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Abstract

In this paper, I review a number of interpretational frameworks
for relativistic phenomena like length contraction and relativity of si-
multaneity. Of central focus is the book Physical Relativity by Harvey
Brown, where Brown advocates a view in which matter takes ontologi-
cal priority over geometry. I discuss Brown’s claims and examine some
of the criticisms they have received. I discuss the nature of simultane-
ity in particular, sketching the historical context and commenting on
its relation to some of Brown’s broader arguments. Finally, I examine
the consequences that Brown’s thesis has for what constitutes good
pedagogy when teaching special relativity.
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1 Introduction

In a 1976 paper ambitiously titled “How to teach special relativity”, Northern
Irish physicist John Bell advocated a “bottom-up” pedagogical approach,
which he contrasted with the top-down approach used by Einstein to develop
the theory:

The difference of style is that instead of inferring the experience
of moving observers from known and conjectured laws of physics,
Einstein starts from the hypothesis that the laws will look the
same to all observers in uniform motion. This permits a very
concise and elegant formulation of the theory, as often happens
when one big assumption can be made to cover several less big
ones. There is no intention here to make any reservation what-
ever about the power and precision of Einstein’s approach. But
in my opinion there is also something to be said for taking stu-
dents along the road made by Fitzgerald, Larmor, Lorentz, and
Poincaré. The longer road sometimes gives more familiarity with
the country.[1, p. 77]

For Bell, phenomena like length contraction and time dilation can be dis-
cussed in terms of the material composition of physical rods and clocks in
motion. While Bell approached this is as essentially a didactic issue, the
approach he advocates, if taken seriously, has implications for the status of
space-time in relativity theory. Consideration of these implications has been
taken up by philosophers of physics in recent years.

The debate over what is what meant by words like “space” and “time”
is by no means a product of post-Einsteinian scientific and philosophical
inquiry. For ancient civilizations in the Near East, space was a solid dome
vaulted over a flat earth—the “firmament” in which celestial structures were
embedded like gems on a canvas.1 As cosmologies developed and accepted
the idea of a round earth, the firmament remained in various forms, from the
philosophy of Plato in the fourth century BCE to the heliocentric model of
Copernicus in the sixteenth century CE. As natural philosophers pondered
the structure and substance of the heavens (what one might call “space-out-
there”), debates raged over the nature of motion and whether there is some
fixed notion of space and time to which motion can be unambiguously related
(what one might call “space-down-here”).

1See, for example, early Jewish cosmology: “And God said, Let there be a firmament
in the midst of the waters, and let it divide the waters from the waters. And God made
the firmament, and divided the waters which were under the firmament from the waters
which were above the firmament: and it was so.” (Gen. 1:6–7, KJV).
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For Newton, the idea of absolute space and time was a component of
his analyses of motion and gravitation (though he did not envisage it as a
literal substance but an entity of a different kind [10]). Among Newton’s
contemporaries, Leibniz in particular was a strong opponent of this picture
and gave an account of motion in which space was demoted to a mental
construct [Id.]. It is with the benefit of the perspective of twentieth century
physics and its discoveries of the special and general theories of relativity,
along with quantum theory, that we understand how unified these various
questions are. Understanding the nature of space-out-there, space-down-
here, time, motion, and how all these things relate to what we know as
matter, all belong under a single overarching framework: how should one
interpret the mathematical formalism of relativity theory? For in relativity
theory, space and time are unified into a single mathematical entity, a space-
time manifold2, while motion is specified via coordinate systems imposed on
the manifold. The answers to these questions are disputed no less ferociously
than they were before Einstein; however, the fact that these various questions
are not, after all, independent of one another has transformed the way in
which they are approached.

In the following pages, I examine recent work on two related questions
within this framework. The first, in Section 2.1, is whether space-time as an
independent entity is necessary for explaining the behaviour of matter, or if
space-time should be understood as supervening on matter, acting merely as
a convenient encoding of properties that belong to the matter itself. To put
it another way, should one of the two—matter or geometry—be considered
more fundamental than the other: and, if so, which one?

Central to this question is Harvey Brown’s 2005 book Physical Relativity
[3] and related papers that Brown co-wrote with Oliver Pooley [4, 5], along
with responses to Brown’s book by various authors. Brown is an advocate
of the idea that Minkowski space-time is nothing more than a mathematical
encoding of the dynamics of interacting bodies/matter fields—that it is, fol-
lowing the title of his 2004 paper with Pooley [5], “a glorious non-entity”. I
review in detail Brown’s position and arguments, along with some of the al-
ternative views that have been offered in response. The emphasis throughout

2Formally understood as a smooth manifold, M , possessing a metric structure com-
patible with the theory’s postulates. The metric structure is provided by a tensor field,
g, defined on the manifold. Any suitable pair (M, g) may be called “a space-time” in the
mathematical sense. Physicists may also simply refer to “space-time” (indefinite article
omitted) with the implication that they mean the particular space-time of our own uni-
verse, not the various counterfactual alternatives that may be studied within relativity
theory. These mathematical foundations will be rehearsed in more detail in the following
section.
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is on the special theory of relativity (SR), but insights provided from—and
applied to—general relativity (GR) are included where appropriate.

Following this discussion, my attention turns in Section 3 to a second
question: what does it mean in the framework of special relativity to say
that two events are simultaneous? That simultaneity is relative is one of the
first insights provided by the theory; hence, one cannot say that two events
are simultaneous, full stop. Rather, the typical language of special relativity
is to say, “Event A and event B are simultaneous in the reference frame S
associated with some observer.” However, even the unambiguousness of this
statement can be questioned in the context of relativity’s formalism. One
interpretation posits that such statements about events amount to nothing
more than establishing a mathematical convention: a convenient, but ulti-
mately arbitrary, decision no different than defining a particular direction
to be “up”. Another interpretation argues that the notion of simultaneity
in a particular frame is unambiguous and represents a genuine property of
distant events. Even within the latter perspective, there are two views to
consider: that the non-conventionality of simultaneity should be taken as a
theorem of special relativity or as an empirical fact. While these questions are
fundamentally independent from the discussion about matter or geometry’s
priority, the latter topic heavily influences my overview of the former.

It is in the context of these perspectives on relativity that I then briefly
return in Section 3.2 to the issue that was on John Bell’s mind in 1976:
teaching relativity to the next generation of physicists. The pedagogy of
special relativity requires having a sound approach to discussing the foun-
dations of special relativity (those being the relativity principle, the light
principle, and related subtleties) and the standard set of “paradoxes”—the
domain of adventurous twins and inadequate barns—introduced to convince
students of the principles’ internal consistency. In this section, I will discuss
the postulates and the twin paradox; specifically, how certain approaches to
them are incompatible with some of the central ideas discussed in the rest of
the paper.

2 Dynamical underpinnings of relativity the-

ory

In Section 2.1, I will discuss Brown’s proposal for viewing relativity dynam-
ically. In Section 2.2 I will consider some of the responses his proposal has
received. Section 2.3 is a short discussion, following Butterfield, on the core
“moral” that can be distilled from Brown’s arguments.
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2.1 Brown’s constructivist approach

2.1.1 Overview

The approach taken by Harvey Brown and Oliver Pooley [4, 5], and devel-
oped in greater depth in Brown’s book [3], has its kernel in Bell’s paper [1].
In particular, they follow the latter’s approach to teaching special relativity
(SR)—referred to by Bell as the “Lorentzian pedagogy”—and take it seri-
ously as a model for understanding the conceptual foundations of the theory.
Of central importance in Brown’s understanding of SR is the distinction, as
it was formulated by Einstein3, between a “principle (or phenomenological)
theory” and a “constructive theory”. An analogy he reiterates a number of
times is the comparison between the classical thermodynamics of Clausius
and Kelvin and the statistical mechanics of Boltzmann and Maxwell:

If for some reason one is lacking the means of mechanically mod-
elling the internal structure of the gas in a single-piston heat en-
gine, say, one can always fall back on the laws of thermodynamics
to shed light on the performance of that engine—laws which stip-
ulate nothing about the structure of the working substances, or
rather hold whatever that structure might be. The laws or prin-
ciples of thermodynamics are phenomenological, based on a large
body of empirical data; the first two laws can be expressed in
terms of the impossibility of certain types of perpetual-motion
machines.[3, p. 72]

In comparison, Brown argues, one can understand the statistical mechanical
approach as a constructive method for approaching the same phenomena:
overarching principles like the non-decreasing entropy of isolated systems are
seen to emerge from the collective dynamics of particles, rather than being
postulated a priori.

Brown’s (and, it appears, Pooley’s) view is three-fold: that the best ex-
planations of phenomena come from constructive theories; that, as usually

3Indeed, Brown’s book goes to great lengths to argue that Einstein’s understanding
of the descriptive power of SR was largely in line with Brown’s own. Some of Brown’s
critics, Janssen in particular [12], dispute this point. While a historical study of relativity’s
context and development is interesting in its own right, what Einstein may or may not
have thought is of little importance to the ontological questions under consideration. I
do not mean to suggest Brown is making an appeal to authority—his quotations from
Einstein and his contemporaries generally serve an illustrative purpose, rather than a
rhetorical one—but I do think that belabouring the point risks derailing the discussion.
Consequently, in what follows I omit most of the discussion about the views of relativity’s
founders on its descriptive status.
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formulated, SR is a principle theory; and that an interpretative approach to
SR based on Bell’s Lorentzian pedagogy provides a constructive view that
should be preferred to the orthodox principle theory approach [5]. I review
the arguments put forward for each of these claims, in turn. Before doing
so, however, it will be helpful to clarify a few points about what Brown’s
program is not an attempt to do.

2.1.2 Formalism

To this end, I briefly review some of the formalism of relativity theory so
as to put later comments in the appropriate mathematical context. It is
assumed that the reader is familiar with these definitions; they are stated here
primarily to establish notational conventions. Any introductory textbook
on general relativity (GR) or differentiable geometry may be consulted for
further details. For my definitions, I follow those of Wald [18].

Definition 1. An n-dimensional differentiable real manifold M is a
geometric structure satisfying the following properties [18, p. 11]:

1. M consists of a set of points, together with a collection of subsets Oα

such that ∪αOα = M .

