maximum causal effect that
can be occluded depends on the other parameters of the model.

There are more reasons why the addition of faithfulness to the Definition 1 would appear
undesirable. For example, in causal relations with feedback, violations of faithfulness may
be more plausible than the measure theoretic argument suggests. So, overall, this does not
seem like a promising route, though not an impossible one.

Alternatively, one can, of course, insist that the interventionist should handle the ex-
amples presented here analogously to how she handles the violations of faithfulness due to
canceling pathways. Namely, pragmatism dictates that x is not a direct cause of z in model
T relative to V = {x, y, z}, because the direct influence makes no difference under any sur-
gical intervention on the observed variables. In Figure 3, a is also not judged a direct cause
of c when b is unobserved. Once the unobserved variables are included, then the direct
causal relations change, since now they do make a detectable difference. Such a pragmatic
argument hinges on an assumption of undetectability of the direct cause by interventions.
It is worth analyzing the details of such an assumption, especially for models, like T , that
exhibit a violation of faithfulness.

6. Interventions

In the discussion of Definition 1 in Section 2 we noted Woodward’s insistence on a wide
scope of “possible” interventions to characterize causal relations. Woodward is quite explicit
in accepting that many of the interventions required to detect causal relations may not be
practically feasible (the effect of the gravitational field of the Moon on the tides is a case
in point). To require some intervention to determine a direct causal relation thus does
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not constitute a requirement of being actually able to perform the intervention, but is
something akin to a conceptual criterion of what it takes to be a direct cause. It is not
entirely clear how wide the scope of interventions considered in Definition 1 is supposed to
be, but it appears uncontroversial that it should include all physically possible interventions
Reutlinger (2012).

Such a reading of the scope of interventions may also explain why Woodward only
considers “surgical” interventions. In contrast to surgical interventions there are weaker
forms of intervention. For example, a surgical intervention on the variable “income” would
set the income of the participants in the experiment independently of its normal causes.
But alternatively, one could also consider the effect of an intervention that only adds, say,
$5,000 to each participant’s income. In that case, the variable “income” is still influenced
by its normal causes (education, etc.), but the intervention adds an additional “nudge”.
Such an intervention is often referred to as a “soft” intervention. To give a maximally
general account of an intervention, one could only require that an intervention change the
conditional probability distribution of the intervened variable given its normal causes. A
surgical intervention makes the intervened variable independent of its normal causes, while
a soft intervention is an intervention that is not surgical.

Woodward does not discuss soft interventions, so it is not clear whether soft interven-
tions are to be excluded from Definition 1. While there are many cases where a surgical
intervention is not practically feasible, but a soft intervention is, it may still be within the
scope of physical possibility that for any physically possible soft intervention, there is also
a physically possible surgical intervention on the same variables. Would that make the
omission of soft interventions in Definition 1 innocuous?

Again the answer is not straightforward and depends on the exact reading of Definition 1:
On the one hand, if only V = {x, y, z} of model T are observed, then there is no soft
intervention that changes x that will change z (or the probability distribution of z) when
all other variables in V besides x and z (i.e. y) are held fixed at some value by a (surgical)
intervention. So on this reading, the omission of soft interventions is innocuous if the
physical possibility of surgical interventions is taken to be suitably wide. A proponent of
the interventionist account could thus maintain that Definition 1 need not encompass soft
interventions, since the same scope can be achieved with surgical ones, and the fact that the
x→ z edge in T is not detected, is not a bug, but a pragmatic virtue of the account, since
for all surgical interventions on the observed variables, the x → z edge cannot be detected
anyway.

On the other hand, however, there exist soft interventions, for example, on y, such that

models C and T are distinguishable even if only the variables V = {x, y, z} are observed.

For example, a soft intervention that changes the parameter t5 = p(y = 1|v = 1, x = 1)
from 0.8 to 0.85 would make models T and C distinguishable (see Appendix). No other
variable would need to be intervened on.

Definition 1 does not consider soft interventions on y to detect whether x is a direct
cause of z. So it is not clear what an interventionist who subscribes to Definition 1 would
say to this case. The dilemma is that using a soft intervention on y, a scientist is in principle
able to determine the presence of the x→ z edge in model T (while variables u and v remain
unobserved), but cannot do the same using just surgical interventions.

