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Abstrat

In the paper the relation between the standard probabilisti haraterization of the ommon ause

(used for the derivation of the Bell inequalities) and Bell's notion of loal ausality will be investigated.

It will be shown that the probabilisti ommon ause follows from loal ausality if one aepts, as

Bell did, two assumptions onerning the ommon ause: �rst, the ommon ause is loalized in

the intersetion of the past of the orrelating events; seond, it provides a omplete spei�ation of

the `beables' of this intersetion. However, neither assumptions are a priori requirements. In the

paper the logial role of these assumptions will be studied and it will be shown that only the seond

assumption is neessary for the derivation of the probabilisti ommon ause from loal ausality.

1 Introdution

There has been a long tradition going bak to Hans Reihenbah (1956) to haraterize the notion

of the ommon ause in probabilisti terms. This probabilisti haraterization of the ommon ause

turned out to be a fruitful mathematial tool to study ausal problems in physis, among them the

possibility of hidden variable models for quantum theory. In its full-�edged form a probabilisti ommon

ausal explanation ontained not only the ondition expressing Reihenbah's haraterization of the

ommon ause as a sreener-o�, but also suh probabilisti requirements as loality and no-onspiray.

Sine these latter requirements had spatiotemporal onnotations, the question arose as to whether there

exists a 'spatiotemporal justi�ation' of the probabilisti requirements imposed on the notion of the

ommon ause. The �rst step in suh a justi�ation is to establish a mathematially well-de�ned and

physially well-motivated relation onneting events undestood as elements of a probability spae and

regions understood as subsets of a spaetime. Only after having suh a relation an we ask whether a

ertain probabilisti equation an be derived from a ertain spaetime loalization of the ommon ause.

What kind of spaetime loalizations do we have in mind? Obviously, the ommon ause is an

event C happening somewhere in the past of two orrelating events, say A and B. But in whih past?

Relativistially two spaetime separated events an have (at least) two di�erent pasts. Let VA and VB

denote the regions where A and B, respetively are loalized. Then one an de�ne the weak past of A and

B as PW (VA, VB) := I−(VA)∪I−(VB) and the strong past of A and B as PS(VA, VB) := I−(VA)∩I−(VB)
where I−(V ) denotes the union of the ausal pasts I−(x) of every point x in V . Let us all the appropriate

ommon auses weak and strong ommon auses, respetively (see Fig. 1).
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Figure 1: Weak and the strong past of the orrelating events A and B.
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Now, one might onsider the strong past as a more natural andidate for the loalization of the

ommon ause, and indeed plenty of lassial examples attest that the strong past is a reasonable hoie.

(But see (Butter�eld, 1989) and the debate in (Henson, 2005), (Rédei and Sanpedro, 2012), (Henson,

2013).) The orrelation between two fans' shouting at the same time at a football math is explained by

the goals sored, that is by events loalized in the strong past of the shouts. Curiously enough, however,

in algebrai quantum �eld theory ommon auses are typially understood as weak ommon auses. It is

not di�ult to see why.

In algebrai quantum �eld theory observables are represented by (C∗
-)algebras assoiated to bounded

regions of a spaetime. This assoiation is alled a net. A state φ is de�ned as a normalized positive

linear funtional on the quasiloal algebra A whih is the indutive limit of the net. From our perspetive,

the two important axioms of the net, are isotony and loal primitive ausality. Isotony requires that if a

region V1 is ontained in another region V2, then the loal algebra A(V1) assoiated to V1 be a (unital C
∗
-

)subalgebra of A(V2). Loal primitive ausality is the requirement that for any region V , A(V ) = A(V ′′),
where V ′′

is the ausal ompletion of V .

Now, suppose that there is a (superluminal) orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈
A(VA) and B ∈ A(VB) suh that VA and VB are spatially separated. Consider the loal algebra A((VA ∪
VB)

′′) assoiated to the ausal ompletion of VA ∪ VB and suppose that we �nd a ommon ause C of

the orrelation in A((VA ∪ VB)
′′). In whih past of VA and VB an C be loated? Consider a region VC

in the weak past PW (VA, VB) whih is 'wide' enough to ensure that (VA ∪ VB) ⊂ V ′′

C . Due to isotony,

A(VA ∪ VB) will be a subalgebra of A(V ′′

C ) whih, due to loal primitive ausality, is idential to A(VC).
Thus, C will be in VC and hene in the weak past of VA and VB . To sum up, isotony and loal primitive

ausality ensures that if a superluminal orrelation has a ommon ause, then it an be loalized in the

weak past.

