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Modeling/Experimenting? 

The Synthetic Strategy in the Circadian Clock Research 

 

 

 

Abstract: 

In which respects do modeling and experimenting resemble or differ from each other? We 

explore this question through studying in detail the combinational modeling strategy in the 

study of the circadian clock. In this area of synthetic biology scientists triangulate experiments 

on model organisms and mathematical models with a new type of model—a synthetic model. 

We argue that this combinational strategy is due to the characteristic constraints of the three 

aforementioned epistemic activities that make them complementary with respect to each other. 

These constraints are closely linked to the question of materiality. In the case of synthetic 

biology, materiality clearly matters: it provides the very rationale of synthetic modeling. 

Consequently, although modeling and experimenting share some common features, there are 

also significant differences between them and they perform different roles in actual scientific 

practices.  
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1. Introduction 

 

In philosophical discussion, models have been located between theories and experiments, 

often as some sort of go-betweens facilitating the points of contact between the two. Although 

the relationship between models and theories may seem closer than the one between models 

and experimentation, there is a growing body of literature that focuses on the similarities (and 

differences) between modeling and experimentation. The central questions of this discussion 

have concerned the common characteristics shared by modeling and experimenting as well as 

the ways in which the inferences licensed by them are justified. 

In this paper we will study the different stands taken in the discussion on modeling and 

experimentation through examining the modeling practice of the circadian clock research in 

synthetic biology. Circadian clock research studies the day and night rhythms of organisms. In 

this area experiments on model organisms, mathematical models (and their simulations), and 

synthetic models are being closely triangulated. Moreover, there is often no division of labor 

in synthetic biology laboratories: the same scientists typically engage in experimentation as 

well as in mathematical and synthetic modeling. Consequently, one might expect that there are 

good reasons why synthetic biologists proceed in such a combinational manner. We will argue 

that this is due to the characteristic constraints of each of the aforementioned activities that 
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make them complementary with respect to each other. In particular, we wish to show that there 

is a gap between modeling and experimentation that, in the field of synthetic biology, gave 

rise to a new type of model, the synthetic model, built from genetic material using a 

mathematical model as a blueprint. As such it is a hybrid entity that shares characteristics of 

both experiments and models, serving to make clearer the differences between the two. 

Considering the constraints of synthetic models vis-à-vis those of mathematical models 

and experiments also provides a novel perspective on the discussion concerning the role of 

materiality in modeling and experimentation. We show how the “same materiality” or the 

“same stuff” was clearly relevant for the epistemic functioning of synthetic models, but only 

in combination with a carefully engineered theoretically preconceived mechanism. To 

exemplify a synthetic model we will examine more closely the Repressilator (Elowitz and 

Leibler 2000), which was one of the first hybrid models of its kind. Before going into 

synthetic modeling and the combinational modeling practice of synthetic biology, we will 

review some relevant philosophical discussion on the relationship of modeling and 

experimentation. 

 

2. Modeling vs. Experimenting 

 

The philosophical discussion of the relationship of modeling and experimentation has 

concentrated on which grounds, if any, the two activities can be clearly distinguished from 
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each other, and whether the inferences made to real target systems are more direct in the case 

of experimentation than in modeling. As regards the similarity between modeling and 

experimentation, there are many ways to cash it out. Firstly, one can consider them as largely 

analogous operations. Both in modeling and in experimentation one aims to seal off the 

influence of other causal factors in order to study how a causal factor operates on its own. 

Whereas in experimentation this sealing off happens through experimental controls, modelers 

use various techniques, such as abstraction, idealization, and omission as vehicles of isolation 

(see, e.g., Cartwright 1999; Mäki 2005). Consequently, a theoretical model, too, can be 

considered as an outcome of the method of isolation: in modeling a set of elements is 

theoretically removed from the influence of other elements through the use of a variety of 

unrealistic assumptions (Mäki 1992).  

Although the idea of seeing both experimentation and modeling as instances of the 

method of isolation seems intuitively plausible, one specific property of mathematical 

modeling does not easily fit into this picture. Idealizing assumptions are often driven by the 

requirements of tractability rather than those of isolation. The model assumptions do not 

merely neutralize the effect of the other causal factors but rather construct the modeled 

situation in such a way that it can be conveniently mathematically modeled, making it often 

unclear which assumptions are crucial for the results, or whether the results are dependent on 

the specific mathematical construction of the model (see, e.g., Cartwright 1999; Morrison 

2008). This feature of mathematical models is further enhanced by their use of general, cross-
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disciplinary computational templates that are, in the modeling process, adjusted to fit the field 

of application (Humphreys 2004; Knuuttila and Loettgers 2012).  Such templates are often 

transferred from other disciplines, as in the case of the circadian clock research, where many 

models, formal methods and related concepts originate from physics and engineering (e.g., the 

concepts of oscillator, non-conservative system, feedback mechanism, and noise—see below). 

There is also reason to doubt whether the method of isolation succeeds in capturing the actual 

modeling heuristic since models are often constructed by depicting hypothetical systems 

instead of being abstracted from real world systems in any straightforward manner (Weisberg 

2007). 

Even if one does not want to endorse the idea that models are results of isolation, this 

insight implies another respect in which modeling and experimentation may resemble each 

other. In experimentation some real world target system is intervened on. Likewise in 

modeling one typically intervenes on the model system, although in the context of 

mathematical modeling one usually talks about the manipulation of a model (Morgan 2003). 

Thus the second sense in which models and experiments may resemble each other is due to the 

fact that in both modeling and experimentation one seeks to intervene on a system in the light 

of the results of this intervention.1 But the question is how deep this resemblance really cuts. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Apart from the arguments concerning isolation and intervention, a third motivation for claiming that the 

practices of modeling and experimentation are similar to each other invokes the fact that both simulationists and 

experimentalists produce data and are dealing with data analysis and error management (see Winsberg 2003 and 

Barberousse et al. 2009 for somewhat divergent views on this matter) 
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Two issues in particular have sparked discussion: the supposed target systems of simulations 

versus experiments and the role of materiality they incorporate. In neither of these questions 

has any consensus emerged among the philosophers of science—although the discussion itself 

has provided some novel insights. 