2. ∀α∃ψα such that ψα is a bijective map ψα : Oα → Uα, where Uα is an
subset of Rn. Each pair (Oα, ψα) is called a chart and the collection of
all the charts is called an atlas.

3. For any charts whose overlap in the manifold is non-trivial, Oα∩Oβ 6=
∅, we can consider the map ψβ ◦ ψ−1α which takes subsets of Uα to
subsets of Uβ in Rn. This map is required to be differentiable and its
domain and range are required to be open sets. If instead of merely
differentiable, this transition map is smooth (infinitely differentiable),
we say the manifold is smooth.

It is a smooth manifold that provides the bare structure on which the
elements of GR (tensors) are overlaid. Of fundamental importance is the
metric tensor [18, p. 22]:

Definition 2. A metric tensor (or just metric), g, on a manifold M
is a symmetric, non-degenerate tensor field of type (0, 2). That is, given
two vector fields v1 and v2 defined on M , g is a linear map to R such that
g(v1, v2) = g(v2, v1) and such that g(v, v1) = 0 for all v in the tangent space
of M only if v1 = 0.
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If the signature of the metric tensor is positive definite, the combination
(M, g) is called a Riemannian manifold. If the signature is (p, 1) (“mostly
plus”) or (1, q) (“mostly minus”), the combination (M, g) is called a Lorentzian
manifold or a space-time. In SR, the Riemann curvature tensor vanishes and
the metric takes the special form, according to the two sign conventions,
of either diag(−1,+1,+1,+1) or diag(+1,−1,−1,−1), respectively. This is
the Minkowski metric and is usually written as η.

2.1.3 What Brown does not say

Having gotten these mathematical preliminaries out of the way, I am in posi-
tion to clearly state two claims that Brown’s philosophical position does not
entail. First, Brown’s constructive approach to relativity does not necessi-
tate a complete denial of space-time realism.4 Granted, this seems a bizarre
assertion given the “glorious non-entity” description of space-time acknowl-
edged earlier. The key point is to note how, in the above definitions (which,
again, are standard), the definition of space-time is both a manifold, M , and
a metric, g. It is g, not M , that encodes what one generally means by “geom-
etry”; absent g, the bare manifold M is topological, not geometrical. While
the usual notion of space-time substantivalism attributes an independent ex-
istence to space-time, (M, g), it is possible that one could follow Brown’s
arguments that geometry—that is, g—supervenes on matter, while main-
taining a realist view of the space-time points—that is, of M . Nonetheless,
as we shall see when I get to Brown’s critics in Section 2.2, there is potential
for some confusion on this issue.

Second, Brown’s constructive approach does not require that one treat
SR as little more than the zero curvature limit of GR (though, as I have said,
vanishing Riemann curvature is indeed a feature of SR):

The special theory of 1905, together with its refinements over the
following years, is, in one important respect, not the same the-
ory that is said to be the restriction of the general theory in the

4That is, the view the view that space-time—or at least a part of it—is a real entity
that exists apart from the matter that inhabits it. Of course, other objections like the
Hole Argument [15] may well do this anyway. To be fair, it is clear that Brown has a
fully relationalist view in mind; the point is simply that much of what he argues for about
the priority of matter over geometry can be considered entirely independently from the
central point of contention between relationalists and substantivalists. Indeed, Brown’s
collaborator in earlier versions of his program, Oliver Pooley, has outlined a defence of
what is described as “sophisticated substantivalism” [16], though it is not immediately
clear whether such a program might be compatible with what Pooley has co-authored
with Brown.
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limit of zero gravitation (i.e. zero tidal forces, or space-time cur-
vature). The nature of this limiting theory, and its ambiguities,
will be discussed later; for our present purposes we shall associate
it with the local, tangent-space structure of GR, which to a good
approximation describes goings-on in sufficiently small regions of
space-time.[3, p. 15]

The distinction is an important one, because it, in a sense, legitimizes Brown’s
approach.5

The importance of this fact is underscored in a separate discussion—that
of taking the Newtonian limit of SR—in what Brown, citing F. Rohrlich, iden-
tifies as “dimensionless” and “dimensional” methods of reducing one theory
to another:

The former generally takes suitable dimensionless quantities—
the ratio of two physical quantities of the same dimensions—to
be negligibly small. The latter involves taking limits of dimen-
sional parameters such as the light speed c or Planck’s constant ~.
Rohrlich emphasized that the dimensionless process represents a
case of ‘factual’ approximation and that the dimensional approx-
imation is ‘counterfactual’, because for instance it is a fact that c
is finite. What we are interested in here is the factual approach.[3,
p. 110]

The analogy carries through in going from GR to SR. Here, the factual
method is to treat SR as a free-falling, sufficiently small laboratory with
sufficiently short measurements (with suitable caveats about how inertial
frames are defined [3, p. 170]) limit of GR. On the other hand, treating
SR as just the zero-curvature limit of GR is obviously counterfactual and
is further complicated by the fact that Minkowski space-time isn’t even the
unique zero-curvature limit of GR (unless one also specifies R4 topology).
Considered in this context, Brown’s approach of devoting almost all his effort
to the status of Minkowski space-time isn’t problematic: there is no reason to
think we need to start with a full-blown ontological interpretation of GR and
then take away all the matter (except perhaps a few test particles) to gain
insight into the nature of Minkowski space-time. This is not a contentious
point for Brown’s critics; however, it is worth taking the time to clarify it.

5The form of the approach, I should say. The legitimacy of the content of the approach
is, of course, a separate question.
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2.1.4 What Brown does say

Returning, then, to what Brown is arguing in favour of, I outline his first
claim: that constructive theories of nature should be preferred over so-called
principle theories. I have illustrated what Brown means by these terms with
his frequent analogy of thermodynamics vs. kinetic gas theory as comple-
mentary ways of approaching the collective motion of large systems. To
further emphasize this point, I refer to a quotation from a lecture given by
Bell, which Brown and Pooley quote (approvingly) as well:

If you are, for example, quite convinced of the second law of
thermodynamics, of the increase of entropy, there are many things
that you can get directly from the second law which are very
difficult to get directly from a detailed study of the kinetic theory
of gases, but you have no excuse for not looking at the kinetic
theory of gases to see how the increase of entropy actually comes
about. In the same way, although Einstein’s theory of special
relativity would lead you to expect the FitzGerald contraction,
you are not excused from seeing how the detailed dynamics of the
system also leads to the FitzGerald contraction.[2, 4]

As I have said, Brown further maintains that this was also Einstein’s po-
sition,6 but that is beside the point. Apart from historical analogies and
quotations, Brown’s essential position may be summarized as the idea that
principle theories constrain and constructive theories explain. The former
characterization is best illustrated by another distinction Brown uses in par-
allel (and occasionally interchangeably) with principle vs. constructive the-
ories: kinematics and dynamics.

In this view, a kinematical picture is one that, to use my terminology in
the introduction, gives a top-down description of the physics. Meanwhile, a
dynamical picture is taken to give a bottom-up account of the physics. Brown
and Pooley take the position that the key characteristic that is “definitive of
[their] position is the idea that constructive explanation of ‘kinematic phe-
nomena involves investigation of the details of the dynamics of the complex
bodies that exemplify the kinematics”[5, p. 11]. The proposal is that, in the
absence of a truly dynamical—that is, phrased in terms in the properties
of components of the system—understanding of a physical process, one can
rely on a kinematical—that is, phrased in terms of general principles—model:
both as a stop-gap until a dynamical understanding is found and as a means

6See Section 2 of Brown and Pooley’s first paper [4] for a summary of this argument;
contrast with Janssen [12, p. 45] for a counter-argument.
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of constraining the form that such dynamical laws will inevitably take [4,
pp. 5-6].

That such principle-based kinematical explanations fail to be explanatory
is argued by Brown and Pooley specifically in connection with SR. Suppose
one follows the usual mathematical arguments, beginning with Einstein’s
postulates, to derive the (kinematic) Lorentz transformations and then claims
that these algebraic relations encode the behaviour of rods and clocks. Is such
a claim defensible?

What has been shown is that rods and clocks must behave in
quite particular ways in order for the two postulates to be true
together. But this hardly amounts to an explanation of such
behaviour. Rather things go the other way around. It is because
rods and clocks behave as they do, in a way that is consistent
with the relativity principle, that light is measured to have the
same speed in each inertial frame.[5, p. 7]

This is to say that it is the Lorentz covariance of the physical relations that
govern the behaviour rods and clocks that justifies Einstein’s postulates—not
vice versa.

One must be cautious about identifying a particular phenomenon as an
explanandum and another as its explanans. As Norton7 notes, one can ap-
proach Brown’s notion of “explanation” in two ways: explanation in a purely
abstract (and perhaps, like Bell, pedagogical) sense, and explanation in a
causal sense. The latter has genuine implications for space-time ontology, and
is present throughout Brown’s book (see, for example, [3, pp. 141-142,p.100]).
For clarity’s sake, it is best to focus on the causal, ontological implications
of Brown’s (and Pooley’s) approach.8 Thus, another way of contrasting the
(top-down, kinematic) principle approach with the (bottom-up, dynamical)
constructive approach is in terms of “global” and “local” processes.

To illustrate this, I remind the reader of the difference between the New-
tonian and Lagrangian (or Hamiltonian) approaches to classical mechanics.
In Newtonian mechanics, the language is that of forces: each particle in
the system acts upon (and is acted upon by) its environment in an imme-
diate sort of way. Even allowing for the non-local action-at-a-distance of
pre-relativistic physics, one does not need to take into account past or fu-
ture states of the system to determine what will happen in the next instant.
In contrast, the computational success of Lagrangian mechanics, which is

7Whose objections are more completely discussed in Section 2.2.1.
8Of course, in the spirit of Bell’s paper [1], these ontological conclusions also have

pedagogical consequences—an observation I explore more fully in Section 3.2.
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intimately connected with conservation laws, appears mysterious when it is
first introduced: to determine the behaviour of the system, one needs to
determine, via the Euler-Lagrange equations, the extremal trajectory in con-
figuration space. Extremal action, however, is a global property. It seems
that each component of the system must, some how, been tuned in to coun-
terfactual states of the system in order to “know” what to do next.

