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Abstract

A question at the intersection of scientific modeling and public choice
is how to deal with uncertainty about model predictions. This “high-
level” uncertainty is necessarily value-laden, and thus must be treated as
irreducibly subjective. Nevertheless, formal methods of uncertainty anal-
ysis should still be employed for the purpose of clarifying policy debates.
I argue that such debates are best informed by models which integrate
objective features (which model the world) with subjective ones (model-
ing the policy-maker). This integrated subjectivism is illustrated with a
case study from the literature on monetary policy. The paper concludes
with some morals for the use of models in determining climate policy.

1 Introduction

A question at the intersection of scientific modeling and public choice is how to
deal with uncertainty about model predictions. This “high-level” uncertainty
appears to be qualitatively different from the “low-level” uncertainties which
occur during model construction. Low-level uncertainties may be reduced sys-
tematically through further measurement or experimentation. In contrast, there
is no widespread agreement on a systematic procedure for reducing high-level
uncertainty. Yet it is model predictions which are relevant for policy choice, and
thus a realistic recommendation for the use of scientific models to inform policy
must address the fact of high-level uncertainty.

I argue that high-level uncertainty, as well as other values critical for policy
choice, should be treated as irreducibly “subjective.” I use this term primarily
to indicate properties of a subject, e.g. a scientist or policy-maker, in contrast
to “objective,” or subject-independent, properties of the world. The point of
emphasizing that high-level uncertainty is subjective in this sense is that the
unavailability of consensus methods for assigning or reducing it does not under-
mine its role in decision making for policy. Thus, I defend the use of quantified
uncertainties as in formal decision theory, in contrast with positions which take
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high-level uncertainty to defeat formal methods, such as the precautionary prin-
ciple. When there is no consensus on reducing high-level uncertainty, however,
it may have to be treated as subjective in a stronger sense, namely that familiar
from the subjectivist approach to probability, for which the rational assignment
of probabilities is constrained only by internal norms such as consistency.

Integrated subjectivism is the view that, in order to inform policy choice, a
scientific model should be converted to a decision-theoretic one by supplement-
ing it with parameters which represent relevant subjective properties of the
policy-maker, e.g. her utility function, priors, or risk aversion. This strategy in-
tegrates subjective features into a model which may be interpreted as otherwise
objective. I motivate this view with an example from the literature on optimal
monetary policy. This example illustrates how including more of a scientific
model in the decision-making process than just a probability distribution over
outcomes can both constrain rational policy in novel ways and make explicit
the loci of disagreement in policy debates. This possibility mitigates to some
extent worries about the irreducibly subjective nature of high-level uncertainty
when it plays a role in public choice. The paper concludes with some remarks
on applications of these ideas to the current debate on climate policy.

2 High-Level Uncertainty

Not all “uncertainty” exhibits the same qualitative features. Agreement about
how to represent and reduce uncertainty will differ depending upon both the
source of the uncertainty and its consequences for prospective action.

For instance, the treatment of uncertainty about the parameter values used
when constructing a model appears straightforward: we represent it with error
bars, the standard deviation, or some other descriptive statistical technique.
This “low-level” uncertainty is typically just variance in the data, and can be
reduced by making more measurements, developing more precise measurement
procedures, running additional experiments, etc.1 Suppose two ecologists mod-
eling the growth of the invasive cane toad (Bufo marinus) population in Aus-
tralia disagree about the cane toad birth rate, one of the parameters in the
model. Despite disagreement about parameter value, they nevertheless agree on
the types of evidence relevant for resolving that disagreement, e.g. additional
observations of cane toad breeding in the wild, collection of data on similar
toads, experiments on cane toad breeding in various controlled test conditions,
etc. Consequently, each modeler knows the actions relevant for convincing her
colleague, and, as evidence accrues, their views should eventually converge on a
single value.

The treatment of uncertainty about the predictions of complex models ap-
pears much more problematic. This “high-level” uncertainty derives from a
heterogenous set of methodological choices made by the modeler concerning rel-
evance and idealization. For instance, when building a model of the spread of

1Some parameters cannot be measured directly. Nevertheless, uncertainty about their
values can still be reduced by established techniques, for instance statistical estimation.
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cane toads throughout Australia, one must decide which parameters to include
(predation? rainfall? pond size?) as well as the degree of spatial and temporal
granularity of the model (should it partition the continent into square miles?
square 100 miles? square feet?). Some parameters may seem “obviously” rele-
vant, yet even such parameters may be subject to disagreement (e.g. Kearney
et al., 2008, model the future distribution of cane toads across the continent
without including a parameter for the current data on cane toad location, an
intuitively relevant value and one typically included in earlier models).

The question of which parameters are relevant to a model is a specific facet
of the more general point that models typically idealize, abstract from, distort,
or at least simplify the target system they are intended to represent.2 Modelers
who identify different features of the target system as relevant are idealizing
differently, yet there is no consensus theory for evaluating the relative merits of
these choices. In the context of “pure” inquiry, long-term empirical success will
eventually resolve disagreements about model idealization, but in the context
of policy choice, the luxury of waiting for long-term success is typically not
available.