As regards the target systems of simulations vis-à-vis experiments a common intuition 

seems to be that whereas in experimentation one intervenes on the real target system of 

interest, in modeling one merely interacts with a model system (e.g., Gilbert and Troitzsch 

1999; Barberousse et al. 2009). Yet a closer examination has assured several philosophers that 

these intuitions may be deceptive. Winsberg (2009) argues that both “experiments and 

simulations have objects on the one hand and targets on the other, and that, in each case, one 

has to argue that the object is suitable for studying the target” (579; see also Guala 2002). 

Thus both experimentation and modeling/simulation display features of surrogate reasoning 

(Swoyer 1991), which is visible for instance in the experimentation on model organisms 

instead of the actual organisms of interest. Consequently the relationship of a model or 

experiment to its respective target need not distinguish the two activities from each other. 

Peschard (2012) disagrees, however. She focuses on what the kinds of “target systems” 

simulation and experimentation pick, respectively, in cases where they are used in tandem in 

scientific research. According to her the target system of the simulation is the system 

represented by the manipulated model: “it is the system simulation is designed to produce 

information about” (see also Giere 2009 for a similar view). In the case of experimentation, 
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the target system is the experimental system, for example the model organism. The 

experimental results concern the interventions on the model organism, e.g. rats, although the 

eventual epistemic motivation might be to gain information on the influence of a certain drug 

in humans.  

Peschard’s argument may seem not, at least at first sight, to fit fictional models whose 

target systems are the hypothetical model systems themselves in an analogy to the case of 

model organisms. This fictional feature of modeling has even been made the distinguishing 

mark of model-based theoretical strategy in science (Godfrey-Smith 2006; Weisberg 2007). 

Yet, on Peschard’s account one can treat fictional models as experimental systems, in which 

case they boil down to experiments. As a consequence the distinction between what is an 

experiment and what is a simulation/model is made on pragmatic grounds, that is, how they 

are used and on what they are supposed to give knowledge about. A mathematical model is an 

experiment if it is manipulated to give us information about the model itself. It is a model 

when it is used to give information of another system through representing. Yet, at the level of 

scientific practice we nevertheless distinguish model systems from experimental systems, 

although borderline cases exist. The question that needs to be addressed is this: are we not 

usually interacting with different kinds of scientific objects when simulating or experimenting? 

At this point, the issue of materiality starts to emerge as the inevitable next puzzle. 

As with the question concerning target systems, when it comes to materiality, the verdict 

is still out regarding its roles in modeling and experimentation. Whereas simulations appear as 



	   8	  

non-material to some, for others the similarity of simulations to experiments is importantly 

related to their physicality or materiality.  Obviously, analog simulations involving the use of 

scale models or other specially designed physical artifacts, for example, qualify as material 

things.  But what about computer simulations—are they non-material things as Morgan (2003) 

suggests? Many philosophers of science seem to agree that the fact that computer simulations 

are implemented on a concrete device and thus involve physical processes when run on it, 

provides them with a material status (see, e.g., Humphreys 1994; Barberousse et al. 2009; 

Parker 2009). Yet the opinion is divided on what epistemic role this materiality plays. In 

particular, does materiality play the same role in justifying the inferences concerning target 

systems in the case of simulations as in the case of experiments? 

The answer given by Norton and Suppe (2001) is most straightforward: since 

programmed computers are real systems, observations of them can give “new knowledge of 

the world” precisely as experiments do. But the challenge is then to show, how this can be the 

case given that computer simulations and the real world target systems are very different kinds 

of things. According Norton and Suppe simulations “embed” theoretical models in 

programmed computers through “lumped models”: a simulation model is a lumped model 

embedded into a programmed computer. However, for the simulation to give knowledge of the 

real world targets it is mimicking, some rather stringent mapping relations have to hold 

between the model of the data, the modeled physical system itself, the base model, and the 

lumped model. Yet the burgeoning literature on simulation has so far established that the 
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relationship between the base model and what Norton and Suppe call the lumped model is far 

from straightforward.2 Furthermore, what seems potentially even more problematic to Norton 

and Suppe is the critique presented by Barberousse et al. (2009). They argue that in most 

simulations the computer’s physical states cannot be said to realize the lumped model, that is, 

the lumped model and the programmed computer qua physical system need not share a 

common structure. This seems to pull the rug from under the idea that “the computation’s 

being a physical process itself should explain the ‘mimicry’ relation” between simulation and 

its real world target (ibid., 566). 

Indeed, the right kind of materiality has been claimed to be the distinguishing mark of 

experiments and even the reason for their epistemic superiority to simulations. Either, it has 

been claimed that computer simulations are basically non-material (Morgan 2003, see above), 

or that the relationship between a simulation and its target is abstract, whereas the relationship 

between an experimental system and its target is grounded in the same material being 

governed by same kinds of causes (Guala 2002).  The crucial difference between modeling 

and experimentation, according to this latter view, is that whereas in simulation one 

experiments with a (formal) representation of the target system, in experimentation the 

experimental and target systems are made of the “same stuff”. This difference also explains, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The recent discussants on simulation models have stressed that the discretized programmed equations of the 

simulation model stand in no straightforward relationship to the equations of the basic theoretical model (e.g., 

Winsberg 2003; Lenhard 2007; Barberousse et al. 2009; Parker 2009). 
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according to Morgan and Guala, why experiments have more epistemic leverage than 

simulations. For example, anomalous experimental findings are more likely to incur change in 

our theoretical commitments than unexpected results from simulations.   