12
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Unfortunately, broadening Definition 1 to encompass soft interventions on any observ-
able variable entails its own problems. Soft interventions have extremely weak requirements
that can make their implementation difficult. Changing the parameter t5 = p(y = 1|v =
1, x = 1) from 0.8 to 0.85 constitutes a soft intervention, but it is easier described than
implemented. We noted that one of the advantages of a surgical intervention is that it can
be implemented without knowing the causal context of the intervened variable. The same
does not apply to soft interventions in general. Moreover, it is not the case that all soft
interventions on y are sufficient to detect the x→ z edge. In particular, a soft intervention
that changes only t6 does not distinguish models T and C.

The issue becomes more poignant when one considers what it means to perform the
same intervention on two different causal models. Models T and C have the virtue (vice?)
that in terms of the conditional probability distribution of y given its parents, they are
identical. But consider an intervention on z. In the case of a surgical intervention on z, it
is trivial to say when such an intervention in model T would be the same as in model C:
The intervention would have to set the variable z to the same fixed value or according to
the same randomizing distribution, so that the marginal manipulated distribution of z is
the same no matter whether the underlying causal model is T or C. For a soft intervention
there need not be such demand, since a soft intervention is not supposed to make the
intervened variable independent of its normal causes. By construction, models T and C are
such that a soft intervention on y that changes only t5 does result in the same marginal
manipulated distribution over y in both T and C. But for a soft intervention on z, the
same need not hold: While it is possible to perform a soft intervention that changes t9
but not t11 in model T , the same is impossible in model C, since t9 and t11 are not only
equal, but identical ; they must change together. In general then, the demand for identical
marginal distributions over the intervened variables may be considered an unnecessarily
strong standard for performing the “same” soft intervention on different underlying causal
models. Unlike surgical interventions that manipulate parameters in bulk, soft interventions
can manipulate parameters individually. But parameters, even how many there are, may
well be unknown.

One could retreat and claim that soft interventions are ill-defined, at least for the pur-
pose of establishing causal relations. For the general case there seems to be some truth to
that. But the earlier example of a soft intervention on the variable “income” shows that
there certainly appear to exist soft interventions that can be implemented and are easily
understood even though the full causal structure was not described.8 Similarly, unless one
wants to deny the possibility of soft interventions for causal discovery in general9, the case
here of the specific soft intervention on y, changing parameter t5, is one of the least contro-
versial soft interventions, since the parameterization of the target of the intervention, i.e.
y, is the same in the two models T and C that are to be distinguished.10

8. Of course, it is possible that other tacit assumptions were at play.
9. Recall that instrumental variables have formally the same structure as soft interventions.

10. We note that there also exist soft interventions that can be used to detect causal relations in other cases
of violations of faithfulness, such as canceling pathways (Figure 3) or deterministic causal relations. In
some of those cases, however, there may not be soft interventions as simple as the one on t5 here. We
will not pursue the issue here.
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We have referred to the requirement in Definition 1, that there exist some suitable
intervention, as a conceptual requirement of a direct cause, because it does not require that
a scientist should actually be able to perform the intervention that would allow her to detect
the direct cause. However, we have shown that there exist cases, such as model T versus
model C, where surgical interventions do not identify a direct causal relation, which can be
detected by a soft intervention. According to a literal reading of Definition 1 such a soft
intervention should not be considered relevant, because it intervenes on the wrong variable
(and is soft). So we are left with a causal relation detected by a soft intervention that is
not permitted by Definition 1. Its conceptual appeal looks tarnished.

One could re-write Definition 1 to include soft interventions on other variables, thereby
including the causal relations only detectable by soft interventions. But this imports the
difficulties of how to make sense of the implementation of many soft interventions in general
when the causal structure is not already known. Thus broadening Definition 1 in order to
preserve its conceptual appeal of tracking the detectability of causes comes at the cost of
weakening its pragmatic appeal.