This analogy is very useful for three reasons. First, the Lagrangian ap-
proach translates directly to the “space-time diagram” approach to SR due
to Minkowski. Hence, the reader may already get a sense of what Brown’s
main objections will be. Second, this illustrates that the line between princi-
ple and constructive theories can be fuzzy. While in its original formulation
Lagrangian mechanics was necessarily understood as a principle-theoretic re-
formulation of Newton’s constructive theory, an understanding of Feynman’s
sum of histories interpretation of quantum mechanics gives a constructive
reading of it. Brown agrees with the possibility of overlap between principle
and constructive approaches [3, p. viii] and so there is no need for us to view
them as rigid, exclusive classifications. Third, Mathias Frisch [9] develops
this same analogy in his critique of Brown’s work9, which we consider in
Section 2.2. Hence, it will be helpful to keep the analogy in mind as we go
along.

Having argued that constructive theories are preferable to principle the-
ories, the next component of Brown’s thesis is that “orthodox” SR should
be understood as a principle theory. His primary target is a particular al-
ternative candidate for constructive SR: Minkowski’s formulation in terms
of space-time geometry. Such a view, Brown suggests, would see space-time
as a substantial entity with intrinsic geometry; geometry that is read off via
rods and clocks. Such a view is problematic:

The mechanism of the old waywiser10 is obvious; there is no mys-
tery as to how friction with the road causes the wheel to revolve,
and how the information about the number of such ticks is me-
chanically transmitted to the dial. But the true clock is more
subtle. There is no friction with space-time, no analogous mecha-
nism by which the clock reads off four-dimensional distance. How
does it work? [emphasis Brown’s][3, p. 8]

9Albeit to a somewhat different end than my own reasons.
10An old device used to measure of road distances using a rolling wheel and gear system.

An image of a waywiser emblazons the cover of Brown’s book and serves as a sort of
caricature of the view he opposes, that space-time is the causal agent acting on rods and
clocks.
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Brown further emphasizes that, despite first appearances, GR does not come
to the rescue by introducing a dynamical metric.

The issue, as in SR, is that the metric does not come equipped a priori
with a chronogeometric interpretation; rather, that is an interpretation the
metric earns on the basis that rods and clocks are made out of physical
material which behaves in a dynamical way that reflects the metric. Thus,
in addition to the field equations, we need the strong equivalence principle
and the clock hypothesis to promote one particular tensor to the status of
“metric”. The strong equivalence principle allows us to use SR locally and
hence reduces the question of rod and clock dynamics to various relativistic
dynamical theories of matter—nowadays, quantum field theories. The clock
hypothesis posits that the behaviour of clocks according to some reference
frame depends only on their instantaneous velocity in that frame, not their
acceleration. That this is a statement about the detailed dynamics of clocks is
seen, Brown points out, just by considering how obtaining a chronometer that
would remain accurate at sea was once a considerable problem for mariners
[3, p. 94].

In their 2004 paper [5], Brown and Pooley develop a related criticism
of treating space-time as a causal entity that determines the behaviour of
matter. They criticize the notion that that, in the absence of forces, the
affine structure of Minkowski (or curved) space-time can be said to explain
the inertial motion of test particles. This is, they say, putting the cart before
the horse:

But to appeal to the action of a background space-time connec-
tion in which the particles are immersed—to what Weyl called
the “guiding field”—is arguably to enhance the mystery, not to
remove it. For the particles do not have space-time feelers ei-
ther. In what sense is the postulation of the 4-connection doing
more explanatory work than Molières famous dormative virtue in
opium?[5, p. 4]

It is here that one can see the direct parallel with Lagrangian mechanics:
in either case, the geometric explanation seems to imply that a test particle
has some means of detecting which direction will advance it along the path
of extremal action. Indeed, the analogy goes further: like the constructive
insight that Feynman’s path integration brings to Lagrangian mechanics,
the geodesic principle in relativity can be understood dynamically once we
extend to GR. It is, as Brown and Pooley make a point of emphasizing,
derivable from GR’s field equations—specifically, the fact that they imply
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the stress-energy tensor of matter has vanishing (covariant) divergence.11

Indeed, this derivation forces one to accept modifications to the geodesic
equation for spinning test bodies (of finite dimensions), implying that it is
“not an essential property of localised bodies that they run along the ruts
of space-time determined by the affine connection, when no other dynamical
influences are at play.” [5, p. 3]

Thus, for Brown, geometry cannot be separated out from matter. In GR,
where the metric is a real entity—a field like any other that simply earns
the designation “metric” because of the behaviour of matter—we should not
get carried away by the active role space-time seems to play in the theory.
Its effect on matter—along the lines of John Wheeler’s famous aphorism
that “Space-time tells matter how to move; matter tells space-time how to
curve”—need not be accepted as an independent postulate. Furthermore, it
is difficult to tell what good such a postulate would be if it were necessary,
since it is not clear how the geometry of space-time would impose itself on the
matter that inhabits it (due to a lack of “space-time feelers”). He observes,
with reference to particular examples, that “if one postulates space-time
structure as a self-standing, autonomous element in one’s theory, it need have
no constraining role on the form of the laws governing the rest of content of
the theory’s models” [3, p. 149], calling this the “mystery of mysteries” for
the position that geometry is prior to matter.

Hence, the main lesson Brown draws from his discussion is that space-time
geometry, be it flat or curved, does not amount to a constructive understand-
ing of relativity. Given his relationalist views on space-time, it is reasonable
to think he is implying a secondary (though optional) lesson: if an onto-
logically independent space-time is irrelevant to the logical consistency and
explanatory ability of relativity, why not do away with the idea altogether?

The final ingredient, then, in Brown’s approach to relativity theory is a
means of constructively building up the various phenomena that are collec-
tively labelled “space-time geometry”. The general idea is already implicit
in much of what has been said. Bell’s pedagogical program—which forms
the core of Brown’s philosophical approach—proceeds as follows:

1. Begin with some toy model of matter. The only requirement is that
the dynamical laws obeyed by the matter be Lorentz covariant. For
reasons of historical continuity (not to mention a certain degree of
scientific accuracy!), Maxwell’s formulation of electromagnetism is a
good choice. Consider, for example, something like the Bohr model of
the atom with an electron orbiting a nucleus.

11The proof of this extraordinary result is well worth reading for its own sake and can
be found in, e.g., Misner, Thorne, and Wheeler [13, pp. 471-480].
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2. Examine the toy atom from a reference frame S in which the atom
has some velocity. A standard calculation, usually done in the course
of an undergraduate program in physics, shows that due to the na-
ture of electromagnetic fields, the electron’s orbit will be compressed
by a velocity-dependent factor along its axis of motion. Meanwhile,
the period of the orbit will increase by the same factor. These are
the so-called “FitzGerald contraction” and “Larmor dilation” (and the
velocity-dependent factor is, of course, the Lorentz factor γ).

3. Deduce that an object made out a lattice of these toy atoms in elec-
trostatic equilibrium would contract by a factor of γ parallel to its
velocity because the atoms themselves get closer together due to the
flattening of their electron orbits. Meanwhile, an atomic clock based on
electronic oscillations would slow down by the same factor because its
period would increase. Similar arguments can be made for other kinds
of clocks (like the admittedly contrived “light clock” that invariably
shows up in most introductions to SR), demonstrating that time kept
according to any clock constructed out of our toy matter will dilate.

4. Show that in a set of coordinates, S ′, related to S via the Lorentz
transformations (and hence such that the atom is at rest in S ′), the
description of the toy atom is precisely the same as it was in S before
it was set in motion. That is, in the S ′ coordinates, the toy atom once
again becomes circular and the γ drops out of its period (according to
the primed time variable). Deduce that according to the S ′ frame, rods
and clocks in S should contract and dilate in precisely the same way
that those of S ′ did in S.

This is what Bell calls the “Lorentzian pedagogy”12 and Brown more re-
strictively calls the full Lorentzian pedagogy [3, p. 5]. It is important to
stress that neither Bell nor Brown is proposing a preferred reference frame
(as Lorentz did). The lesson is not that one needs to work in a single a refer-
ence frame to understand the electrodynamics of moving bodies; rather, the
lesson is that it is sufficient to work in a single reference frame to understand
such dynamics.

The point of this exercise is not to demonstrate precisely how to dynami-
cally account for length contraction and time dilation—since, after all, this is
merely a toy model in which it isn’t even possible to have stable atoms—but
to show that it can be done if one has an appropriate theory of matter. Here,

12Incorrectly, according to Brown, who believes it would have been more accurately
called the “FitzGeraldian pedagogy” [3, p. 5].
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“appropriate” is taken to mean “Lorentz covariant”. This is precisely what
Brown and Pooley call the “truncated Lorentzian pedagogy”:

In order to predict, on dynamical grounds, length contraction for
moving rods and time dilation for moving clocks, Bell recognised
that one need not know exactly how many distinct forces are
at work, nor have access to the detailed dynamics of all of these
interactions or the detailed micro-structure of individual rods and
clocks. It is enough, said Bell, to assume Lorentz covariance
of the complete dynamics—known or otherwise—involved in the
cohesion of matter. We might call this the truncated Lorentzian
pedagogy. [4, p. 7]

It is this truncated approach that forms the backbone of Brown’s space-time
ontology.

In this approach, one starts with the fact that the known laws of physics
are Lorentz covariant and deduces behaviour like length contraction and time
dilation for rods and clocks made out of matter that obeys these laws. As
in the final step above, we can then go further and deduce the postulates of
SR. Thus, the principle of relativity, for example, is to be understood as an
derived property of the laws of physics. The explanation for why the various
laws of physics are Lorentz covariant is left unexplained:

In the dynamical approach to length contraction and time dilation
that was outlined in the previous chapter, the Lorentz covariance
of all the fundamental laws of physics is an unexplained brute
fact. This, in and of itself, does not count against the approach:
all explanation must stop somewhere. [3, p. 143]

While at first glance, this may appear somewhat anti-climactic, it is
important to bear in mind Brown’s arguments against space-time priority
over geometry: according to these objections, outlined above, the Lorentz
covariance of various laws of physics would remain an “unexplained brute
fact” even if Minkowski space-time was a substantive entity. Furthermore, I
would also observe that the apparent coincidence of all the laws of physics
being Lorentz covariant becomes considerably less curious when we note the
progress that has been made on unifying the fundamental forces. If grand
unification (or, better yet, the “Theory of Everything” in which gravity is
incorporated) were to succeed, the “coincidence” would vanish altogether.