Despite the intuitive appeal of the importance of the “same” materiality, it has been 

contested on different grounds. Morrison (2009) points out that even in the experimental 

contexts the causal connection with the physical systems of interest is often established via 

models (see, however, Giere 2009 for a counter-argument). Consequently, according to her, 

materiality provides no unequivocal epistemic standard that distinguishes simulation outputs 

from experimental results. Parker (2009) attacks directly the alleged significance of the “same 

stuff”. She interprets the “same stuff” to mean for instance the same fluid and points out that 

in traditional laboratory experiments on fluid phenomena many other things such as the depth 

of the fluid and the size, shape, roughness and the movement of any container holding it may 

matter.  This leads her to suggest that it is the “relevant similarities” that matter for the 

justified inferences about the phenomena that seems, once again, to make experimentation and 

modeling similar to each other. 

In trying to establish to which extent modeling and experimentation really function in the 

same way—or deliver the same kinds of results—we will in the next sections take an 

excursion into the emerging field of synthetic biology. We focus, in particular, on synthetic 

modeling. The raison d’être of synthetic models, we suggest, is due to their hybrid theoretical-

cum-material nature, which provides an interesting and revealing case regarding the 
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characteristics of modeling and experimentation. The right kind of materiality gives synthetic 

models their epistemic leverage—including also a carefully crafted causal mechanism.  

 

3. The Combinational Modeling Strategy of Synthetic Biology 

 

Synthetic biology is a relatively novel and highly interdisciplinary field. It is located at the 

interface of engineering, physics, biology, chemistry and mathematics. The research practice 

in this field is a combination of methods, concepts, tools, and theories from those fields. In 

synthetic biology itself one can distinguish between two main research branches: an 

engineering branch focusing on the engineering of novel biological components / systems and 

a basic science branch using synthetic models to gain understanding on the basic design 

principles underlying specific biological functions, such as the circadian clock regulating day 

and night rhythms in organisms.  

In our study we are focusing on the latter branch of synthetic biology. One of the defining 

strategies of the basic science approach is the combinational use of mathematical models, 

model organisms, and synthetic models. The basic idea of this combinational modeling 

strategy is shown in figure 1, which is taken from a review article on synthetic biology by 

Sprinzak and Elowitz (2005). The two authors call this approach “the synthetic biology 

paradigm”. As the diagram suggests, the results gained from each of the three different 

epistemic activities inform the other ones. 
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Figure 1. The “synthetic biology paradigm” according to Sprinzak and Elowitz (2005). The upper part of the 

diagram depicts the combinational modeling strategy and the lower part compares a natural gene regulatory 

network and a synthetic one.  

 

Why do researches make use of a combinational modeling strategy in studying organizational 

principles in biology? A clue can be found from the lower part of the diagram. The left hand 

side of the diagram depicts our present understanding of the “natural gene regulatory circuit” 

of the circadian clock of Drosophila (fruit fly) consisting of interacting genes and proteins and 

the right-hand side a synthetic model of the circadian clock, the Repressilator, introduced by 

Elowitz and Leibler (2000). The diagram indicates the two main differences between the 

natural and synthetic system: 
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1. The natural system exhibits a much higher degree of complexity than the synthetic 

system.  

2. The synthetic circuit has been designed by using different genes and proteins.   

 

Consequently, synthetic models have the advantage of being less complex than model 

organisms. On the other hand, in comparison with mathematical models they are of the “same 

materiality” as their biological counterparts, gene regulatory networks. That is, they consist of 

the same kind of interacting biochemical components and are embedded in a natural cell 

environment. This “same materiality” is crucial for the epistemic value of synthetic modeling. 

It means that synthetic models are expected to operate in the same way as biological systems. 

As we will argue, the synthetic strategy rose as a response to the constraints of mathematical 

modeling on the one hand, and experimentation with model organisms on the other hand. 

There seemed to remain a gap between what could be shown mathematically and what was 

established experimentally. In particular, the experiments could not give any conclusive 

answer as to whether the hypothetical mechanisms that were suggested by mathematical 

models could be implemented as molecular mechanisms capable of physically generating 

oscillatory phenomena like the circadian rhythm. This question was probed by constructing 

synthetic models on the basis of mathematical models and their simulations. In what follows, 

we will discuss in more detail the specific constraints of each of the three epistemic activities: 
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mathematical modeling, experimentation and synthetic modeling. We start from mathematical 

modeling, which actually predated the experimental work in this area. 

 

3.1. Mathematical modeling 

 

One of the earliest and most influential mathematical models of circadian rhythm was 

introduced by Brian Goodwin in his book Temporal Organization in Cells (1963). This book 

is an example of an attempt to apply concepts from engineering and physics to biology. 

Inspired by Jacob and Monod’s (1961) operon model of gene regulation Goodwin explored 

the mechanism underlying the temporal organization in biological systems, such as circadian 

rhythms, in terms of a negative feedback system. Another source of inspiration for him was 

the work of the physicist Edward Kerner (1957). Kerner had tried to formulate a statistical 

mechanics for the Lotka-Volterra model, which then prompted Goodwin to attempt to 

introduce a statistical mechanics for biological systems. These aims created the partly 

competing constraints on the design of Goodwin’s model both shaping its actual formulation 

and the way it was supposed to be understood. A third constraint was due to the limitations of 

the mathematical tools for dealing with non-linear dynamics. These three constraints are 

different in character. The first constraint was largely conceptual but it had mathematical 

implications: the idea of a negative feedback mechanism that was borrowed from engineering 

provided the conceptual framework for Goodwin’s work. It guided his conception of the 
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possible mechanism and its mathematical form. The second constraint, due primarily to the 

attempt to formulate a general theory according to the example provided by physics, was 

based on the assumption that biological systems should follow the basic laws of statistical 

mechanics.  Goodwin described his approach in the following way:  

 

The procedure of the present study is to discover conservation laws or invariants for a 

particular class of biochemical control systems, to construct a statistical mechanics for 

such a system, and to investigate the macroscopic behaviour of the system in terms of 

variables of state analogous to those of physics: energy, temperature, entropy, free 

energy, etc. What will emerge from the programme is a set of concepts which are 

strictly biological in content […] although there is a formal mathematical relationship 

because we are using the same analytical constructions as are used in classical physics. 