The upshot is that soft interventions break apart the virtues of Definition 1: One can
save the conceptual criterion of being a direct cause, but one loses the pragmatic appeal
of the definition that connects to discovery procedures in science. Or one can maintain
the pragmatically cleaner stance that denies the direct cause from x to z (relative to V =
{x, y, z}) in model T and one then may have to acknowledge that a nifty scientist can show
the presence of a direct causal effect that supposedly could not exist.

Another way of looking at it is to acknowledge that Woodward’s existential quantifi-
cation over “possible” interventions is doing an enormous amount of work skirting a line
between a mathematically well defined search space for causal relations, and characterizing
conceptually satisfying interventions.

7. Implications for Causal Discovery

In light of the discussion in this paper it is evident that Definition 1 is not sufficiently precise
to form part of a basis for a causal discovery algorithm. Unless cases such as model T are
excluded by additional assumptions, there will be cases where the detection of direct causal
effects will not only depend on the surgical interventions that are possible.

Apart from faithfulness, model T could be excluded by supplementing Definition 1 with
a requirement that causal relations have a particular parametric form. For example, one
cannot parameterize model T with linear causal relations without making the x → z edge
detectable for some surgical intervention on a subset of the variables in V (Eberhardt et al.,
2010). However, linearity constitutes, like faithfulness, a strong assumption about the causal
relations among the set of variables. It is known to be violated in many actual cases of causal
relations, and there are causal discovery procedures, especially ones involving interventions,
that do not depend on it.

Alternatively, one could modify the assumption of causal sufficiency such that it must
hold not only for the crucial distribution of Definition 1, but also for the passive obser-
vational distribution (which is clearly not the case for model T ). But one should then
consider just how much of science the resulting definition would not apply to: We have
so far described the unobserved variables u and v in model T as if they were well-defined
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causal variables that – if they were observed – could be subject to intervention. However,
often latent variables are used as a catch-all for various background effects that result in
confounding. For many inference procedures that permit latent confounding, there may not
be a commitment that the latent variable is a particularly nicely defined variable that can
be subject to intervention. In econometrics, latent confounding often just represents any
type of correlation in the error variables. Consequently, the skepticism that has been raised
concerning the possibility of performing all the interventions required in the standard in-
terventionist account, applies in much stronger form to potential interventions on variables
we currently do not observe. A demand that in principle one can, so to speak, always zoom
out far enough to capture all unobserved variables, may be too strong, and a suitable soft
intervention on z may be much easier to perform, or at least more plausible.

We expect cases like model T to raise interesting issues for causal discovery from data
sets that do not share the same set of variables, so-called overlapping data sets. For example,
suppose that the true underlying causal structure has the form of model T , but one research
group collects data (possibly using surgical interventions) over the variables V = {x, y, z},
and another research group collects data (also using surgical interventions) over the variables
W = {u, x, z}. The first research group will not detect the x → z edge, while the second
will. How should they now combine their findings? It seems that their findings conflict, but
in fact we know that each group found exactly what they should, given the underlying true
model. The appropriate inference principles to combine the results must still be worked
out.

A further aspect that is neglected by Definition 1 is that causal relations may involve
feedback: What should count as a direct effect of x on z if z also has an effect on itself?
Ordinarily, such feedback relations are represented in terms of time series or differential
equations. The detection of feedback from data, especially if it involves “self-loops”, is
known to be difficult. Depending on how exactly one characterizes the feedback, the notion
of direct cause may change. Hyttinen et al. (2012) discuss this issue in some detail for the
linear case in their Section 2.3, and proceed to use a standardized notion of direct cause that
includes the self-loops on the non-intervened variable, but no feedback via other observed
variables.

8. Conclusion

We have argued that Woodward’s interventionist account of a direct cause runs into dif-
ficulties with particular cases of violations of faithfulness that we believe have not been
analyzed in this way before. Although we have focused on Woodward’s definition, as stated
here in Definition 1, we believe that if anything, it is among the least problematic among
(interventionist) definitions of ‘cause’. The argument presented here can be adapted easily
to apply to other purely interventionist definitions, as well as to anthropocentric definitions
of cause that in addition to interventions, build on the presence of an agent (Menzies and
Price, 1993). Regularity accounts of cause are known to have problems with violations
of faithfulness and do not consider causally insufficient sets of variables, while mechanis-
tic accounts seem to presuppose that one knows everything already anyway. So all these
other definitions are in our view substantially vaguer with regard to their commitments and
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subject to additional criticism. Definition 1 is in that sense pleasantly clear and widely
applicable.