Can the ommon ause be loalized also in the strong past? It may, but not simply due to the axioms

of algebrai quantum �eld theory. If VC is in PS(VA, VB), then isotony and loal primitive ausality does

not help to relateA(VC) toA((VA∪VB)
′′). One also needs to know about the dynamis of the system. The

axioms of algebrai quantum �eld theory are ompletely silent about whether one an loate the ommon

ause in the strong past. As a onsequene, weak ommon auses annot be exluded a priori from our

explanatory arsenal. (For more on ommon ausal explanation in algebrai quantum �eld theory see

(Rédei 1997), (Rédei and Summers, 2002), (Butter�eld 2007) and (Hofer-Szabó and Vesernyés, 2012a,b,

2013a,b).)

So we have (at least) two options to loalize the ommon ause in the past of the orrelating events.

What else an we use in the derivation of the probabilisti ommon ause? Some priniples regulating the

possible ausal onnetion of events in aordane with the speial theory of relativity. An analogy might

help. The theory of Bayesian nets onsists of two omponents: a ausal graph representing the ausal

relations among ertain events and a probability spae with random variables. How these two parts of the

theory are related to one another? The bridge relating the two omponents is alled the Causal Markov

Condition. It says that if the nods on the graph are related to one another in suh-and-suh a way, the

variables pertaining to the nods should satisfy suh-and-suh probabilisti independenies. So the role of

the Causal Markov Condition in the theory of Bayesian nets is to synronize the probabilisti and the

graphi desription of ausal relations.

A priniple playing a similar synronizing role in the philosophy of physis has been introdued by

John S. Bell (1975/87) and has been alled loal ausality. Loal ausality is a relativisti priniple tailor-

made to study probabilisti relations between events loalized in di�erent spaetime regions, among them

the relation between the ommon ause and the orrelating events. From the in�uential writings of Bell

on, the probabilisti notion of the ommon ause has been regarded as an expression of probabilisti

onstraints between ertain events in the spaetime imposed on by relativisti onsiderations. In what

follows we will show that the link between the spatiotemporal and the probabilisti haraterization of

the ommon ause is very sensitive to two essential assumptions onerning the ommon ause, both

rightly emphasized by Bell himself. The �rst assumption is that the ommon ause is loalized in the

strong past, the seond is that it provides a omplete spei�ation of the ausal past of the orrelating

events.

In the paper we intend to investigate the role of these assumptions in the derivation of the probabilisti

ommon ause from loal ausality. In Setion 2 the standard requirements of the probabilisti ommon

ausal explanation will be realled. In Setion 3 Bell's original idea of loal ausality will be delineated
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with the emphasis on the role of the two above assumptions. In order to proeed in a more pituresque

way, in Setion 4 and 5 lassial toy models will be introdued whih will help us in srutinizing the role

of the two assumptions in the derivation of probabilisti ommon ause from loal ausality. We onlude

the paper in Setion 6. Some tehnialities are put in the Appendies.

2 Common ausal explanation

As mentioned above, the �rst probabilisti haraterization of the ommon ause is due to Reihenbah.

There is a long route leading from Reihenbah's original idea of the ommon ause to the sophistiated

probabilisti requirements used today in the philosophy of quantum physis. For the sake of brevity, we do

not repeat here all the intermediate steps of the entire de�nitional proess (for this see (Hofer-Szabó and

Vesernyés, 2012a)), but jump diretly to the full-�edged probabilisti haraterization of the ommon

ause and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement proedures (thought as happening in

two spatially separated spaetime regions). Suppose that eah measurement an have two outomes and

denote the `positive' outomes by Am and Bn and the `negative' outomes by Am and Bn, respetively.

Let all these events be aomodated in a lassial probability spae (Σ, p). Suppose that there is a

onditional orrelation between the measurement outomes in the sense that for any m ∈ M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (1)

representing that if we set to measure the pair am and bn, the appropriate outomes will orrelate.