A sketch for how one could treat a moving rod in a manner more amenable
to the truncated approach (that is, not committing to any particular model
of solid state physics) is provided by Jeremy Butterfield [6, p. 8]: we simply
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represent the rod of length L by the quantum state |ψ〉 and presume the
quantum field theoretic laws that govern the matter it is composed of are
Lorentz covariant. We slowly accelerate the rod—slowly enough that the
rod’s lattice vibrations can dissipate via heat loss to its environment—so that
the rod is now in state B̂|ψ〉, where B̂ is the relevant Galilean boost operator.
Since a Lorentz boost may be approximated with a series of small Galilean
boosts, we can repeat this process until the rod is in the state B̂L|ψ〉, with
B̂L an arbitrary Lorentz boost. By the Lorentz covariance of the physical
laws describing the material of which the rod is composed, we conclude that
B̂L|ψ〉 has length L in the frame corresponding to the boost B̂L according to
the coordinates of that frame. Hence, the lengths measured by the rod in the
boosted frame agree with lengths predicted by the Minkowski metric—which
is precisely what something we are purporting to call a “metric” is supposed
to do!

That is precisely the essence of Brown’s view of space-time geometry, in
which he argues that “the operational meaning of the metric is ultimately
made possible by appeal to quantum theory” [3, p. 9]. Thus, the metric—the
bearer of all things geometric—only earns its name because it is a convenient
mathematical encoding of the dynamical behaviour of matter. Hence, matter
is taken to be more fundamental than geometry and the principle of relativity
is taken to be descriptive rather than prescriptive. As for space and time—
the former of which was once thought of as solid enough to hang the stars
upon—they are demoted to being nothing more than a “glorious non-entity”.

2.2 Responses to Brown

Since the publication of Brown’s book, a number of responses—in varying
degrees of disagreement—have appeared. In this section, I examine those of
John Norton [14] in Section 2.2.1 and Michel Janssen [12] in 2.2.2, while mak-
ing reference throughout to a third response by Mathias Frisch [9]. Norton’s
and Janssen’s papers both purport to criticize Brown’s position, though they
do so for considerably different reasons. I outline their objections and, where
appropriate, respond to their arguments. Frisch’s paper, which is broadly in
agreement with Brown, argues that Janssen’s and Brown’s positions may be
(at least partially) harmonized and that much of the apparent disagreement
is due to a difference in conceptual frameworks.

2.2.1 Norton

Rather than tackle Brown’s arguments point-by-point, Norton’s response
[14] is a more general argument against any form of constructive special

17



relativity—which Norton contrasts with a “realist” view of Minkowski space-
time. The essence of his thesis is that a constructive approach to relativity
can be consistent only “if one tacitly assumes much or all of the realist con-
ception” [14, p. 823]. The conclusion, then, is that a constructive approach
like Brown’s ultimately fails since it requires a space-time that is not sig-
nificantly different from the realist view. Since much of Norton’s argument
hinges on his formulation of realist Minkowski space-time, I reproduce his
sketch of the approach:13

(a) There exists a four-dimensional space-time that can be coor-
dinatized by a set of standard coordinates (x, y, z, t), related
by the Lorentz transformation.

(b) The spatiotemporal interval s between events (x, y, z, t) and
(X, Y, Z, T ) along a straight line connecting them is a prop-
erty of the space-time, independent of the matter it contains,
and is given by

s2 = (t− T )2 − (x−X)2 − (y − Y )2 − (z − Z)2. (1)

When s2 > 0, the interval s corresponds to times elapsed on
an ideal clock; when s2 < 0, the interval s corresponds to
spatial distances measured by ideal rods (both employed in
the standard way).

(c) Material clocks and rods measure these times and distances
because the laws of the matter theories that govern them are
adapted to the independent geometry of this space-time.

[14, p. 823]

This is the position that Norton takes a constructivist like Brown to oppose14:
but the bulk of which, he argues, such a constructivist must tacitly assume.

13This is essentially an exact reproduction; however, I have made three changes from
the exact text: I enumerate Norton’s items as (a), (b), and (c)—in line with how he refers
to it in the rest of the paper—rather than (1), (2), (3), I omit his footnotes, and I write
“space-time” rather than “spacetime” for consistency with the rest of this paper.

14Though not problematic for Norton’s later arguments, I should point out that there
is some imprecision with item (b) of his framework. It is not quite correct to say that a
positive space-time interval (in the “mostly minus” signature convention being used here)
“corresponds to times elapsed on an ideal clock”. Rather, it is possible for a positive
interval to correspond to times elapsed on an ideal clock; however, this will only be the
case for inertial clocks passing between the two events. The same caveat applies to ideal
rods and negative intervals. I take the implications of Norton’s chosen wording to be
unintentional. If it genuinely represents an aspect of the realist space-time view that
Norton defends, then it unnecessarily privileges inertial frames—and the objects that
inhabit them—to far greater extent than special relativity requires.
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To advance this claim, Norton outlines the steps that must be taken by
a constructive approach, which he characterizes as one in which “It is possi-
ble to recover the geometry of Minkowski spacetime from Lorentz covariant
matter theories devoid of spatiotemporal presumptions” [14, p. 825].

I note that Frisch considers even this starting point a straw man, i.e.
an extreme version of the relationalist view of space-time that Brown’s con-
structivism favours, objecting that “Norton’s relationalist not only denies the
existence of a four-dimensional substantival spacetime that exists indepen-
dently of matter but also that matter has no basic spatio-temporal proper-
ties. A relationalist who merely denies the former claim can escape Norton’s
conclusion.” [9, p.177]. Presumably for Frisch’s relationalist, such intrin-
sic spatiotemporal properties of matter would not gain the interpretation as
such until rods and clocks were constructed out of matter, in keeping with
Brown’s view that the metric only earns its chronogeometric interpretation
as a result of the behaviour of such rods and clocks. Thus, such properties
would stand as part of the “unexplained brute fact” that is the universal
Lorentz covariance of matter which Brown is prepared to accept.

It should be noted that while Norton frames his argument as one opposed
to Brown’s constructivism, there are certainly constructive elements in his
own approach. Using the geometry of space-time as a genuinely causal ex-
planation for Lorentz covariance is, in a sense, constructing relativity from
space-time. Nonetheless, Brown and Pooley argue that such an approach
doesn’t really count as constructive in the sense they are after: the sense in
which global relativistic phenomena are deducible from the dynamical be-
haviour of matter. For them, geometry-based construction projects are little
more than principle theories in disguise:

The geometrical features of the objects that are assumed, and
appealed to, in these explanations are similar in status to the
postulates of principle theories. They do not, directly, concern
the details of the bodies microphysical constitution. Rather they
are about aspects of their (fairly) directly observable macroscopic
behaviour. And this reflection prompts an obvious question: why
do these objects obey the constraints of Minkowski geometry? It
is precisely this question that calls out for a constructive expla-
nation. [4, p. 9]

Recalling that Brown does not see space-time as capable of explaining uni-
versal Lorentz covariance, this dim view of geometric constructions should
not be surprising.

In any case, even if one rejects Frisch’s view that a relationalist can ascribe
certain spatiotemporal properties to matter without the aid of space-time,
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it is curious that so much of Norton’s efforts are spent arguing that a con-
structivist must accept his item (a) of the realist approach. As I noted in
Section 2.1, the key component of manifold substantivalism (where SR is
concerned) that Brown rejects is the independent existence of the Minkowski
metric. While implying the supervenience of geometry on matter, Brown’s
approach is essentially agnostic about the existence of topology—that is, of
the bare manifold—independent from matter fields. And yet, Norton appar-
ently considers the acceptance of (a) to be a severe concession of the part of a
constructivist. However strong Norton’s arguments may be to this end—and
I examine them below—the effort seems somewhat misplaced.

To argue that a constructivist must accept (a), Norton notes that in
any given matter theory, such as Maxwell’s electrodynamics or some quan-
tum field theory of interactions, in constructive relativity the coordinates
(x, y, z, t) are merely parameters whose interpretation comes about only as a
consequence of their role in the matter theory [14, p. 825]. Given the variety
of possible matter theories one can consider, these parameters should be dif-
ferentiated from one another according to the theory in which they appear.
Norton does so with sequential subscripts: (x1, y1, z1, t1) for the first matter
theory, (x2, y2, z2, t2) for the second matter theory, and so on. A particular
solution to the field equations in a particular matter theory imply a family of
solutions, related to one another by active transformations from the Poincaré
group.

The next step in Norton’s construction is to note that certain structures
made out of the matter under consideration may be used as rods and clocks.
He very briefly objects to this step, before admitting it for the sake of argu-
ment, on the grounds that “Some matter theories do not straightforwardly
admit clock-like or rod-like structures. An example is Maxwell’s electrody-
namics, for none of its localized structures is stable. It must be coupled with
another theory to produce such structures. We might also wonder how the
structures might arise in quantum field theory”[14, p. 826]. Of course, such a
detailed understanding of a particular matter theory is unnecessary in Brown
and Pooley’s truncated Lorentzian pedagogy15 and so Norton is right to not

15Furthermore, I take the example of Maxwell’s electrodynamics to be an incorrect one.
Another theory is needed precisely because Maxwell’s theory is not properly a theory of
matter at all. The form taken by elementary matter must be added as an additional
postulate to Maxwell’s equations, and nothing in the equations themselves compels the
choice of the point-like electric charge carriers that, as Norton notes, can’t be assembled
into stable atoms. Since Norton’s point, like Brown’s, only requires the possibility of rods
and clocks in some matter theory, we are free to posit any hypothetical matter consistent
with the theory with which to construct them. In particular, nothing stops us from
positing the existence, independent from atoms, of a conducting material out which one
can construct mirrors for use in a light clock. Thus we find ourselves in possession of
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dwell on the point.
Having allowed for the existence of rods and clocks, Norton claims a flaw

in this constructive approach:

To begin with, the construction presumes that the parameters of
each matter theory (x1, y1, z1, t1), (x2, y2, z2, t2), (x3, y3, z3, t3), ...
refer to the same events of spacetime. For example, we presume
that clocks from different matter theories will return the same
expression (1) for the spacetime interval. It presumes that (for
suitable selections of parameter sets) the origin of the parameters
(x1, y1, z1, t1) = (0, 0, 0, 0) of matter theory 1 refers to the same
event in spacetime as the origin of the parameters (x2, y2, z2, t2) =
(0, 0, 0, 0) of matter theory 2.[14, p. 828]

He argues that such an assumption amounts to an attribution of spatiotem-
poral properties to the matter fields, which he takes to be disallowed for the
constructivist. In addition to denying this possibility to the constructivist
(a denial that, as I have noted, Frisch rejects), Norton anticipates another
constructivist response: that the coincidence of the parameters in different
matter theories can be attributed to interactions between the different the-
ories. He dismisses this response by analogy with spin states, noting that,
“It is standard to write spin-spin coupling terms in Hamiltonians, where the
coupling energy depends on the closeness of the spin parameters, without
thereby assuming that sameness of the parameters betokens spatiotemporal
coincidence.[14, p. 828]”

Putting aside Frisch’s objections for argument’s sake, there is—at least—
one other defence available to the constructivist. As I observed when con-
sidering the apparent distastefulness of Brown’s “brute fact” of Lorentz co-
variance, the tendency of modern quantum physics has been towards a uni-
fication of the various forces. If Grand Unification succeeds16, Norton’s con-
structivist has nothing to explain: the parameters of the various matter
theories may be taken as coincident because each theory is merely a differ-
ent limiting case of the same theory. This defence is already available for
Norton’s use of Maxwell’s electrodynamics. If (x1, y1, z1, t1), the coordinates
for the first matter theory, are taken to parametrize Maxwell’s equations and
(x2, y2, z2, t2), the coordinates for the second matter theory, are taken to pa-
rameterize quantum electrodynamics, why should the constructivist need to
presume that these parameters refer to the same events? Maxwell’s theory is

an imaginary, but stable, clock that is consistent with Maxwell and can be examined by
Norton.

16A possibility which, while by no means certain, is not one whose failure it would be
prudent for a space-time realist to rely upon.
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explicitly a restriction of QED to a particular domain; that the former may
inherit its parameters from the latter is hardly surprising. Hence, unification
provides another possible escape from Norton’s conclusion.

Norton goes on to argue that, in addition to the bare manifold, spatial
distances and elapsed times are properties of space-time [14, p. 830], which
is more on the mark against Brown’s view of matter’s priority over geometry.
Much of this argument builds on Norton’s comments about space-time events,
as well as claiming common cause with Janssen (whose objections I review
next). In spite of this, Norton allows that a constructivist can avoid his
conclusion, but at a cost:

To see this, imagine some part of spacetime that is either de-
void of matter or hosts a static matter distribution. In this part
of spacetime, we can select two noncoincident timelike-separated
events A and B such that nothing changes as we pass along the
straight segment of spacetime connecting them. In the ordinary
realists conception, we would say that some time elapses between
them. What can a constructivist say? There are no material
clocks actually present measuring the time elapsed, for there is
either no matter present or no change in the matter present as
we pass from A to B. So the constructivist has no material basis
for the recovery of a time change.[14, p. 831]

Norton allows one escape for the constructivist:

The constructivist must, in effect, say that the entire scenario
envisaged is impossible. The notion that there can be a part
of spacetime without matter or a part of spacetime with static
matter is simply a confusion on the part of realists. It makes no
sense to talk of time in such scenarios.[14, p. 832]

Norton objects to this defence, calling it extreme operationalism.
Interestingly, Brown suggests he is entirely willing to follow the escape

Norton suggests [3, pp. 100-101], however negatively the latter might re-
gard it.17 The context in which Brown discusses this is his comments on
the conventionality of simultaneity in SR; hence, I defer a more thorough
examination of this to Section 3.

2.2.2 Janssen

Moving on to another of Brown’s critics, I review the paper by Janssen
[12] alongside the commentary of Frisch [9]. Whereas Norton’s focus is the

17And, as demonstrated by his footnote 13, Norton is fully aware of this.
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implications that Brown’s approach to SR has for the status of Minkowski
space-time, Janssen targets Brown’s related assertion that the constructivist
approach provides a better explanatory framework for understanding relativ-
ity. In Section 2.1, I noted Norton’s observation that this whole business of
“explanation” may be taken either way: as an epistemic claim or as an onto-
logical claim. Norton purposefully avoids the former reading, objecting that
it just leads to “futile disputes over just what it means to explain”[14, p. 5].
Janssen, however, considers the epistemic claims worth discussing, on the
grounds that “explanation is tied up with inference, which is absolutely cen-
tral to the scientific enterprise”[12, p. 2]. He frames his objections to Brown’s
constructive relativity with reference to J. J. Thomson’s characterization of
a good theory in physics:

In 1906, J. J. Thomson made an observation about the role of
theories in physics that, I think, applies equally well to explana-
tions. For a working physicist, Thomson wrote, a theory “is a
policy rather than a creed.” Physicists use explanations not to
adorn the results of their investigations with the elusive quality
of understanding, but to help them come up with ideas for what
to investigate next. They seek answers to why-questions in part
no doubt for the sake of those answers themselves, but mostly to
find clues and pointers in them for further research.

Hence, for Janssen there is an element of utilitarianism in what he counts as
a good explanation.

As a result of this focus, there is a sense in which Janssen’s objections,
whatever their merit, are irrelevant to the aspects of Brown’s constructive
relativity I have highlighted in this paper. Janssen makes a point of em-
phasizing that he has “disavowed the notion that Minkowski space-time be
a substance with causal efficacy, so the sense in which Minkowski space-
time explains Lorentz invariance is certainly not causal” [12, p. 68]. Hence,
for the questions I underlined in Section 1—“the nature of space-out-there,
space-down-here, time, motion, and how all these things relate to what we
know as matter”—there is not a significant difference between the space-time
ontologies of Brown and Janssen.

This is the view endorsed by Frisch, who argues that “their disagreement
appears larger than it actually is due to the two frameworks used by Brown
and Janssen to express their respective views” and that it largely amounts
to a “disagreement about labels but not about substance” [9, p. 1]. Norton’s
caution against futile disputes tied up in linguistic knots appears to be worth
heeding. Nonetheless, I briefly review Janssen’s arguments—while empha-
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sizing their independence from the ontological dispute between Brown and
Norton that I have examined above.

A recurring theme in Janssen’s paper is what he dubs the “common origin
inference” (COI), a subset of the “inference to the best explanation” (IBE).
[12, p. 3]. The COI is the principle that separate instances of the same phe-
nomenon imply an explanation in which there is a common origin for each
instance. Norton notes that such reasoning is a “line of argument extending
back to Einstein” [14, p. 830], presumably referring to Einstein’s discomfort
in his 1905 paper with the apparent need to use two separate physical phe-
nomena to explain the current induced when a conductor and a magnetic
field are in relative motion:

The observable phenomenon here depends only on the relative
motion of the conductor and the magnet, whereas the customary
view draws a sharp distinction between the two cases in which
either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain def-
inite energy, producing a current at the places where parts of the
conductor are situated. But if the magnet is stationary and the
conductor in motion, no electric field arises in the neighbourhood
of the magnet. In the conductor, however, we find an electro-
motive force, to which in itself there is no corresponding energy,
but which gives rise—assuming equality of relative motion in the
two cases discussed—to electric currents of the same path and
intensity as those produced by the electric forces in the former
case.[8, p. 1]

Einstein’s conclusion, by a method like the COI, is to do away with the notion
of absolute rest and conclude that the relative motion between the two bodies
is the common origin for the two apparently distinct phenomena—setting the
stage for his deductions about the electrodynamics of moving bodies.

Janssen makes use of the COI to defend the explanatory power of space-
time (which, again, it must be emphasized he does not view as a substantival
entity) by distinguishing kinematical and dynamical behaviour. He charac-
terizes the distinction thus:

It is a mistake to keep looking for further explanation of a phe-
nomenon once that phenomenon has convincingly been shown to
be kinematical. What it means for a phenomenon to be kine-
matical, in the sense in which I want to use this term, is that
it is nothing but a specific instance of some generic feature of
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the world, in the case of the phenomena examined in this paper
instances of default spatio-temporal behavior.[12, p. 4]

Conversely, a dynamical explanation is needed where something deviates
from its natural kinematical behaviour. Much of his paper is occupied with
examining a series of early relativity experiments that demonstrate relativis-
tic phenomena to be fundamentally kinematical rather dynamical. It is in
this context that Janssen then draws on the COI to argue how Minkowski
space-time explains Brown’s “brute fact” of universal Lorentz covariance:

It explains them by showing they need no explanation. Or,
to put it less paradoxically, the statement that space-time is
Minkowskian explains all of them in one fell swoop. This then is
where that statement goes beyond the statement that all laws are
Lorentz invariant. It commits one to assigning all manifestations
of Lorentz invariance to the class of kinematical phenomena.[12,
p. 69]

Recall that Brown criticizes the classification of phenomena like inertial
motion in GR as “kinematical” on the grounds that the the geodesic equa-
tion can be derived from the Einstein field equations. Thus, Brown’s use of
the kinematic vs. dynamic distinction is not equivalent to Janssen’s usage,
where Brown ties them together with principle vs. constructive theories,
respectively. I have noted his and Pooley’s claim that “constructive expla-
nation of ‘kinematic’ phenomena involves investigation of the details of the
dynamics of the complex bodies that exemplify the kinematics”[5, p. 11].

It is precisely this different usage of terminology that Frisch identifies as
enabling a considerable degree of harmonization between Brown and Janssen
[9, p. 181]. In Section 2.1, I illustrated the principle vs. constructive distinc-
tion with force-based and energy-based approaches to classical mechanics.
Frisch develops the same analogy, but with the intention of highlighting the
way in which certain principles constrain the possible constructive explana-
tions:

To explain a phenomenon, I want to submit, is to embed the
phenomenon into a pattern of functional dependencies...and phe-
nomenological principles can provide us with answers to such
questions just as general principles or constructive theories can.[9,
p. 179]

It is as this sort of general principle that Janssen views universal Lorentz
covariance—taking the general principle to be the common origin of partic-
ular matter theories’ Lorentz covariance. I have noted that Brown allows
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for something like a continuum between principle and constructive explana-
tions [3, p. viii], and so Brown’s view does indeed seem to be in line with
Frisch’s—and hence, by the latter’s argument, with Janssen’s.