(Goodwin 1963, 7) 

  

This procedure provided a course of action but also imposed particular constraints such as the 

restriction to conservative systems although biological systems are non-conservative as they 

exchange energy with the environment (see below). We call this particular constraint deriving 

from the goal of formulating statistical mechanics for biological systems a fundamental theory 

constraint. The third set of constraints was mathematical in character and due to the nature of 

the mathematical methods, equations, and computational templates used in the formulation of 
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the model. Because of the non-linearity introduced by the negative feedback loop, the 

tractability of the equations of the model posed a serious challenge. 

The three types of constraints, conceptual, fundamental, and mathematical provide the 

theoretical toolbox available for modeling a specific system. But as a hammer reaches its 

limits when used as a screwdriver, both engineering concepts and the ideal of statistical 

mechanical explanation proved problematical when used in the context of biological systems. 

Indeed, in later systems and synthetic biology the aim for a statistical mechanics for biological 

systems was replaced by the search for possible design principles in biological systems.  The 

concept of the negative feedback mechanism was preserved, functioning as a cornerstone for 

subsequent research, but there was still some uneasiness about it that eventually motivated the 

construction of synthetic models.  

The toolbox-related constraints should be distinguished from the constraints more directly 

related to the biological systems to be modeled. These constraints are due to the enormously 

complex behavior of biological systems, which, as we will show, plays an important, yet 

different role in mathematical modeling, experimentation, and synthetic modeling, 

respectively. Obviously the tool-related constraints are not static. Mathematical and 

computational methods develop and theoretical concepts can change their meaning especially 

in interdisciplinary research contexts such as synthetic biology (see below). Furthermore, the 

constraints are interdependent and the task of a modeler consists in finding the right balance 

between them. 
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We will exemplify these points by taking a closer look into the Goodwin model.  

The basic structure of the network underlying the molecular mechanism of Goodwin’s model 

of temporal organization is represented in the following diagram: 

 

 

 

 

 

 

 

 

 

Figure 2. The circuit diagram underlying the Goodwin model (1963, 6). 

 

The main structure of the model is a negative feedback loop. It consists of a genetic locus 

€ 

Li ,	  

synthesizing

€ 

mRNA in quantities represented by the variable 

€ 

Xi .	  The 

€ 

mRNA leaves the 

nucleus and enters the ribosome, which reads out the information from the

€ 

mRNA and 

synthesizes proteins in quantities denoted by 

€ 

Yi 	  .The proteins are connected to metabolic 

processes. At the cellular locus 

€ 

C  the proteins influence a metabolic state, for example by 

enzyme action, which results in the production of metabolic species in quantity 

€ 

Mi. A fraction 
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of the metabolic species is traveling back to the genetic locus

€ 

Li  where it represses the 

expression of the gene.  

This mechanism leads to oscillations in the protein level 

€ 

Yi regulating temporal 

processes in the cell, such as the circadian rhythm. Goodwin described the mechanism by a set 

of coupled differential equations, which were due to the feedback mechanism of a non-linear 

character. Non-linear systems display complex behavior and in general no analytical solutions 

exist for them. The differential equations are of the following form: 

dXi

dt
= aiYi − bi 	  

dYi
dt

= ciXi − di . 

WhereaiYi  describes the rate of 

€ 

mRNA synthesis and bi  its degradation. In the same way ciXi   

describes the synthesis of the protein and di its degradation. The set of kinetic equations 

describes a deterministic dynamic.  

In formulating his model Goodwin had to make simplifying assumptions through which 

he attempted to deal with two important constraints: the complexity of the system consisting 

of a variety of biochemical components and processes, and the complexity due to the non-

linear dynamics of the assumed mechanism. Firstly, he had to leave aside many known 

biochemical features of the circadian clock mechanism, and, secondly, he had to make 

assumptions that would allow him to simplify the mathematical model in such a way that he 
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could use numerical methods to explore its complex dynamic behavior without having to solve 

the non-linear coupled differential equations. 

Goodwin was able to show by performing very basic computer simulations on an 

analogue computer that the change in the concentration of proteins 

€ 

Yi and concentration of 

€ 

mRNA,Xi  form a closed trajectory. This means that the model system is able to perform 

regular oscillations, like those exhibited by circadian rhythms—but for the wrong reasons. 

Goodwin wrote: “The oscillations which have been demonstrated to occur in the dynamic 

system […] persist only because of the absence of damping terms. This is characteristic of the 

behavior of conservative (integrable) systems, and it is associated with what has been called 

weak stability” (Goodwin 1963, 53). He went on to explain that a limit-cycle dynamic would 

have been the desirable dynamic behavior with respect to biological organisms. In this case, 

after small disturbances, the system moves back to its original trajectory—a characteristic of 

non-conservative systems. But conceiving biological systems as open systems would have 

required the use of non-equilibrium statistical mechanics that would have meant giving up 

some mathematical advantages of treating them as closed systems. Goodwin wrote: “This 

approximation allows us to use the powerful tools of statistical mechanics to study the 

macroscopic properties of a control network which involves a large number of coupled non-

linear equations” (Goodwin 1963, 53). Consequently, in order to simultaneously fulfill the aim 

of modeling a mechanism that produces oscillatory behavior and the aim to formulate a 
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statistical mechanics for biological systems, Goodwin ended up presenting a model, which he 

believed could only approximate the behavior he suspected to actually be taking place.  

Even though Goodwin’s model was not a complete success, it nevertheless provided a 

basic template of circadian rhythm upon which subsequent modeling endeavors were built. In 

those modeling efforts the aim of formulating a statistical mechanics for biological systems 

was left behind. Instead, the notion of a feedback mechanism was made the centerpiece, the 

main constraints of the modeling approach now being the mathematical difficulties related to 

the non-linear, coupled differential equations and the related problem of tractability. This 

meant that only some components and biochemical processes in natural systems could be 

taken into account. However, the subsequent models became more detailed as the first 

experiments exploring the molecular basis of the circadian rhythms became possible in the 

mid-1970s. These experiments, as we will show below, came with their very own constraints. 