The standard probabilisti haraterization of a ommon ausal explanation of this orrelation is the

following. A partition {Ck} in Σ (that is a set of mutually exlusive events adding up to unity) is said to

be a loal, non-onspiratorial joint ommon ausal explanation of the orrelations (1) if for anym,m′ ∈ M

and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (sreening-o�) (2)

p(Am|am ∧ bn ∧Ck) = p(Am|am ∧ bn′ ∧ Ck) (loality) (3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (loality) (4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-onspiray) (5)

The motivation behind requirements (2)-(5) is the following. Sreening-o� (2) (also alled as outome

independene (Shimony, 1986), ompleteness (Jarrett, 1984) and ausality (Van Fraassen, 1982)) is sim-

ply the appliation of Reihenbah's original haraterization of the ommon ause as a sreener-o� to

onditional orrelations: although Am and Bn are orrelating onditioned on am and bn, they will ease

to do so, if we further ondition on Ck. Loality (3)-(4) (also alled as parameter independene (Shimony,

1986), loality (Jarrett, 1984) and hidden loality (Van Fraassen, 1982)) is the onstraints that the mea-

surement outome on the one side an depend only on the measurement hoie on the same side and

the value of the ommon ause, but not on the measurement hoie on the opposite side (for more on

that see below). Finally, no-onspiray (5) is the requirement that the ommon ause system and the

measurement hoies should not in�uene eah other, they should be probabilistially independent.

Now, it is a well known fat that if a set of orrelations has a loal, non-onspiratorial joint ommon

ausal explanation in the above sense, then the set of orrelations has to satisfy various Bell inequalities.

(For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality see Appendix A.)

In the EPR situation (if quantum orrelations are interpreted as lassial onditional orrelation alá (1))

these Bell inequalities are violated exluding a loal, non-onspiratorial joint ommon ausal explanation

of EPR orrelations.

Thus, in the EPR-Bell literature (2)-(5) is regarded as the orret probabilisti haraterization of the

ommon ause. But observe that the above relativisti motivations for the probabilisti independene

relations (2)-(5) are ompletely meaningless until we do not loalize the ommon ause on the spaetime,

or more generally, until we have no prinipled way to assoiate events understood as elements of the

probability spae (Σ, p) to regions of a given spaetime.

Suppose that we do have suh an assoiation, that is suppose we have an isotone net N assoiating

bounded regions of the Minkowski spaetime to σ-subalgebras of Σ. We do not assume that loal primitive
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ausality also holds. (For more on the relation of loal primitive ausality and Bell's loal ausality see

(Hofer-Szabó and Vesernyés, 2014).) What else is needed for (2)-(5) to represent a legitimate probabilisti

haraterization of a ommon ause? Does Bell's notion of loal ausality, for instane, help us to arrive

at (2)-(5)? Or turning the question around, do the probabilisti onstraints imposed on the notion of

ommon ause restrit also the possible spaetime loalization of the ommon ause? Do we need to

hoose between weak and strong ommon auses for example? To address these questions �rst reall the

notion of loal ausality.

3 Loal ausality

As mentioned in the Introdution, there is an in�uential tradition aording to whih equations (2)-(5)

are onsequenes of the requirement that a ertain set of orrelations are to be aomodated in a loally

ausal theory. The learest formulation of suh a theory is due to Bell himself:

�Consider a theory in whih the assignment of values to some beables Λ implies, not neessarily

a partiular value, but a probability distribution, for another beable A. Let p(A|Λ) denote1

the probability of a partiular value A given partiular values Λ. Let A be loalized in a

spae-time region A. Let B be a seond beable loalized in a seond region B separated from

A in a spaelike way. (Fig. 2.) Now my intuitive notion of loal ausality is that events in B

A B

Λ

Figure 2: Loal ausality I.

should not be `auses' of events in A, and vie versa. But this does not mean that the two

sets of events should be unorrelated, for they ould have ommon auses in the overlap of

their bakward light ones. It is perfetly intelligible then that if Λ in (6) does not ontain

a omplete reord of events in that overlap, it an be usefully supplemented by information

from region B. So in general it is expeted that

p(A|Λ, B) 6= p(A|Λ) (6)

However, in the partiular ase that Λ ontains already a omplete spei�ation of beables in

the overlap of the light ones, supplementary information from region B ould reasonably be

expeted to be redundant.�

And here omes the de�nition of a loally ausal theory.

�Let C denote a spei�ation of all beables, of some theory, belonging to the overlap of the

bakward light ones of spaelike regions A and B. Let a be a spei�ation of some beables

from the remainder of the bakward light one of A, and B of some beables in the region B.

(See Fig. 3.) Then in a loally ausal theory

p(A|a, C,B) = p(A|a, C) (7)

whenever both probabilities are given by the theory.� (Bell, 1987, p. 54)

1

For the sake of uniformity throughout the paper I slightly hanged Bell's denotation and �gures.
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A B

Ca b

Figure 3: Loal ausality II.

Now, let us spell out Bell's haraterization of loal ausality using the notion of net introdued above.