We repeat that the argument we have stated does not imply an inconsistency in Wood-
ward’s definition. Our challenge on the basis of model T and model C can be avoided
by a requirement that the causal models be faithful, or by any of the other modifications
we have pointed to. For any responses of this type, it only behooves a proponent of the
interventionist account to be more explicit, and complete the commitments they subscribe
to in defining a direct cause (or a cause). We have suggested that none of these additional
commitments are particularly desirable because they come at the expense of the virtues
that make the interventionist account so appealing. But if one leaves the details of the con-
nection to causal discovery aside, one may just accept that along the edges most concepts
have counterexamples.
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Appendix A. Constraints for Models T and C

We consider the general constraints on the parameterization that two models of the structure
of T and C must satisfy in order to be indistinguishable for a passive observation and all
surgical interventions on the observed variables. We thus now use T and C to refer to models
with the respective structures in Figure 1, rather than the specific parameterizations listed
in Table 2, and we use the notation p(A|B||C) to refer to the probability of the variables
in A conditional on the variables in B in the distribution in which the variables in C have
been subject to a surgical intervention.

Model T and model C must be identical for the following distributions over the observed
variables.

1. the passive observational distribution:

P (X,Y, Z) =
�

uv

P (U)P (V )P (X|U)P (Y |V,X)P (Z|U, V, X, Y )
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2. the manipulated distribution11 with an intervention on X

P (Y,Z|X||X) =
�

uv

P (U)P (V )P (Y |V,X||X)P (Z|U, V, X, Y ||X)

=
�

uv

P (U)P (V )P (Y |V,X)P (Z|U, V, X, Y )

To illustrate, we substitute the parameters for this particular case. It should be done
analogously for all the other seven distributions.

P (y = 1, z = 1|x = 1||x = 1) = t1t2t5t9 + (1− t1)t2t5t17 + t1(1− t2)t7t13 + (1− t1)(1− t2)t7t21
P (y = 1, z = 0|x = 1||x = 1) = t1t2t5(1− t9) + (1− t1)t2t5(1− t17)

+t1(1− t2)t7(1− t13) + (1− t1)(1− t2)t7(1− t21)
P (y = 0, z = 1|x = 1||x = 1) = t1t2(1− t5)t10 + (1− t1)t2(1− t5)t18

+t1(1− t2)(1− t7)t14 + (1− t1)(1− t2)(1− t7)t22
P (y = 0, z = 0|x = 1||x = 1) = t1t2(1− t5)(1− t10) + (1− t1)t2(1− t5)(1− t18)

+t1(1− t2)(1− t7)(1− t14) + (1− t1)(1− t2)(1− t7)(1− t22)
P (y = 1, z = 1|x = 0||x = 0) = t1t2t6t11 + (1− t1)t2t6t19

+t1(1− t2)t8t15 + (1− t1)(1− t2)t8t23
P (y = 1, z = 0|x = 0||x = 0) = t1t2t6(1− t11) + (1− t1)t2t6(1− t19)

+t1(1− t2)t8(1− t15) + (1− t1)(1− t2)t8(1− t23)
P (y = 0, z = 1|x = 0||x = 0) = t1t2(1− t6)t12 + (1− t1)t2(1− t6)t20

+t1(1− t2)(1− t8)t16 + (1− t1)(1− t2)(1− t8)t24
P (y = 0, z = 0|x = 0||x = 0) = t1t2(1− t6)(1− t12) + (1− t1)t2(1− t6)(1− t20)

+t1(1− t2)(1− t8)(1− t16) + (1− t1)(1− t2)(1− t8)(1− t24)

3. the manipulated distribution with an intervention on Y

P (X,Z|Y ||Y ) =
�

uv

P (U)P (V )P (X|U, Y ||Y )P (Z|U, V, X, Y ||Y )

=
�

uv

P (U)P (V )P (X|U)P (Z|U, V, X, Y )

4. the manipulated distribution with an intervention on Z (since this distribution does
not involve the parameters specifying p(z|u, v, x, y) that distinguish the models, these
equations are not relevant)