While modelers were able to partly bracket the complexity of biological systems by simply 

ignoring most of it, this was not possible in the experimental work.  

 

3.2. Experimentation 

 

The first circadian clock gene was discovered in experiments performed by Ron Konopka and 

Seymour Benzer (Konopka and Benzer 1971) in the beginning of the 1970s.  They named the 

gene period (per). The experimental research on circadian rhythms in molecular biology and 
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genetics progressed slowly after Konopka and Benzer published their results. In the mid-1980s 

and -1990s the situation started to change: as a result of further advances in molecular biology 

and genetics, more genes, proteins, and possible mechanisms were discovered in experiments 

on model organisms such as Drosophila, Neurospora and Arabidopsis. However, some basic 

constraints of the experimental approach remained and had to be handled by the use of 

specific strategies.  

Two constraints of the experimental approach in circadian clock research deserve special 

mention: 

• The experiments do not allow direct but only indirect observation of the network 

architecture and dynamic. 

•  It is difficult to discover whether one has captured the complete gene regulatory 

network underlying the circadian rhythm.  

 

Before setting up and performing experiments, the first and probably most important decision 

to be made regards the choice of a model organism. What makes an organism a good organism 

to study circadian clock mechanisms? One strategy is to look for a model organism, which has 

a low degree of complexity and which, in addition, can be easily manipulated by using 

methods from molecular biology and genetics. The least complex model organisms allowing 

for the study of circadian clock mechanism are prokaryotes3 like cyanobacteria, also known as 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Prokaryotes are organisms lacking a cell nucleus.  
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blue-green algae. These bacteria obtain their energy through photosynthesis, which is 

regulated by a circadian clock. Kondo and colleagues spell out the advantages of using 

prokaryotes in the following way:  

 

The realization that prokaryotes express circadian behavior is significant from the 

perspective of designing an optimal strategy to discover the hitherto elusive secret of the 

circadian mechanism. That is, if prokaryotes display the phenomenon, then progress in 

elucidating its basis will probably be most rapid while using an appropriately chosen 

prokaryotic model; in prokaryotes, the mechanism itself may be simpler, and the average 

size of prokaryotic genomes, which is smaller than that of eukaryotic genomes; facilitates 

the goal of saturation mutagenesis4 for clock-related genes. (Kondo et al. 1993, 5672) 

 

Looking at the tree of life, prokaryotes occupy a very early stage in evolution, from which 

more complex organisms have evolved. This points to two further interesting observations: 

first, some components of the clock mechanism may be conserved in more complex organisms. 

But, second, given the fact that “[…] reflecting their close interface with the environment, 

clock genes are among the most rapidly evolving genes in an organism” (Dunlap 1999, 273), 

one may also find different realizations of circadian mechanisms among the organisms at 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Saturation mutagenesis is a form of site-directed mutagenesis, in which one tries to generate all possible 

mutations.   
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different stages of evolution. Thus studying circadian clocks in prokaryotes and comparing 

them with clock mechanisms in more complex organisms offers researchers both the 

possibility of finding elements, which are conserved, but also the possibility of exploring 

different clock mechanisms.    

But these conserved structures and clock mechanisms are not directly retrievable from 

experiments, even though scientists have a large variety of experimental methods and 

background knowledge at their disposal. Theoretical concepts, like negative and positive 

feedback and mathematical modeling, help researchers in the piecemeal experimental work of 

identifying possible gene regulatory mechanisms. In the next section we will discuss in more 

detail the complex interplay of experimental results and modeling efforts by looking at a 

concrete example:  the discovery of the second interlocked feedback loop in the circadian 

clock of Drosophila (Glossop et al. 1999).5  

 

3.2.1. An Episode in the Experimental Exploration of the Circadian Clock in Drosophila 

  

At the time when Glossop and his colleagues started their experimental research on the 

circadian clock in Drosophila five genes of the clock had been identified: Period (per), 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 For an insightful and comprehensive account of the interplay between modeling and experimentation in the 

circadian clock research, see the work of Bechtel and Abrahamsen (e.g., Bechtel 2011; Bechtel and Abrahamsen 

2011). 
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timeless (tim), Drosophila Clock (dClk), Cycle (Cyc) and double time (dbt). Three of these 

genes are rhythmically expressed: per mRNA and tim mRNA levels peak early in the evening 

ZT 13—16. dclk mRNA peak late at night to early in the morning, from ZT 23 to ZT 4. ZT, in 

other words, the zeitgeber time provides the environmental cues that each day reset the 

rhythms. In this case light has been used to entrain the rhythm of the circadian clock of 

Drosophila. At ZT 0 lights were turned on and at ZT 12 turned off. 

It was known that dCLK played an important role in the activation of the transcription of 

per and tim.  Little was known about the regulation of the dClk cycle. To find out about the 

regulation of dClk, Glossop et al. performed mutation experiments. It was known that the 

levels of dClk mRNA are low in mutants  and , lacking functioning PER and TIM 

proteins. This observation led to the assumption that PER and TIM activate dClk transcription 

in addition to their roles as transcriptional repressors. Three models had been introduced by 

Isaac Edery et al. (1994 a,b), which aimed to explain the PER-TIM dependent activation of 

dClk. In the first two models (figures 3a and 3b) PER and TIM promote the dClk transcription 

by bringing in transcriptional activators into the nucleus or by co-activating a transcriptional 

complex. In the third model (figure 3c) PER, or TIM, or both inhibit the activation of a 

transcriptional repressor. The question thus became how to distinguish between the three 

different mechanisms and to discover how the three genes interacted. At this point, all three 

models suggested equally possible explanations for the observed dClk regulation via PER and 

TIM proteins.  