To do this �rst we should translate Bell's language using random variables in (7) into a language using

events. Seond, the term 'beables in a ertain spaetime region' is to be replaed by 'events in an algebra

supported in a ertain spaetime region' and 'omplete spei�ation' by 'set of atoms of the algebra in

question' (assuming that loal algebras are atomi). (For more on Bell's loal ausality and the role of

'beables' see (Norsen 2011); for the translation of 'omplete spei�ation' into atomiity see (Henson,

2013).) Finally, instead of onsidering the whole ausal past of an event we will onsider only a suitable

Cauhy segment of this past.

Then Bell's notion of loal ausality an be paraphrased as follows.

De�nition 1. An isotone netN assoiating bounded regions of the Minkowski spaetime to σ-subalgebras

of Σ is alled loally ausal, if for any lassial probability measure p (or, more generally, state φ) on Σ,
and for any two events Am ∈ A(VA) and Bn ∈ A(VB) loalized in the spatially separated regions VA and

VB and orrelating in the probability measure p, and for every Cauhy surfae S (lying past to VA and

VB), the following is true:

Let Va, VC and Vb be three open neighborhoods of S∩(I−(VA)\I−(VB)), S∩P
S(VA, VB) and S∩(I−(VB)\

I−(VA)), respetively (see Fig. 4) and let A(Va), A(VC) and A(Vb) the assoiated loal algebras. Let am

V

V V

V V

A B

Ca b
S

Figure 4: Loal ausality III.

and bn be events in A(Va) and A(Vb), respetively and let Ck be an atom in A(VC). Then the following

onditional probabilisti independenies hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧ Ck) (8)

p(Bn|Am ∧Ck ∧ bn) = p(Bn|bn ∧ Ck) (9)

p(Am|am ∧Ck ∧ bn) = p(Am|am ∧ Ck) (10)

p(Bn|am ∧Ck ∧ bn) = p(Bn|bn ∧ Ck) (11)

Why four equations instead of Bell's single (7)? Observe that (9) is just the symmetri version of (8)

where Am and am are interhanged with Bn and bn. Equations (10)-(11), however, are slight extensions
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of Bell's formulation. Observe that VA is spaelike separated not only from VB but also from Vb, and

therefore the same onditional independene should hold between Am and bn as between Am and Bn.

Thus (10) is the appliation of Bell's idea to algebras A(VA) and A(Vb), and (11) to algebras A(Vb) and
A(VA). There are no more spatially separated regions in Fig. 4 to whih loal ausality ould be applied.

How the above onsiderations relate to the probabilisti haraterization (2)-(5) of the ommon ause

delineated in the previous Setion?

First observe that (10)-(11) are equivalent to loality (3)-(4) and from (8)-(11) sreening-o� (2) follows

diretly. This proves that the probabilisti haraterization of the ommon ause by the requirements

of sreening-o� and loality an be 'derived' from Bell's notion of loal ausality imposed on an isotone

net assoiating spaetime regions and loal albegras. We note, however, that the third requirement in

the de�nition of a loal, non-onspiratorial joint ommon ausal explanation, namely no-onspiray (5)

annot be 'derived' from Bell's notion of loal ausality in a similar way. No-onspiray is an independent

assumption stating that the events am ∈ A(Va), Ck ∈ A(VC) and bn ∈ A(Vb) are probabilistially

independent.

So far, so good. But here omes the point. To obtain this dedutive relation between the probabilisti

haraterization of the ommon ause and Bell's notion of loal ausality the following two assumptions

have been made: the ommon ause system provides �a omplete spei�ation of beables�, and it is

loated in the �overlap of the light ones�. In other words, one assumed that (i) Ck is loated in the

strong past of the orrelating events, and (ii) it is an atom of the appropriate algebra. As we saw, Bell

expliitly stresses both assumptions, and in all the subsequent papers of Van Fraassen (1982), Jarrett

(1984), Shimony (1986) et. trying to turn spaetime onsiderations into probabilisti independenies

these two assumptions have been (expliitly or impliitly) made.

However, neither assumptions are a priori requirements onerning the ommon ause. One an easily

make up ommon auses whih are either non-atomi or not loated in the strong past of the orrelating

events. How these ommon auses relate to Bell's notion of loal ausality? In the following two Setions

the relation between loal ausality and probabilisti haraterization of the ommon ause will be studied

in the lak of these two assumptions. First toy models will be introdued in whih the two assumptions

are violated, then the formal results will be gathered.

4 Non-atomi ommon auses

Example 1. Consider the following toy model. There are �ve lighthouses on the oean in a line of equal

distane from eah other. (See Fig. 5.) Let us ount them from left to right. In the middle one, that is

A BC

1 2 3 4 5

Figure 5: Lighthouses I.

in lighthouse 3 the lighthouse keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy

to turn the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three lamps, or none.