Finally, I note that Janssen is very explicit about his reasons for defending
his particular viewpoint, stating: “I want to argue that the orthodox version
of this physical theory is preferable to the alternative proposed by Brown
because it provides better guidance for further research” [12, p. 6]. This
underscores my point that the preceding discussion has little to do with
Brown’s ontological position with respect to space-time. It is difficult to
say which epistemic approach is more amenable to guiding further research;
however, Brown’s approach has a powerful moral that those pushing the
frontiers of physics would do well to mark. This is the subject of Section
2.3—the final section in this discussion of Brown’s central thesis.

2.3 The moral

In his 2007 paper [7], Butterfield distills what he calls “Brown’s moral”18 out
of the larger discussion. He broadly states the moral as follows:

We can think of the moral as having two aspects, “negative” and
“positive”. It will be clearer to start with the negative aspect,
since the positive aspect explains it. Negatively, the rough idea
is that we should not simply postulate that a quantity in a phys-
ical theory has (chrono)-geometric significance. The point here
is not just that it would be wrong to infer from a quantity’s be-
ing called a metric that it mathematically represents (what the
theory predicts about) the readings of rods, and-or clocks and-
or other instruments for measuring lengths and time-intervals.
That is obvious enough: after all, a quantity might be given an
undeserved, even tendentious, name. But also: we should not
infer from the fact that in the theoretical context, the quantity
is mathematically appropriate for representing such behaviour,
that it does so.[7, pp. 16-17]

Conversely, the positive formulation of the moral is expounded in my Section
2.1.4: that the chronogeometric nature of the metric “is an interpretation
the metric earns on the basis that rods and clocks are made out of physical
material which behaves in a dynamical way that reflects the metric.”

The upshot of Brown’s moral is that we miss some deeper insights by
positing ideal rods and clocks as if they were of a different species than the

18Which, to keep track of our growing stack of eponyms, is essentially what Brown
identifies as Bell’s reformulation of Lorentz’s (but really FitzGerald’s) pedagogy.
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rest of the matter that may inhabit space-time. There is nothing wrong, per
se, with discussing particular phenomena in terms of broad, general prin-
ciples. In the context of length contraction, Brown and Pooley note that
such general, geometrically-guided approaches are “perfectly acceptable ex-
planations (perhaps the only acceptable explanations) of the explananda in
question”[5, p.9]. However, what such explanations lack is the intuition that
comes from seeing how such a phenomenon arises constructively due to a
series of elementary interactions as described by an observer solely in his or
her own frame. That is the essence of Bell’s approach: that while it isn’t
necessary to use any one inertial frame of reference to describe the physics
(for that would be to privilege that frame above the others), it is sufficient
to use only one frame, for each is just as good as another.

This is a point missed by Janssen, who argues that “if an effect can be
defined away by a mere change of convention about how to slice Minkowski
space-time, then that effect is purely kinematical”[12, p. 63]. Janssen’s view
suggests that we must examine a phenomenon from a co-moving reference
frame in order to understand what is “really” going on. Conversely, Brown’s
moral is a consequence of taking Einstein’s Principle of Relativity really and
truly seriously.

The lesson, then, from all this talk of kinematics vs. dynamics, principles
vs. constructions, and so on, can be concisely stated: relativity, viewed
as part of a broader investigation into the quantum field theoretic nature
of particles, is fundamentally a theory about matter and how it interacts.
While it may be formulated in terms of space-time geometry, viewing it as
a theory about space-time geometry is putting the cart before the horse [5,
p. 12]. Building a picture of relativistic physics from the bottom-up in this
manner does, admittedly, lack some of the elegant conciseness of Minkowski’s
geometric formulation. Nonetheless, as John Bell said: “The longer road
sometimes gives more familiarity with the country [1, p. 77].”

3 Simultaneity in special relativity

Having broadly examined Brown’s views on space-time, along with some of
the responses these views have received, I move on to a narrower question:
what does in mean in special relativity when we say that, according to a par-
ticular frame, two distant (i.e. space-like separated) events are simultaneous?
It is of fundamental importance in relativity that the labelling of such events
as simultaneous must, at the very least, be frame dependent. Otherwise, the
invariance of the speed of light and the rejection of absolute motion as a
meaningful concept are mutually inconsistent [3, p. 96]. However, one can go
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further and propose that even the assignments of simultaneity in a particular
reference frame is purely a convention.

Both a conventional and a non-conventional interpretation can be squared
with relationalist views of space-time such as Brown’s—though the latter
would presumably require the attribution of spatiotemporal properties to
matter à la Frisch—but the former is Brown’s own view [Id.] and does seem to
be the more natural interpretation to pair with Brown’s space-time ontology.
However, I will argue that the conventional view weakens Brown’s moral to
some degree, lending some support to Norton’s accusation of operationalism.

I explore this issue in detail in Section 3.1. First, referring to Brown
and to a review article by Allen Janis [11], I sketch the background of the
conventionality debate in Section 3.1.1. Then, in 3.1.2 I discuss a key theorem
taken by many to support the non-conventional position, as well as Brown’s
response. Section 3.1.3 examines the relationship between the conventionality
thesis and Brown’s constructive approach to relativity. Finally, I discuss in
Section 3.2 the impact of these questions on how SR is taught—ultimately
bringing us back to Bell and his pedagogical concerns.

3.1 The conventionality question

3.1.1 Background

The debate regarding the conventionality of simultaneity for distant events
has—like most of the ideas discussed in this paper—its antecedents in the
early days of SR’s formulation. Indeed, it predates SR and was considered
by Poincaré even before the problems with a universal (i.e. acceptable to
all inertial observers) definition of simultaneity were realized [11, Sec. 1].
Einstein was aware of the problem in 1905 and viewed it as a conventional
choice, necessary to derive the relations that allow transformations between
reference frames:

If at the point A of space there is a clock, an observer at A can
determine the time values of events in the immediate proximity of
A by finding the positions of the hands which are simultaneous
with these events. If there is at the point B of space another
clock in all respects resembling the one at A, it is possible for
an observer at B to determine the time values of events in the
immediate neighbourhood of B. But it is not possible without
further assumption to compare, in respect of time, an event at A
with an event at B. We have so far defined only an “A time” and
a “B time.” We have not defined a common “time” for A and
B, for the latter cannot be defined at all unless we establish by

28



definition that the “time” required by light to travel from A to
B equals the “time” it requires to travel from B to A. [Emphasis
preserved from the original German] [8]

Einstein’s solution, then, was to establish a constructive procedure for
synchronizing distant clocks. We take a ray of light to leave from A at “A
time” tA, to be reflected at B at “B time” tB, and to be received back at A
at t′A. Then Einstein (and generations of physicists after him) defined the
clocks at A and B to be synchronized if

tB − tA = t′A − tB. (2)

This is referred to by Brown as the “Poincaré-Einstein convention” [3, p. 46]
for synchronizing clocks. According to this synchronization procedure, the

times tB and
tA+t′A

2
are assigned to be simultaneous in this reference frame

(that is, the frame in which the transmission and receipt of the light ray at A
occur at the same location). Brown notes further that while the postulates
of SR only imply that the two-way, or round trip, speed of light be invariant,
the Poincaré-Einstein convention is equivalent to requiring the one − way
speed of light be invariant and equal to the two-way speed, c [3, p. 77].

This synchrony convention allows one to assign space-time coordinates to
all events in an inertial reference frame. Even better, having established the
convention, one can go about determining how to transform the coordinates
of one frame into the coordinates of another (in a way that preserves the
space-time interval, which we encountered back in Eq. 1) and thus arrive at
the familiar Lorentz transformations19.

However, let us take a step back and consider what happens if we do not
fix the one-way speed of light to be invariant as c. As SR still requires the
invariance of the two-way speed of light, this is equivalent to allowing the
one-way speed of light to be anisotropic.20 Following Brown [3, p. 96], we
can do this by considering a new set of coordinates for a particular inertial
frame:

~̃x = ~x (3)

t̃ = t− ~k · ~x (4)

19To quote an old professor of mine from an undergraduate course on electrodynamics:
“It was a big problem in physics in the nineteenth century to figure out the symmetries
of Maxwell’s equations. They were not invariant under the Galilean transformations like
the rest of known physics—big problem! But Poincaré thought long and hard and he
answered this important question. Poincaré worked out how the laws of electromagnetism
transform: they’re called the ‘Lorentz transformations’. Sometimes ... history is unkind.”

20In the case of Einstein’s synchronization procedure, this amounts to allowing the light
to take longer to go from A to B than to go from B to A, or vice versa.
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where ~k is a constant vector.21 Then, using c̃+ for the one-way speed of light
from A to B (with respect to the new coordinates) and using c̃− for the speed
from B to A, it is straightforward to show that:

c̃± =
c

1∓ ck
(5)

where k = |~k|. Equivalently, we can define, for notational convenience, a
parameter ε = 1

2
(1 + ck), according to which:

c̃+ = c/2ε (6)

c̃− = c/2(1− ε) (7)

In the original synchronization procedure, let the round trip time of the
light ray’s travel, t′A − tA, be denoted T . Then according to our new coordi-
nates:

t′B = t′A + εT. (8)

This parameter ε provides a convenient short-hand for discussing the ef-
fect of assigning different anisotropies to the one-way speed of light. Clearly,
the Poincaré-Einstein convention is equivalent to the choice ε = 1/2. How-
ever, we might ask what happens to the two-way speed of light for a different
choice of ε. Denote the distance from A to B (in this frame) as L. Then the
new two-way speed of light, c̃, is:

c̃ =
2L

L/c̃+ + L/c̃−
=

2

1/c̃+ + 1/c̃−

=
2c

2ε+ 2(1− ε)
= c

Hence, this new simultaneity convention is consistent with the invariance of
the two-way speed of light.22 All the dynamical predictions of SR that follow
from this round-trip invariance, such as clocks running at different rates, are
reproduced exactly with no dependence on the synchrony convention chosen
[11, Sec. 1]. Indeed, one may even be a bit perverse and choose different syn-
chrony conventions for different frames with no ill effects—and a judicious
exploitation of this fact even allows one to eliminate the relativity of simul-
taneity and one-way time dilation between particular frames [3, p. 105][17,
p. 386].