€ 

per01

€ 

tim01



	   25	  

Glossop et al. (1999) systematically explored the three models in order to distinguish 

between them. Based on the idea that dCLK together with CYC is necessary for the activation 

of per and tim, they created a clock gene mutant , which led to a non-functional dCLK 

protein, and measured the level of dClk mRNA. They expected low levels of dClk mRNA 

because the concentration of PER and TIM proteins would be low.  

 

 

 

 

Figure 3. The three different models of dClk activation. A. PER and TIM bring in a transcriptional activator 

for the activation of dClk. B. PER and TIM co-activate a transcriptional complex. C. PER or TIM inhibit the 

activation of a transcriptional repressor. 
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Instead they found the surprising result that the level of dClk mRNA is indistinguishable from 

the wild type. The only difference to the wild type was that the level of dClk mRNA at both 

times ZT1 and ZT13 was almost the same, which means a non-functional circadian clock. 

These results ruled out that dClk activation is PER-TIM dependent. In further experiments, 

Glossop et al. (1999) tested the following double mutations  and . In 

both cases the level of dClk mRNA was comparable with the level of dClk mRNA wild type. 

Only in the case of the single mutant  was the level of dClk mRNA low. This 

observation, which in the first place led to the assumption of a PER-TIM dependent activation 

of dClk—but which had been ruled out by a series of subsequent mutation experiments—had 

now to be explained by a different model. In this model (fig. 4), the binding of PER-TIM 

dimers to the dCLK-CYC dimer releases dCLK-CYC dependent repression of dCLK, thus 

enabling dClk transcription.  The eventual result of the investigation by Glossop et al. was a 

description of the mechanism underlying the circadian rhythm as two interlocked feedback 

loops (Glossop et al. 1999). The first loop, the  loop, is activated by dCLK-CYC and 

repressed by PER-TIM. The second loop, the dclk loop, is repressed by dCLK-CYC and de-

repressed by PER-TIM 
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Figure 4. The interlocked feedback loops (Glossop et. al. 1999, 766). 

 

This example of how the second feedback mechanism of the circadian clock of 

Drosophila was established gives some insights into the challenges of experimentation. The 

first and foremost constraint on experiments is due to the complexity and opacity of biological 

systems. In mutation experiments different possible mechanisms are tried out by varying the 

experimental parameters in systematic ways, and the results are related to such feedback 
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mechanisms that could account for the observed behavior.6 These feedback mechanisms do 

not result from experimentation alone; insight into them is gained also by computational 

modeling. This particular strategy has many constraints. Firstly, there are technical constraints 

related to the available methods from molecular biology and genetics—such as creating the 

mutations and measuring the effects of the mutations. Due to the relaxation of some of these 

constraints the experimental approach started to flourish from the mid-1980s onwards. But 

even though, as in the case of Glossop et al. (1999), it was possible to find a mechanism or 

parts of a mechanism, due to the complexity of biological systems there always remains the 

haunting question of whether all the components and their interactions have been found, i.e. 

whether the network is complete, that is a typical problem of the bottom-up experimental 

approach in molecular biology. Another question is whether the hypothetical mechanism 

discovered is the only one that could explain the observations—which amounts to the 

traditional problem of underdetermination. A further important question to be considered 

concerns whether, and how, gene regulatory networks like the circadian clock interact with the 

rest of the cell and how (stochastic) fluctuations in the number of proteins within the cell 

might influence the behavior of the clock. As we will see, to answer these questions one needs 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This complexity barrier draws simulations nearer to experimentation than what is the case with traditional 

mathematical modeling. Whereas in the latter one manipulates highly idealized model systems, in simulation one 

gains understanding through experimenting with a more epistemically opaque model (see Lenhard 2006). 

Synthetic modeling, as we will argue below, provides one strategy for dealing with complex systems.  
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a new kind of modeling approach—synthetic modeling.  

 

3.3. Synthetic Modeling 

 

Although mathematical modeling (and simulation) and experimentation informed each other 

in circadian clock research—mathematical modeling suggesting possible mechanism 

templates and experimentation in turn probing them and providing more biochemical detail—

there remained a gap between them. The modeling effort was based on rather schematic 

templates and related concepts often originating from fields of inquiry other than biology. It 

was unclear whether biological organisms really functioned in the way suggested by them, that 

is, whether the general mechanisms suggested by mathematical models could be realized by 

biological organisms. This points to the modal nature of mathematical modeling: it typically 

sets forth only possible mechanisms. The phenomena mathematical models are designed to 

account for could have been produced by other kinds of mechanisms. Synthetic modeling 

suggests a way to deal with this problem due to the specific construction of synthetic models. 

They are mixed, double-faced entities: On the one hand, they are of the same materiality as 

model organisms since they are made of biological material, such as genes and proteins. On 

the other hand, they differ from model organisms in that they are not the results of any 

evolutionary process, being instead designed on the basis of mathematical models. In the 

construction of a synthetic model a mathematical model is used as a blueprint: it specifies the 
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structures and dynamic giving rise to particular behaviors or functions. Thus the synthetic 

model has its origin in the mathematical model, but it is not bound by the same constraints: the 

model is constructed from the “same stuff” (Morgan 2003) as the biological genetic networks 

and it even works in the cell environment. Consequently, even if the synthetic model is not 

understood in all of its details, it provides a kind of simulation device of the same natural kind 

as its real world counterparts.  

 

3.3.1. The Repressilator 

 

The Repressilator is one of the first and most famous synthetic models. It is an oscillatory 

genetic network, which was introduced in 2000 by Michael Elowitz and Stanislas Leibler 

(2000). The first step in constructing the Repressilator consisted in designing a mathematical 

model, which was used to explore the known basic biochemical parameters and their 

interactions. Next, having constructed a mathematical model of a gene regulatory network 

Elowitz and Leibler performed computer simulations on the basis of the model. They showed 

that there were two possible types of solutions: “The system may converge toward a stable 

steady state, or the steady state may become unstable, leading to sustained limit-cycle 

oscillations” (Elowitz and Leibler 2000, 336). Furthermore, the numerical analysis of the 

model gave insights into the experimental parameters relevant for constructing the synthetic 

model in showing that  “[...] oscillations are favoured by strong promoters coupled to efficient 
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ribosome binding sites, tight transcriptional repression (low ‘leakiness’), cooperative 

repression characteristics, and comparable protein and mRNA decay rates” (ibid, 336). The 

latter point helped in choosing the three genes used in the design of the network. Elowitz and 

Leibler also explored the continuous as well as the stochastic dynamics of the model in order 

to analyze the role of internal noise in the mechanism. Internal noise in biological systems is 

caused by the low number of molecules in the cell.  