He never turns on the lamps in any other ombination. He hooses between these four options with equal

probability (say tossing two oins). Let us denote that a given lamp is turned on and o� by C and C,
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respetively. Using this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C
′′

∧ C
′′′

(12)

C2 ≡ C
′

∧ C
′′

∧ C′′′
(13)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(14)

C4 ≡ C
′

∧ C
′′

∧ C
′′′

(15)

eah with probability

p(Ck) =
1

4
(16)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another lighthouse keeper,

A and his role is simply to wath the light signals arriving from either the left or from the right that

is from either lighthouse 1 or lighthouse 3. He does not know that lighthouse 1 is empty, therefore he

spends equal time wathing both neighboring lighthouses. Suppose furthermore that if he is wathing

left, he will miss the light signals oming from the right. This means that with probability

1
2 he observes

the signals oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the event that

the lighthouse keeper A is wathing to the left and to the right by aL and aR, respetively and denoting

by A the event that he observes a light signal (disregarding from whih lamp), one obtains the following

onditional probabilities:

p(A|am ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

(17)

In other words, the lighthouse keeper A observes the light signal only if he is wathing right and there is

a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse keeper B is wathing in

both diretions with equal probability, but sine lighthouse 5 is empty, he misses the light signal oming

from lighthouse 3 with probability

1
2 . Denoting again the events that the lighthouse keeper B is wathing

to the left and to the right by bL and bR, respetively and denoting by B the event that he observes a

signal, one obtains the following onditional probabilities for B's observing a light signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

(18)

This situation ompletely haraterizes a probability spae. The event algebra is generated by the

following events:

A, A, B, B, am, bn, Ck

withm,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whih have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the atoms one an easily

alulate the probability of any events of the algebra.

Now, it is easy to see that there is a orrelation between events A and B that is between the lighthouse

keepers' observing a light signal, both in the non-onditional and onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(19)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
·
3

4
if m = R, n = L (20)

7



As one expets, the orrelation is due to C's signaling: Ck is a loal, (non-onspiratorial) joint ommon

ausal explanation of the orrelation (20) in the sense of (2)-(5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧Ck) = p(Bn|am′ ∧ bn ∧Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Example 2. Suppose we take a oarser lustering of the swithing of the lamps, say D1 ≡ C1 ∨ C2 ∨ C3

and D2 ≡ C4. Physially, D1 is the event that any light is on in lighthouse 3, and D2 is the event that

no light is on. As one expets, for this oarser partition (2)-(5) will hold just as good as for the partition

{Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 3

4 if n = L, k = 1
1
4 · 1

4 otherwise

Thus, {Dk} is also a loal, (non-onspiratorial) joint ommon ausal explanation of the orrelation (20).

Example 3. Now, onsider a oarser lustering of the swithings 'in the wrong way': D′

1 ≡ C1 ∨ C2 ∨ C4

and D′

2 ≡ C3 mixing together light ons and light o�s. Contrary to the previous ase, for this oarser

partition the requirement of sreening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′

1) p(B|aR ∧ bL ∧D′

1) =
2

3
·
2

3

(Loality and no-onspiray will hold even in this ase.) Hene {D′

k} is not a loal, (non-onspiratorial)

joint ommon ausal explanation of the orrelation (20).

Now, let us onsider the spaetime diagram of the above examples whih is depited in Fig. 6. Let N

V

V VA B

C
S

Va
Vb

Figure 6: Spaetime diagram of Examples 1, 2 and 3.

be a loally ausal net assoiating bounded spaetime regions to loal algebras suh that A ∈ A(VA),
B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) and Ck, Dk, D

′

k ∈ A(VC) for all m, n and k. As shown in Setion 2,

8



loal ausality of the net implies that the set {Ck}�being an atomi partition loalized in the strong past

PS(VA, VB)�satis�es (2)-(4), hene providing a loal, joint ommon ausal explanation of the orrelation

(20). (No-onspiray (5), as already stressed above, is not a onsequene of loal ausality but assumed

in the model.) Thus, {Ck} is an atomi, strong, loal, non-onspiratorial joint ommon ause system.

What about non-atomi partitions loalized in the strong past? As Examples 2 and 3 attest loal

ausality has no bearing on this ase. {Dk} and {D′

k} are all loalized in PS(VA, VB), but whereas {Dk}
is a ommon ause system of the orrelation (20), {D′

k} is not. This leads to the following

Moral 1. The probabilisti haraterization of a loal, joint ommon ause system {Ck} via (2)-(4) annot
be justi�ed by Bell's loal ausality applied to a net assoiating spaetime regions to loal algebras, if

{Ck} is a non-atomi partition of A(VC).