P (X,Y |Z||Z) =
�

uv

P (U)P (V )P (X|U)P (Y |V,X)

5. the manipulated distribution with an intervention on X,Y

P (Z|X,Y ||X,Y ) =
�

uv

P (U)P (V )P (Z|U, V, X, Y ||X,Y )

=
�

uv

P (U)P (V )P (Z|U, V, X, Y )

11. We condition on the intervened variable(s) in order to avoid having to specify a particular intervention
distribution.
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6. the manipulated distribution with an intervention on X,Z (since this distribution
does not involve the parameters specifying p(z|u, v, x, y) that distinguish the models,
these equations are not relevant)

P (Y |X,Z||X,Z) =
�

uv

P (U)P (V )P (Y |U, V, X,Z||X,Z)

=
�

v

P (V )P (Y |V,X)

7. the manipulated distribution with an intervention on Y,Z (since this distribution does
not involve the parameters specifying p(z|u, v, x, y) that distinguish the models, these
equations are not relevant)

P (X|Y,Z||Y,Z) =
�

uv

P (U)P (V )P (X|U, V, Y, Z||Y,Z)

=
�

u

P (U)P (X|U)

In addition, both models must satisfy the following inequalities. The bold font indicates (at
least one way) how the parameterizations of T and C in Table 2 satisfy the inequalities.

1. to make u a cause of x:

t3 �= t4

2. to make x and v causes of y:

((t5 �= t7) ∨ (t6 �= t8)) ∧ ((t5 �= t6) ∨ (t7 �= t8))

3. to make u, v and y a cause of z

((t9 �= t17) ∨ (t10 �= t18) ∨ (t11 �= t19) ∨ (t12 �= t20) ∨ (t13 �= t21) ∨ (t14 �= t22) ∨ (t15 �= t23) ∨ (t16 �= t24))

∧((t9 �= t13) ∨ (t10 �= t14) ∨ (t11 �= t15) ∨ (t12 �= t16) ∨ (t17 �= t21) ∨ (t18 �= t22) ∨ (t19 �= t23) ∨ (t20 �= t24))

∧((t9 �= t10) ∨ (t11 �= t12) ∨ (t13 �= t14) ∨ (t15 �= t16) ∨ (t17 �= t18) ∨ (t19 �= t20) ∨ (t21 �= t22) ∨ (t23 �= t24))

Model T must in addition make x a cause of z by satisfying the following inequality:

(t9 �= t11) ∨ (t13 �= t15) ∨ (t17 �= t19) ∨ (t21 �= t23) (1)
∨ (t10 �= t12) ∨ (t14 �= t16) ∨ (t18 �= t20) ∨ (t22 �= t24)

while model C must satisfy its negations, i.e. all the parameter pairs must be equal.

Since model T must satisfy at least one disjunct of Constraint 1, while C must satisfy
its negation, one can easily detect the distributional constraints from the list 1-7 above that
will not be trivially satisfied. All such quantities contain either only parameters from the
first line, or only parameters from the second line of Constraint 1. We will focus only on the
satisfaction of disjuncts from the first line, the case for the second line is exactly analogous.
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In the most general case model T differs from model C by satisfying every disjunct
in Constraint 1, and we can write the parameters as t9 = t11 + d1, t17 = t19 + d2, t13 =
t15 +d3, and t21 = t23 +d4 for non-zero d1, . . . , d4. There are seven distributional quantities
containing the parameters t9, t13, t17 and t21, giving rise to the following four independent
constraints if models T and C are to be indistinguishable for a passive observation and all
surgical interventions on the observed variables:

t1t2t3t5d1 + (1− t1)t2t4t5d2 + t1(1− t2)t3t7d3 + (1− t1)(1− t2)t4t7d4 = 0
t1t2t5d1 + (1− t1)t2t5d2 + t1(1− t2)t7d3 + (1− t1)(1− t2)t7d4 = 0
t1t2t3d1 + (1− t1)t2t4d2 + t1(1− t2)t3d3 + (1− t1)(1− t2)t4d4 = 0

t1t2d1 + (1− t1)t2d2 + t1(1− t2)d3 + (1− t1)(1− t2)d4 = 0

Solving these constraints implies that a model T must satisfy the following constraints
on its parameters