21Strictly speaking, it need not be constant. However, the analysis is simpler if it is and
still demonstrates the main point.

22That is, this calculation shows the new convention is consistent with two-way speed
of light being c. The invariance of c̃ then follows the invariance of c in the old coordinates.
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The question, then, is whether the one-way speed of light can be directly
measured, thus settling experimentally what value ε should take; the answer
appears to be ‘no’ [11, Sec. 2]. The issue is that, unlike a round-trip mea-
surement, performing a one-way measurement invariably requires the use of
clocks at different locations. Determining a time interval using two different
clocks requires the clocks to be suitably synchronized. Thus far, the only
synchronization procedure I have discussed is equivalent to choosing a con-
vention for the one-way speed of light, leading us in a full circle. So, the
question may be rephrased: is there a different, convention-free scheme to
synchronize distant clocks that we can avail ourselves of?

One of the most widely discussed schemes is the slow transport of clocks.
This procedure starts with two clocks in immediate proximity to one another
at A which—as Einstein noted above—allows direct synchronization. Then
one clocked is moved very slowly,23 so as to avoid corruption of the synchro-
nization by time dilation, until it reaches B. The conclusion: the clocks at A
and B are synchronized and no assumptions have been made about the one-
way speed of light. Janis notes one issue with this is that “until the clocks
are synchronized, there is no way of measuring the one-way velocity of the
transported clock” [11, Sec. 3]. Alternative, more elaborate schemes, have
been proposed but critics have claimed, Janis notes, that “nontrivial conven-
tions are implicit in the choice to synchronize clocks by the slow-transport
method” [Id.]. Ultimately, there hasn’t yet been a clock synchronization
scheme, purported to be free from either the one-way speed of light con-
vention or an equivalent convention, that has satisfied the proponents of
conventional simultaneity.

In the absence, then, of an empirical test of the one-way speed of light,
attempts have been made to deduce the nature of simultaneity in SR with
reason alone (in conjunction with already-known empirical facts). Hans Re-
ichenbach, whom the ε-notation is due to, argued that it is incoherent to
unambiguously assign simultaneous times by any means to events that are
causally disconnected from one another [11, Sec. 1]. For a long time, this
view was the orthodox position. However, a landmark theorem was proved
by David Malament in 1977 in which the standard (Poincaré-Einstein) syn-
chrony and the basic light-cone structure of SR were shown to be intimately
connected. Malament’s work caused a resurgence of interest in the non-
conventional interpretation of simultaneity.

23In theory, ‘very slowly’ means ‘in the limit of vanishing velocity’. In practice, the
precision of one’s measuring devices would dictate what is slow enough.
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3.1.2 Malament’s theorem and Brown’s response

As far as the importance of Malament’s work goes, Brown characterizes the
theorem as “a result which virtually single-handedly managed to swing the
orthodoxy within the philosophy literature from conventionalism to anticon-
ventionalism.” [3, p. 98]. The foundation for the theorem was a program
undertaken by Cambridge physicist Alfred Robb who, in a series of papers
from 1911 to 1936, set out to axiomatize the geometry of special relativity.
That is, he aimed to do for Minkowski space-time what Euclid (and, later,
Hilbert) had done for familiar three-space. Robb succeeded in defining a
notion of orthogonality in (3+1)-dimensional space-time that, it was later
observed, was tied to the Poincaré-Einstein convention of ε = 1/2:

Specifically, imagine an inertial world-line W and any point p on
W ; then the set of points q such that the straight line joining p
and q is orthogonal to W in Robb’s sense turns out to be just the
set of all points simultaneous with p according to the Poincaré-
Einstein convention in the inertial rest frame of the free particle
whose world-line is W . [Id.]

The key aspect of Robb’s result is that his axiomatization of space-time—
and, by extension, his notion of orthogonality—was constructed solely from
the causal connectibility of space-time points. That is, from the light-cone
structure of Minkowski space-time, which is convention-free.

While an important result in its own right, Robb’s work on space-time
orthogonality does not, by itself, have any implications for the simultaneity
debate. That one can define a simultaneity relation in terms of the causal
structure of space-time is interesting, but the question is whether one can
do so uniquely. For, if other values of ε are also compatible with the causal
structure, then we are right back where we started. Malament’s theorem
was an affirmative answer this question, in which he “argues that standard
synchrony is the only simultaneity relation that can be defined, relative to a
given inertial frame, from the relation of (symmetric) causal connectibility”
[11, Sec. 4]. That is, Malament demonstrated that Robb’s notion of orthog-
onality to the world-line W is the only non-trivial one that can be defined
solely using W itself and the causal structure of space-time [3, p. 98].

Janis cites a number of subsequent authors who took Malament’s theo-
rem to conclusively settle the simultaneity issue [11, Sec. 4]. However, he
also emphasizes that conventionalists have criticized Malament’s result for
a number of reasons.24 A conservative reading of the situation would be

24Noting, though, that at least some of the reasons are flawed.
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that the implications of Malament’s theorem are controversial. Of particular
importance to my discussion is Brown’s response to Malament:

Why should we consider defining simultaneity just in terms of the
limited structures at hand in the Grunbaum-Malament construc-
tion, namely an inertial world-line W and the causal, or light-cone
structure of Minkowski space-time? Part of the answer is already
obvious in Malament’s paper: W is taken to represent an inertial
observer, and we are after all talking about simultaneity relative
to such an observer. But in the real world there is a lot more
structure for the observer to observe: is none of this relevant? [3,
p. 100]

Brown asks us to consider the world for which Malament’s theorem is proved,
consisting solely of W and the light-cone structure.

Recall, when I examined Norton’s critique of Brown in Section 2.2 that he
describes a world like Malament’s and claims that it poses a serious problem
for a constructivist’s view of time:

The constructivist must, in effect, say that the entire scenario
envisaged is impossible. The notion that there can be a part
of spacetime without matter or a part of spacetime with static
matter is simply a confusion on the part of realists. It makes no
sense to talk of time in such scenarios.[14, p. 832]

Norton is unimpressed by this defence, dismissing it as “extreme opera-
tionism”. And yet, as Norton must be aware25, this is precisely the “out”
Brown employs:

The Malament world is so utterly different from ours, I think it
is legitimate to ask whether it even contains time at all. It is
not enough to say that being four-dimensional, the space-time
manifold therein has time built into it. We are doing physics, not
mathematics ... The conformal light-cone structure is in itself
timeless. It has no non-trivial dynamics. Supposedly there is
also a particle or observer in motion, but in motion relative to
what? There can only be one answer: in relation to the space-
time manifold. But if Malament’s world is anything at all like
ours, this is not a notion that today, after the lesson of Einstein’s
hole argument has finally sunk in, is widely regarded as physically
meaningful. [3, pp. 100-101]

25Again, since he refers in his footnote 13 to the very excerpts of Brown that I am
quoting.

33



Norton appears to view his accusation of operationalism in this defence
as a sort of reductio ad absurdum. So, the next question is whether Norton is
right and Brown’s dismissal of Malament necessitates a departure from physi-
cal realism well beyond just Brown’s objections to an independent space-time.
“The assertion,” according to Norton, “must be that it makes no sense to
speak of times elapsed unless a clock or the change in some material process
actually measures the times elapsed” [14, p. 833]. I think that, at the very
least, the accusation is overstated. Brown’s reason for denying the passage
of time in this scenario is not the absence of a physical clock along W ; it
is the total absence of anything that could be considered dynamical in this
scenario. While there may be elements of operationalism in Brown’s views—
particularly with respect to the immeasurable one-way speed of light—it is
not clear to me that Norton has established: (a) the operationalism is as
radical as he alleges, and (b) that even if it is, that such a categorization
should be seen as a genuine problem for the ontology.

3.1.3 Tension with constructive relativity

There is a sense in which Brown’s moral is in tension with the conventionality
interpretation of simultaneity. It is not a contradiction per se, but I would
argue that Brown’s moral is weakened a bit by the conventionality thesis.
It will be helpful to re-examine a comment from Brown and Pooley’s 2001
paper (quoted first in Section 2.2.1) to illustrate what precisely they hope
to accomplish with a constructive approach to relativity that emphasizes
dynamical interactions over geometry:

The geometrical features of the objects that are assumed, and
appealed to, in these [space-time based] explanations are similar
in status to the postulates of principle theories. They do not,
directly, concern the details of the bodies microphysical consti-
tution. Rather they are about aspects of their (fairly) directly
observable macroscopic behaviour. And this reflection prompts
an obvious question: why do these objects obey the constraints
of Minkowski geometry? It is precisely this question that calls
out for a constructive explanation. [4, p. 9]

This emphasis on understanding how relativistic behaviour arises from
from a detailed understanding of the microscopic matter (or at least the
possibility for such an understanding in Brown’s truncated Lorentzian ped-
agogy) suggests a criterion for what makes for a good constructive expla-
nation: a degree of uniqueness. Of course, in relativity this is necessarily a
frame-dependent criterion. Bell’s entire point was that a complete physical
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understanding of relativistic kinematic phenomena may be obtained from
dynamical laws in a single frame. Still, within that single frame, it would
be preferable to have a constructive explanation that is free from arbitrary
conventions. Otherwise, precisely how meaningful is it to say that certain
macroscopic behaviour occurs because of a particular set of microscopic in-
teractions if those interactions only happen on paper after the physicist has
adopted a particular convention?

Of course, this hints at the lesson of general covariance in GR: we should
not rely on coordinates to actually explain anything. Rather, relativity is
best understood as the theory of invariants: explicitly local measurements
made by observers of proper time and distance, sent and received light sig-
nals, and so on. Hence, there is one point on which Brown’s thermodynamic
analogy fails. When Boltzmann showed that entropy arises from statistical
considerations of large numbers of particles, his derivation of entropy was
constructive in a very literal sense. Certain concrete events were happening
at a low level of the description and yielding certain system-wide behaviours
at a higher level description. The conventionality of simultaneity makes such
a literal understanding problematic for how relativistic geometry construc-
tively arises from the interactions of Lorentz covariant matter. This is not
a catastrophic problem for Brown’s moral; however, it does seem to dull the
point a little.