Thus, a oarse-grained (non-atomi) probabilisti ommon ausal explanation of a orrelation annot be

baked by Bell's spatiotemporal onsiderations on loal ausality. In the next Setion we turn to the role

of the other premise, namely the loalization of the ommon ause in the strong past.

5 Weak ommon auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B remain in their plaes

that is in lighthouse 2 and 4, respetively, but suppose that lighthouses 1, 3 and 5 are inhabitated by

three lighthouse keepers C′
, C′′

and C′′′
, respetively, eah having the appropriate one of the three lamps

introdued in the previous Setion. (See Fig. 7.) That is suppose that now lighthouse keeper C′
in

A BC

1 2 3 4 5

C C

Figure 7: Lighthouses II.

lighthouse 1 operates lamp C′
, lighthouse keeper C′′

in lighthouse 3 operates lamp C′′
and lighthouse

keeper C′′′
in lighthouse 5 operates lamp C′′′

. Suppose furthermore that the ons and o�s of the di�erent

lamps follow just the same statistis de�ned in (12)-(16), that is p(Ck) =
1
4 for every k = 1, 2, 3, 4 (only

lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).

Now, the role of lighthouse keepers A and B is just as above to wath the light signals arriving at

lighthouse 2 and 4, respetively. But now both an obtain a signal from both diretions. Suppose that

both A and B an only see the light signal sent from a neighboring lighthouse that is A annot see the

signal sent from C′′′
(say, it is two far or the lighthouses hide eah other) and B annot see the signal

sent from C′
. Now, again the event algebra has 16 atoms with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a onditional and non-onditional orrelation between event A and B, the detetions of light
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signals in lighthouse 2 and 4, respetively both in the non-onditional and onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(21)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 1

4 if m = R, n = L,
1
4 · 1

2 if m,n = R,
1
2 · 1

4 if m,n = L.

(22)

As one expets, {Ck} is a loal, (non-onspiratorial) joint ommon ausal explanation of the orrelation:

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Now, onsider again the spaetime diagram of Example 4 depited in Fig. 8. Here {Ck} is loalized not

V

V VA B

S
Va

VbV VC’ C’’ C’’’

Figure 8: Spaetime diagram of Example 4.

in the strong past but in the weak past of the orrelating events. How these weak ommon auses relate

to Bell's loal ausality? This question is answered in the following

Proposition 1. Let N be again a loally ausal net assoiating bounded spaetime regions to loal

algebras suh that A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) for all m and n, and for the

partition

{Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l }

(where C′

1 ≡ C′
and C′

2 ≡ C
′

and similarly for C′′

j and C′′′

l ) C′

i ∈ A(VC′ ), C′′

j ∈ A(VC′′ ) and C′′′

l ∈ A(VC′′′)
for all i, j and l. Then {Cijk} is a weak, loal, joint ommon ause of the onditional orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (23)

in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijk) = p(A|am ∧ bn ∧ Cijk) p(B|am ∧ bn ∧ Cijk) (24)

p(A|am ∧ bn ∧ Cijk) = p(A|am ∧ bn′ ∧ Cijk) (25)

p(B|am ∧ bn ∧ Cijk) = p(B|am′ ∧ bn ∧ Cijk) (26)
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Proof. Sine {C′′

j } is an atomi partition loalized in the strong past PS(VA, VB), loal ausality of the

net implies that for any event a′im ≡ C′

i ∧ am ∈ A(VC′ ∪ Va), b
′

nl ≡ bn ∧ C′′′

l ∈ A(Vb ∪ VC′′′) and atomi

event C′′

j the following will hold:

p(A ∧Bn|a
′

im ∧ b′nl ∧C′′

j ) = p(A|a′im ∧ b′nl ∧C′′

j ) p(B|a′im ∧ b′nl ∧ C′′

j ) (27)

p(A|a′im ∧ b′nl ∧C′′

j ) = p(A|a′im ∧ b′n′l′ ∧C′′

j ) (28)

p(B|a′im ∧ b′nl ∧C′′

j ) = p(B|a′i′m′ ∧ b′nl ∧ C′′

j ) (29)

In other words, {C′′

j } is a strong, loal, joint ommon ause of the onditional orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (30)

with the new onditions a′im and b′nl. (Again, no-onspiray

p(a′im ∧ b′nl ∧ C′′

j ) = p(a′im ∧ b′nl) p(C
′′

j ) (31)

does not follow from loal ausality of the net.) But (27)-(29) are just equivalent to (32)-(34) proving

that {Cijk} is a weak, loal, joint ommon ause of the onditional orrelations (23).