The mathematical model functioned as a blueprint for the engineering of the biological 

system. The mathematical model is of the following form:  

 

, 

 

with . 

 

In this set of equations  is the concentration of the proteins suppressing the function of the 

neighbor genes and  (where i is lacI, tetR, or cl) the corresponding concentration of mRNA. 

All in all one has six molecule species (3 proteins functioning as repressors and 3 genes) all 

taking part in transcription, translation, and degradation reactions. 
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Figure 5. The main components of the Repressilator (left-hand side) and the Reporter (right-hand side) (Elowitz 

and Leibler 2000, 336). 

 

The construction of the novel biological system, the Repressilator, was enabled by the 

development of new methods and technologies, such as the construction of plasmids and 

Polymerase Chain Reactions (PCR). In figure 5 the synthetic genetic regulatory network, the 

Repressilator, is shown on the left-hand side and it consists of two parts. The outer part is an 

illustration of the plasmid constructed by Elowitz and Leibler. The plasmid is an extra-

chromosomal DNA molecule integrating the three genes of the Repressilator. Plasmids occur 

naturally in bacteria. In the state of competence, bacteria are able to take up extra 

chromosomal DNA from the environment. In the case of the Repressilator, this property 
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allowed the integration of the specific designed plasmid into E.coli bacteria.  The inner part of 

the illustration represents the dynamics between the three genes, ,  and . The 

three genes are connected by a negative feedback loop. The left-hand side of the diagram 

shows the Reporter consisting of a gene expressing a green fluorescent protein (GFP), which 

is fused to one of the three genes of the Repressilator. The GFP oscillations in the protein 

level made visible the behavior of transformed cells, allowing researchers to study them over 

time by using fluorescence microscopy. 

Thus with the formation of synthetic biology a novel tool was introduced into the research 

on the organizational principles in biological organisms: the possibility of constructing novel 

engineered genetic networks, synthetic models, specially designed for answering certain kinds 

of theoretical questions. Their construction has so far been limited to simple networks such as 

the Repressilator whose construction components (and their number) had to be chosen in view 

of what would be optimal for the behavior under study.7 This means that such networks need 

not be part of any naturally occurring system. For example the genes used in the Repressilator 

do not occur in such a combination in any biological system but are chosen and tuned on the 

basis of the simulations of the underlying mathematical model and other background 

knowledge in such a way that the resulting mechanism would allow for (stable) oscillations. 

These technical constraints imply a constraint on what can be explored by such synthetic 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 In the case of the Repressilator the order in which the genes are connected to each other turned out to be crucial, 

too.  
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models: possible design principles in biological systems. Indeed, the search for the possible 

design principles has replaced in systems and synthetic biology the aim of formulating a 

fundamental theory for biological systems such as a statistical mechanics. Finally, it needs to 

be noted that the Repressilator is also constrained by the engineering notions that guided its 

construction such as feedback mechanism, robustness and modularity. The Repressilator 

provides a nice example of how these constraints in fact functioned as affordances for 

theoretical reasoning: the important motivation behind the construction of the Repressilator 

was precisely to test the suitability of those notions for modeling biological circuits. 

 

4. Synthetic Models: Models or Experiments? 

 

Coming back to the philosophical discussion on the similarities and differences of modeling 

and experimenting, let us first discuss the argument from isolation. The first thing to be noted 

is that the mathematical models of the circadian clock are difficult to consider as experiments 

in the sense of being abstractions of real world systems that permit the study of the effects of 

an isolated causal factor. First, instead of targeting the influence of isolated causal factors they 

focus on their interaction. Second, in the study of the circadian clock, the modeling endeavor 

started well before experimentation and the availability of more specific knowledge on the 

biochemical details. Third, and perhaps most importantly: the circadian clock phenomena 

were probed with the model templates and concepts borrowed from other disciplines and 
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subjects. This serves to show that it is often not possible to decompose a model into its 

assumptions as the isolation account of modeling suggests. The idealizations, omissions and 

approximations follow frequently from the model template used and are also a result of 

balancing the different kinds of constraints with one another, as the example of the Goodwin 

model shows. The philosophical discussion tends to neglect that model assumptions are 

typically linked to certain mathematical abstractions, and there are limited ways in which they 

can be relaxed or corrected, constrained by the available mathematical methods. In the case of 

circadian clock oscillations, the oscillatory phenomena had already been studied by physicists 

for a long time and there are many well-established ways of mathematically creating them. 

There exists a whole body of literature on this topic such as Steven Strogatz’s book Nonlinear 

Dynamics and Chaos (Strogatz 1994).  Therefore, the modelers were not that uncertain of how 

their models were able to create the oscillations sought for.8 The problem was rather that the 

alternative models were too general and underdetermined by available data.  

Consequently, although modelers were able to produce the kind of phenomena sought for, 

that is, robust oscillations, the problem was whether the possible network designs proposed by 

the mathematical models were really the ones that work in biological organisms. This problem 

was aggravated by the fact that the model templates, methods and concepts used were not 

originally devised with biological organisms in mind. In fact, a big part of the modelers in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Elowitz was inspired for the design of the Repressilator from Thomson and D’Ari’s book Biological Feedback 

(1990), which presents a formal methodology for analyzing the dynamic behavior of complex systems.    
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field of systems and synthetic biology have a physics background. Moreover, the problem of 

the generality and foreignness of theoretical concepts and mathematical methods used could 

not be conclusively settled by experimentation since the work with model organisms had to 

deal with the immense complexity of even such simple organisms as E.coli. Thus even though 

the empirical research was able to find genes and proteins involved in the circadian clock 

phenomena, the results were still inconclusive as regards the basic mechanisms. 