3.2 Pedagogical consequences: how not to teach spe-
cial relativity

To conclude these interpretational discussions, I briefly return to the ped-
agogical concerns of John Bell. An introduction to SR typically involves a
selection from a standard canon of so-called “paradoxes”. Each involves a
scenario in which the features of SR seem, when näıvely misapplied by the
beginning student, to lead to a contradiction between two or more reference
frames. Of course, they are not true paradoxes: without fail, when the me-
chanics of SR are applied correctly the apparent contradiction vanishes. The
didactic utility of the paradoxes is to essentially illustrate Bell’s point: that
one can use any inertial frame in which to do the analysis.

Despite their non-paradoxical nature in actual fact, there still remains a
question in many cases of how to actually do the analysis in a given frame in
a way that satisfies the student that relativity is consistent. Consequently,
the paradoxes have been some of the most popular subjects for academic
articles on SR for as long as they have been around. The so-called “twin
paradox” in particular has received a great deal of attention due to its con-
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nection with the relativity of simultaneity. I have already outlined in Section
2.1.4 what a valid reading of length contraction is according to Brown’s view:
according to a frame in which length contraction of some object is measured26

to occur, there is a genuine physical contraction due to the Lorentz covari-
ance of the matter composing the object. As a result of Brown’s views on
simultaneity’s conventionality, he cautions that “explanations of synchrony-
independent phenomena in SR that rely crucially on the relativity of simul-
taneity are not fundamental [emphasis removed] [3, p. 105].” Hence, it is
worthwhile to consider what one should replace such explanations with. Af-
ter a few remarks about the postulates of SR, I will comment on several
pedagogical approaches to the twin’s paradox and discuss the implications
of Brown’s perspective.

3.2.1 Postulates

At the heart of SR are two postulates: the principle of relativity and the
light principle. As we have seen, some other milder assumptions—like spatial
isotropy—are needed to derive the familiar mathematics of SR; however, the
real heart of the theory lies in these two postulates. The first, the principle
of relativity, is powerful, far reaching, and yet extremely simple. In his 1905
paper, Einstein phrased it thus:

The laws by which the states of physical systems undergo change
are not affected, whether these changes of state be referred to
the one or the other of two systems of co-ordinates in uniform
translatory motion. [8]

This is often equated with the equivalent—but slightly more intuitive—
statement that there is no experiment that can be performed by someone
moving inertially that will allow them to determine if they are at rest.

The second postulate has lent itself to a great deal more confusion than
the first. Referring again to Einstein:

Any ray of light moves in the “stationary” system of co-ordinates
with the determined velocity c, whether the ray be emitted by a
stationary or by a moving body. [Id.]

This is, on the surface, not a surprising claim. Water waves emitted from
a boat travel at the same speed through the water regardless of whether

26The distinction between ‘measured’ and ‘observed’ is an important one here. The
latter may imply visual inspection which, due to the finite propagation of light, brings its
own set of complications.
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the boat is in motion through the water. It is only absent a medium for
the light to travel through—as the water waves travel through the water—
that the statement takes on an unusual flavour. Einstein’s innovation was
to avoid any talk whatsoever about the medium. The luminferous aether,
which invariably is discussed as historical context when SR is taught, is
indeed superfluous in his formulation. However, he doesn’t explicitly reject
it; he doesn’t need to.

Despite the light principle’s rather humble statement, Brown notes that:

It is often wrongly claimed that Einstein’s light postulate is the
stronger claim that the light speed is invariant across inertial
frames. The advantage of his postulate as it stands is that it is
logically independent of the [principle of relativity]. This meets
an obvious desideratum in a semi-axiomatic derivation of the new
kinematics of the type Einstein was constructing. [3, p. 76]

It is only when the two postulates and Maxwell’s equations of electrodynam-
ics are taken together that the universal invariance of the speed of light is
deduced27: not as a postulate of SR but as a theorem.

Given how singularly bizarre the constancy of c appears to new students
(and even to seasoned veterans) due to its divergence from the everyday ex-
perience of velocity, it is somewhat comforting that it need not be baldly
asserted as a postulate, but rather may be deduced from less shocking prin-
ciples. From a pedagogical standpoint, it is advisable to keep in mind the
distinction between the light postulate and the invariance of the speed of
light. With respect to Brown’s emphasis on dynamical theories over abstract
principle theories, beginning with principles that are even more abstract
than strictly necessary is not an auspicious start for guiding students to a
constructive understanding of relativity’s postulates.

3.2.2 The twin paradox

Scenario: Alice and Bob are twins living on earth. They synchronize their
watches and Bob gets into a spaceship and flies off at 0.8c to Planet X four
lightyears away (in Alice’s frame). Once he gets there, he immediately turns
around and flies home at the same speed. At this point, Alice will have
aged ten years. However, time dilation means that during the trip, Alice will
determine that Bob’s clocks run slower than hers by a factor of 0.6. Hence,
she deduces that when Bob returns, he will have aged a mere six years. And

27It is obviously the absence of a ‘Maxwell-like’ frame-independent expression for water
waves that prevents the same conclusion being reached for water waves off a boat.
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yet, from Bob’s perspective, it was Alice who was in motion and whose clocks
should have run slower. Thus, Bob reasons, Alice should be the younger twin
when he returns. Who is right?

As is well-known, Alice is correct. However, why is Bob wrong? The
simple answer is that Bob’s trip requires two separate inertial frames—he
does not stay in the same one the whole time—since he turns around to
come home. Hence, his näıve application of the time dilation formula to
Alice is incorrect. If we determine what the twins actually see by having
them exchange light pulses throughout the trip, we find, using the relativistic
Doppler shift, that their observations are consistent with Alice aging ten
years and Bob aging six years. However, suppose we are willing to treat
Bob’s frame with the subtleties it requires and wish to explicitly calculate
what happens in Alice’s (inertial) frame according to Bob’s (non-inertial)
frame.

Redhead and Debs [17] note two common approaches: treating Bob’s
acceleration like a pseudo-gravitational field and using the relativity of si-
multaneity. They dismiss the former explanation on the grounds that clever
reformulations of the problem using a third twin or alternative space-time
topologies eliminate Bob’s need to accelerate to return home. Nonetheless, in
all these variants some asymmetry between Alice and Bob remains (or there
would be a genuine paradox!). Brown characterizes the latter explanation as
an illustration of his cautionary note against simultaneity-based explanations
in SR:

A common example concerns the clock retardation effect, or twins
paradox, where it is claimed that at the point of turn-around
of the travelling clock, the hyperplanes of simultaneity suddenly
change orientation and the resulting ‘lost time’ accounts for the
fact that the clocks when reunited are out of phase. It is worth
bearing in mind that the clock retardation effect, like any other
synchrony-independent phenomenon in SR, is perfectly consistent
with all the non-standard transformations in this section, includ-
ing those which eliminate relativity of simultaneity. [3, p. 105]

Redhead and Debs agree with Brown on this point—that the standard
simultaneity explanation cannot be a really fundamental account of Alice’s
aging faster, on average, than Bob (as Bob computes everything). However,
they take the idea in a direction that does not square well with Brown’s
constructive relativity. They demonstrate how different simultaneity con-
ventions (i.e. different choices for ε) lead to radically different step-by-step
accounts of what happens during Bob’s trip; and yet, the end result is always
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the same: Bob ends up four years younger than his sister. They do not con-
clude from the smorgasbord of possible (but contradictory) narratives based
on different simultaneity conventions that the whole approach is a dead-end.
Rather, they develop a geometric illustration for the convention-dependence
of the sequence of events. They ascribe genuine explanatory import to the
geometric picture: “The overall twins aging is caused by the horizontal dash
line segment over which, from the Earth, the traveler’s clock stands still
[emphasis mine] [17, p. 388].” This is precisely the fetishization of geometry
that Brown argues against when rejecting Minkowski’s formulation of SR as
genuinely constructive.

The conclusion compatible with Brown seems to be a minimalist one: it
simply does not make sense to ask how Bob’s and Alice’s aging proceeds
alongside one another. The only invariants in relativity, after all, are those
measured locally. Unfortunately, it is not easy see, then, how one could pro-
vide the sort of constructive explanation for Alice’s age that is valid according
to Bob. This is the weakening of Brown’s moral I noted in Section 3.1.3.

It is simpler, at least, to constructively explain in Bob’s frame why his
trip takes six years, and not ten: in both inertial frames he occupies during
the trip, the distance from earth to Planet X is length contracted. We can use
the usual constructive explanation provided by Bell for this, with one caveat:
there is no intervening matter between the two planets that can contract
inter-atomically. Hence, the best we can do is accept that both planets may
together be described by some (very complicated) quantum state; that is, we
can follow Butterfield’s sketch of the truncated Lorentzian pedagogy outlined
in Section 2.1.4.

4 Concluding remarks

A great deal of ground has been covered in this paper, and much of it far
more briefly than the material merits. The references, of course, provide
fertile ground for the keen reader who desires to delve more deeply into the
issues I have discussed. While the majority this paper is an overview of
other peoples’ arguments for and against various theses, my own positions
are present to varying degrees throughout (through both editorial selection
and explicit comments on particular claims). It is my hope that somewhere
in this survey there is some novel thinking—however minor it may be.

There is, naturally, ongoing dispute in the literature about nearly every
topic I have examined in the preceding pages. One cannot help but read the
concluding remarks of Redhead and Debs’ 1996 paper on the twin paradox
with a bit of amusement at the wild optimism:
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Perhaps the method discussed in this paper, the conventionality
of simultaneity applied to depicting the relative progress of two
travellers in Minkowski space-time, will settle the issue of the
twin paradox, one which has been almost continuously discussed
since Langevin’s 1911 paper. [17, p. 391]

If there is central point to this somewhat disconnected overview of several
distinct issues, it is Brown’s moral, discussed in Section 2.3. It is a worth-
while reminder that we physicists are ultimately engaged in the business
of matter theories and should be cautious about leaving our roots behind.
Brown’s view, that matter is fundamental with respect to geometry in rela-
tivity theory, is clearly a contentious one. What should be less contentious is
which of the two is the physicist’s ultimate object of study. There is, I think,
great wisdom in the suggestion that if having an understanding of matter
and its motions, interactions, and deeper intricacies is the ultimate goal of a
physicist, then matter itself is a sensible place to start.
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