This leads to

Moral 2. The probabilisti haraterization of a loal, joint ommon ause system {Cijk} via (2)-(4)

an be justi�ed by Bell's loal ausality applied to a net assoiating spaetime regions to loal algebras,

if {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } is a weak ommon ause (C′

i ∈ A(VC′), C′′

j ∈ A(VC′′) and C′′′

l ∈ A(VC′′′ ))
and C′′

j is an atomi partition of A(VC′′).

In the Example 4 one might have found it peuliar that although the ommon ause {Cijk} was non-

onspiratorial (it was probabilistially independent of am and bn), still there was a 'onspiray' within the

ommon ause: C′

i, C
′′

j and C′′′

l were not probabilistially independent. For example it never happened

that only lamp C′′
was swithed on. This fat does not raise any problem until the ommon ause is

loalized at one plae, as in Example 1, where all the three lamps were loalized in lighthouse 3. But in

Example 4 the ommon ause was sattered around in three di�erent loations. It was loated in three

di�erent lighthouses. The problem with suh a ommon ause that it may well question our whole projet

to provide a ommon ausal explanation for a orrelation. If the explanans itself has a built-in orrelation,

then what is the point of using it for explaining orrelations? Can we not ome up with a ommon ausal

model in whih C′

i, C
′′

j and C′′′

l are spatially separated but still independent, say, regulated by three

independent oin tossings in lighthouse 1, 3 and 5, respetively. Can one obtain a weak ommon ause

for a given orrelation without a built-in orrelation?

Let {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } be a weak ommon ause of a given orrelation. (Here {C′

i}, {C
′′

j }
and {C′′′

l } are general partitions of A(VC′), A(VC′′ ) and A(VC′′′ ), respetively, and not those spei�ed in

the above Examples.) Let us all {Cijk} a genuine weak ommon ause, i� {C′′

j }�the 'middle part' of

{Cijk}�is not a strong ommon ause. In what follows we will show that the above mentioned `built-in

orrelation' is a neessary ondition to explain a orrelation by a genuine weak ommon ause. In other

words, we will show that if {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } is a ommon ause of the orrelation (23) and C′

i,

C′′

j and C′′′

l are probabilistially independent, then also {C′′

j } will be a ommon ause of the orrelation.

Proposition 2. Suppose that {C′

i ∧ C′′

j ∧ C′′′

l } is a ommon ause of the orrelation between Am and

Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )(32)

p(Am|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (33)

p(Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (34)

p(am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(am ∧ bn) p(C
′

i ∧ C′′

j ∧ C′′′

l ) (35)

and suppose that C′

i, C
′′

j and C′′′

l are independent that is

p(C′

i ∧ C′′

j ∧ C′′′

l ) = p(C′

i) p(C
′′

j ) p(C
′′′

l ) (36)
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then {C′′

j } is also a ommon ause the orrelation:

p(Am ∧Bn|am ∧ C′′

j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧C′′

j ) (37)

p(Am|am ∧ bn ∧ C′′

j ) = p(Am|am ∧ bn′ ∧C′′

j ) (38)

p(Bn|am ∧ bn ∧ C′′

j ) = p(Bn|am′ ∧ bn ∧C′′

j ) (39)

p(am ∧ bn ∧ C′′

j ) = p(am ∧ bn) p(C
′′

j ) (40)

For the proof see Appendix B. Sine in Example 4 {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } was loalized in the

weak past and {C′′

j } was loalized in the strong past, we an interpret Proposition 2 as follows: a weak

ommon ause with no 'built-in orrelation' is always parasiti on a strong ommon ause in the sense

that there is no other way to provide a genuine weak ommon ause for a given orrelation, then to

make the spatially separated parts of the ommon ause probabilistially dependent. In brief, there is no

genuine weak ommon ause without 'built-in orrelation'.

6 Conlusion

The probabilisti haraterization of the ommon ause an be justi�ed via Bell's notion of loal ausality

if two assumptions onerning the ommon ause are made: �rst, the ommon ause is loalized in the

strong past of the orrelating events; seond, it provides a omplete spei�ation of the `beables' of this

past. In the paper it was argued that only the seond assumption, that is omplete spei�ation, is

neessary for the derivation of the probabilisti ommon ause from loal ausality. Thus, oarse-grained

ommon ausal explanations annot be rationalized in this way. (Whether it an be justi�ed in other

ways, based on non-spatiotemporal onsiderations, is not investigated here. For a justi�ation via Causal

Markov Condition see (Glymour 2006).)