t5 = t7

t11 = t9 − (d3(−1 + t2)/t2)
t15 = t13 − d3 (2)
t19 = t17 − (d4(−1 + t2)/t2)
t23 = t21 − d4

where d3 and d4 can be chosen freely as long as at least one of them is non-zero and the
resulting quantities remain probabilities. An analogous set of constraints results when the
difference between models T and C results from disjuncts in the second line of Constraint 1.
These are non-trivial algebraic constraints on the parameter space, which, following Meek
(1995), implies that their solution space has measure zero compared to arbitrary parame-
terizations of a model with a structure like T .

Similarly, these constraints can be used to construct a parameterization for a model T
that is indistinguishable from a parameterized model C, as long as the parameterization of
C also respects the t5 = t7 constraint (or t6 = t8). In particular, the parameterization of T
in Table 2 is constructed from the parameterization of C in that table using d3 = 0.1 and
d4 = 0.

Appendix B. Soft Interventions

Note that the constraints in (2) do not contain the parameters t3 or t4 which would be influ-
enced by a soft intervention on x, hence a soft intervention on x is not going to distinguish
between models T and C.

A soft intervention on y that changes t5 will break the first equality in (2), thus the
models become distinguishable. In particular, if t5 is changed from 0.8 to 0.85 by a soft
intervention on y in both models T and C, then in the resulting manipulated distribution,
we will have

p∗T (x = y = z = 1) = 0.24856
vs. p∗C(x = y = z = 1) = 0.24928
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which is not a rounding error.
Lastly, note that t6 does not feature in the constraints in (2), so a soft intervention that

changes it in both T and C, will not distinguish between the two models.

Appendix C. Deterministic Parameterizations of T and C

Deterministic parameterizations of the two models in Figure 1 that are indistinguishable
for a passive observation and any surgical intervention on the observed variables.

parameter conditional probability terms T C
t1 p(u = 1) 0.5 0.5
t2 p(v = 1) 0.5 0.5
t3 p(x = 1|u = 1) 0 0
t4 p(x = 1|u = 0) 1 1
t5 p(y = 1|v = 1, x = 1) 1 1
t6 p(y = 1|v = 1, x = 0) 1 1
t7 p(y = 1|v = 0, x = 1) 1 1
t8 p(y = 1|v = 0, x = 0) 0 0
t9 p(z = 1|u = 1, v = 1, x = 1, y = 1) 1 0
t10 p(z = 1|u = 1, v = 1, x = 1, y = 0) 1 1
t11 p(z = 1|u = 1, v = 1, x = 0, y = 1) 0 0
t12 p(z = 1|u = 1, v = 1, x = 0, y = 0) 1 1
t13 p(z = 1|u = 1, v = 0, x = 1, y = 1) 0 1
t14 p(z = 1|u = 1, v = 0, x = 1, y = 0) 1 1
t15 p(z = 1|u = 1, v = 0, x = 0, y = 1) 1 1
t16 p(z = 1|u = 1, v = 0, x = 0, y = 0) 1 1
t17 p(z = 1|u = 0, v = 1, x = 1, y = 1) 1 1
t18 p(z = 1|u = 0, v = 1, x = 1, y = 0) 1 1
t19 p(z = 1|u = 0, v = 1, x = 0, y = 1) 1 1
t20 p(z = 1|u = 0, v = 1, x = 0, y = 0) 1 1
t21 p(z = 1|u = 0, v = 0, x = 1, y = 1) 1 1
t22 p(z = 1|u = 0, v = 0, x = 1, y = 0) 1 1
t23 p(z = 1|u = 0, v = 0, x = 0, y = 1) 1 1
t24 p(z = 1|u = 0, v = 0, x = 0, y = 0) 1 1

Note that if the latent variables u and v are supposed to be non-extreme, then only
u = v = 0.5 are possible values.

We do not find the deterministic case particularly enlightening. Moreover, it is well
known that deterministic causal relations are often more difficult to discover than proba-
bilistic ones. In that sense we think that the examples of parameterizations for model T
and C in Table 2 with purely positive distributions provide a much stronger case.
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