Synthetic models, as we have shown, partly fill the gap between mathematical modeling 

and experimentation on model organisms by offering a tool for identifying possible network 

design principles, and showing whether they might be implemented in biological organisms. 

Their epistemic functioning is due to their hybrid nature: On the one hand they share with 

mathematical models their tightly constrained nature, which makes it possible to study certain 

theoretical questions in a regimented manner. This shows that constraints do not just limit 

reasoning, but instead also afford it, and that modeling can be seen as a specific theoretical 

strategy precisely making use of purposefully designed artefacts – models.  

On the other hand, synthetic models are like experiments in that they are constructed of 

the same kinds of components as the natural systems being implemented, moreover, in the 

natural cell environment. In the case of the Repressilator the natural kind was replaced by the 

engineered “natural kind,” which gave more control to the researchers on the system under 

study than in the case of domesticated natural kinds (such as model organisms). Being of a 

lower degree of complexity compared to the like natural systems yet being simultaneously 
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exposed to the same kind of biological constraints as natural biological systems is regarded as 

an important advantage of synthetic models. By reducing the degree of complexity the 

synthetic model becomes more tractable and easier to manipulate which draws it closer to 

modeling. Moreover, the hypothetical nature of the Repressilator is highlighted by the fact 

that it was not supposed to imitate any natural circuit but rather to identify the sufficient 

components and interactions of a mechanism able to produce a specific behavior, such as 

oscillations in protein levels. The components of the network were chosen to get the most 

optimal behavior and not to get as close as possible to a naturally evolved genetic network. 

This explains why the genetic network of the Repressilator is comprised of a different 

constellation of components than any known naturally occurring network. 

On the other hand, by implementing the synthetic genetic network into a cell it is exposed 

to some further constraints of natural biological systems. Those are in general not known in all 

their details but knowing those details need not always be necessary as long as they are there.9 

The cell provides the simulation environment, which is of the same “natural kind” such as the 

model under investigation. This is a feature commonly associated with experiments. They are 

considered particularly useful in the contexts in which one has an imperfect understanding of 

the causal mechanism at work. The control over the “same,” often domesticated or 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9	  In so far unpublished work Waters (2012) has considered material experimental models by pointing out that this 

strategy “avoids having to understand the details of the complexity, not by assuming that complexity is irrelevant 

but by incorporating the complexity in the models.” For experimental models, see also Weber (2012).	  
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technologically altered, natural kind is expected to give some handle on the causal mechanism 

(see Guala 2002). 

Still another feature of experiments shared by the Repressilator was the way in which 

the researchers received the undesired results.  In the case of experimentation anomalous or 

unexpected results are commonly taken seriously, whereas if the model does not produce what 

is expected, modelers usually try to devise a better model. The Repressilator in turn sparked a 

new line of research precisely due to its limited success. In contrast to the mathematical model 

underlying it, the Repressilator did not show the expected behavior: regular oscillations. 

Instead the oscillations turned out to be noisy. Computer simulations taking into account 

stochastic fluctuations did show that such fluctuations could be the cause of the noisy behavior 

that provides another nice example of how the research progressed by combining the different 

epistemic activities, according to their characteristic affordances. Despite the results of the 

simulation, there remained the possibility that the noisy behavior could have also been caused 

by external noise coming from the cell environment. A new line of research emerged 

exploring the different sources of noise and their effects on biological systems (Swain et. al. 

2002). In the context of this research, and in line with the results gained by studying complex 

systems in physics and in neuroscience, noise based on stochastic fluctuations gained a 

functional status: molecular mechanisms in biological systems seem to make use of internal 

noise, for example in decision processes such as cell division.  
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5. Conclusions 

 

Above we have argued that although from a general philosophical perspective modeling and 

experimentation share some common features, from the perspective of scientific practice they 

nevertheless can be considered as separate practices with different constraints and affordances. 

This in turn explains why they are typically triangulated with each other—yet often a gap 

remains between the two in actual scientific practices. We have discussed one strategy of 

closing this gap—synthetic modeling. Interestingly, the hybrid nature of synthetic models 

serves to show what is distinctive about modeling and experimentation. Synthetic models 

share with mathematical models their highly constrained construction, which makes it possible 

to study various theoretical possibilities in a relatively transparent manner. Moreover, 

mathematical models and synthetic models are both used to study the dynamics of systems 

under study (see Bechtel 2011). Synthetic models have made the dynamics of intracellular 

processes visible, leading to new kinds of research questions such as noise. The specific 

affordance of mathematical models is in turn due to the way they are fairly easily reconfigured, 

which can be seen in the way they are used to study the results of synthetic modeling as well 

as the experimental results and setups more generally. On the other hand, synthetic models 

like experiments are expected to have the same material and causal makeup as the systems 

under study—which simultaneously makes them more opaque, complex, and difficult to 

control. In actual practice these differences of modeling and experimenting often play a crucial 
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role, which makes modeling and experimenting complementary activities rather than possible 

substitutes for each other. 

As to the question of materiality, we think that the philosophical discussion has 

remained partly too crude to appreciate its epistemic dimensions. For instance, in downplaying 

the importance of materiality, Parker (2009) appears to take Guala and Morgan too literally. In 

fact, their conception of the “same materiality” includes, apart from the “same stuff,” strictly 

speaking, also same forms and causal make-up (e.g., Morgan 2005, 32; Guala 2002). The 

example of the Repressilator shows that the “same stuff” (e.g., genes and proteins) is not 

enough: the notion of the “same materiality” should also include the mechanism of their 

interaction (e.g., the feedback loops), which, taken together, produce a biological function. In 

this respect, we suggest, further study on the place and role of materiality in modeling and 

experimentation could do well to adapt some resources from the discussion on mechanisms 

and natural kinds.   
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