Conerning the �rst assumption, namely loalization in the strong past, it was shown that genuine

weak ommon auses an be provided for a given orrelation only at the ost of introduing a 'built-in

orrelation' between the spatially separated parts of the ommon ause.

We onlude the paper with a highly speulative question. As it was shown in the Introdution, the

ommon auses that naturally arise in algebrai quantum �eld theory are weak and not strong ommon

auses.

Question: Is this fat somehow related to or a onsequene of the following two fats? (If they are fats

at all.)

1. In algebrai quantum �eld theory quantum states establishing a superluminal orrelation between

two spaelike separated events, also establish (or 'typially' establish) a `built-in orrelation' between

the spaelike separated parts of the weak ommon auses of this orrelation.

2. An analoge of Proposition 2 holds in algebrai quantum �eld theory stating that a `built-in orre-

lation' is a neessary ondition to explain a orrelation by a genuine weak ommon ause.

Were these two fats to hold, one ould understand why weak ommon auses in algebrai quantum �eld

theory are geniune ommon auses that is why they do not redue to strong ommon auses. (For more

on this see (Hofer-Szabó and Vesernyés, 2014).)
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Appendix A

Here we will show that if a set of orrelations {(Am, Bn)|m,n = 1, 2} has a loal, non-onspiratorial joint
ommon ausal explanation in the sense of (2)-(5), then the following Clauser�Horne inequalities have to
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hold for any m,m′, n, n′ = 1, 2; m 6= m′, n 6= n′
:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0 (41)

The derivation of (41) from (2)-(5) is simple. It is an elementary fat of arithmeti that for any

α, α′, β, β′ ∈ [0, 1] the number

αβ + αβ′ + α′β − α′β′ − α− β (42)

lies in the interval [−1, 0]. Now let α, α′, β, β′
be the following onditional probabilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (43)

α′ ≡ p(Am′ |am′ ∧ bn′ ∧Ck) (44)

β ≡ p(Bn|am ∧ bn ∧ Ck) (45)

β′ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (46)

Plugging (43)-(46) into (42) and using loality (3)-(4) one obtains

−1 6 p(Am|am ∧ bn ∧Ck)p(Bn|am ∧ bn ∧Ck) + p(Am|am′ ∧ bn ∧ Ck)p(Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ |am′ ∧ bn ∧ Ck)p(Bn|am′ ∧ bn ∧ Ck)− p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧Ck) 6 0 (47)

Using sreening-o� (2) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧Ck) 6 0 (48)

Finally, multiplying the above inequality by p(Ck), then summing up for the indies k and using no-

onspiray (5) one arrives at (41).

Appendix B

Here we prove Proposition 1. Suppose that {C′

i∧C′′

j ∧C′′′

l } is a ommon ause of the orrelation between

Am and Bn in the sense of (32)-(35) and suppose that C′

i, C
′′

j and C′′′

l are independent in the sense of

(36). First, observe that (35) and (36) together entail that:

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧C′′′

l ) = p(am ∧ bn) p(C
′

i)p(C
′′

j )p(C
′′′

l ) (49)
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Then C′′

j is a strong ommon ause that is (37)-(40) hold:

p(Am ∧Bn|am ∧ bn ∧C′′

j ) =
p(Am ∧Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Am ∧Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(32)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

(33)(34)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j )p(Bn|am ∧ bn ∧C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

(49)
= p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j )

p(Am|am ∧ bn ∧C′′

j ) =
p(Am ∧ am ∧ bn ∧C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(33)
=

∑

il

p(Am|am ∧ bn′ ∧C′

i ∧C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn′)p(C′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn′)p(C′′

j )

(49)
=

p(Am ∧ am ∧ bn′ ∧ C′′

j )

p(am ∧ bn′ ∧ C′′

j )
= p(Am|am ∧ bn′ ∧ C′′

j )

p(Bn|am ∧ bn ∧C′′

j ) =
p(Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(34)
=

∑

il

p(Bn|am′ ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am′ ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am′ ∧ bn)p(C′′

j )

(49)
=

p(Bn ∧ am′ ∧ bn ∧ C′′

j )

p(am′ ∧ bn ∧ C′′

j )
= p(Bn|am′ ∧ bn ∧C′′

j )

p(am ∧ bn ∧C′′

j ) =
∑

il

p(am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )

(49)
=

∑

il

p(am ∧ bn ∧ C′

i ∧C′′′

l )p(C′′

j ) = p(am ∧ bn) p(C
′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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