Consider, for example, two hypothetical models of cane toad territory expan-
sion. They include some of the same parameters, representing rough geograph-
ical features of Australia, yet they calculate changes in cane toad distribution
using very different methods. The first is built by a statistician and relies on
analysis of trends in past toad movements to predict future cane toad distri-
bution. The second is built by a biologist and relies on an analysis of the
physiological properties (leap length, daily period of activity, etc.) of the cane
toad for generating its predictions. These two models exhibit different virtues.
The first can reproduce past data, “predicting” the current distribution of cane
toads when fed only their initial location upon introduction in 1935; the second
is unable to reproduce this data, but has the virtue of accurately capturing the
presumed mechanism of cane toad migration. If our interest in the question
of cane toad distribution is purely “academic,” we will tweak and improve our
models gradually as we observe actual cane toad spread.

In contrast, if our intent is to make a policy decision, say, how much to
spend on culling cane toads this year, then we don’t have the luxury of waiting
for long-term success. We need a method for evaluating now the predictions
made by each model when they differ on some relevant issue, say whether or
not cane toads will reach Perth if left unchecked. Which virtue should we weigh
more: success in reproducing past data or plausibility of mechanism? There
is no consensus answer to this question, nor general theory for how to rank
the importance of other scientific virtues such as elegance, precision, accuracy,
or generality when weighing the merits of incompatible models. Although this

2This is a general feature of scientific inquiry: we understand some aspect of nature by
crystalizing out an efficient description of it, for instance in terms of the laws which govern it.
A complete and uncondensed representation of nature would be as useless as Borges’ map the
size of the territory. Although I focus here on models in particular in order to make contact
with some specific examples, the considerations raised in this article should apply equally to
the use of any aspect of scientific theory in policy decisions.
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example is artificial, it closely mirrors the actual state of model disagreement
in climate science, where model evaluation is irreducibly value-laden.

High-level uncertainty is qualitatively different from low-level uncertainty in
that there is no consensus on how to represent or reduce it. This is a conse-
quence of the fact that model construction involves trade-offs between compet-
ing scientific values (Levins, 1966). Yet those scientific predictions which are
relevant for public policy are typically subject to some degree of high-level un-
certainty. This creates a tension in the way science is discussed in the public
sphere, including the pronouncements and actions of scientists themselves when
communicating with the public. Typically, issues are discussed in binary terms
(is “global warming” occurring or not?) which would be more appropriately
characterized in terms of degrees of certainty or support (what is our degree of
certainty in warming? what is the strength of evidence for a human contribution
to warming?). This rhetoric obscures the nature of the scientific contribution
to our knowledge of the world and undermines its effective use in policy choice.

Symptoms of this breakdown between the actuality of scientific modeling and
public expectations about it can be found both on the side of scientific practice
and on the side of public choice theory. In the climate science literature, for
example, there has been a recent surge of interest in techniques for “propagating
uncertainty” through a model, converting its low-level uncertainties into an un-
certainty value over the model’s predictions. If the above discussion is correct,
however, these attempts are misguided, and in fact any such method must nec-
essarily make very strong assumptions about issues of scientific value on which
there is no consensus. On the side of choice theory, a major symptom is found
in the “precautionary principle,” which takes disagreement amongst scientists
as an excuse to jettison formal decision theory. I elaborate on this point and de-
fend my own view on how to manage high-level uncertainty for policy choice in
the next section; I return to the question of uncertainty management in climate
science in Section 5.

3 Decision Theory and Integrated Subjectivism

Formal decision theory weighs possible outcomes by their utility (conversely,
loss) and the probability they obtain in order to calculate action. The most
typical rule here is that of “maximizing expected utility,” or “minimizing loss”:

pick the action a ∈ A which for outcomes O

and loss function L minimizes
∑

oi∈O

P (oi|a)L(oi)

In the context of the present discussion, I assume a maximally vanilla version
of formal decision theory, which takes action to be calculated somehow from
probabilities over outcomes and the utility of those outcomes (and perhaps
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other values as well, for instance degree of risk aversion).3 When a scientific
model informs a decision problem, it is typically by providing the probability
distribution P over outcomes conditional on actions.

The value of upholding decision theory in this sense is twofold. First, I
believe it accurately characterizes how humans do indeed make decisions. We
value or prefer some outcomes more than others, we believe some outcomes
more likely than others, and we choose how to act on the basis of these two
weightings. From this descriptive perspective, the functions P and L may be
thought of as “subjective”: they describe properties of the subject making the
decision. Second, difficult decision scenarios can be translated into quantita-
tive mathematical problems, allowing us to calculate rational responses when
the problem at issue is too complex or unwieldy for easy intuitive analysis. In
this context, one might argue that only particular functions P and L are ratio-
nal, for instance, the unique P which maximizes entropy. From this normative
perspective, one might interpret the functions P and L as “objective,” i.e. char-
acterizing rational assignments with validity in the world independent of any
particular agent’s actual degrees of belief while making a decision.

Of course, one may both endorse the mathematical side of formal decision
theory and interpret its components as representing subjective properties of a
particular agent (e.g. Savage, 1972). Typically, on this subjectivist interpre-
tation, the normative constraints on the assignment P are purely internal, e.g.
internal consistency or coherence. In the context of model predictions and policy
choice, the worry is that the fact of high-level uncertainty defeats any external,
objective, constraint on the probability distribution over possible outcomes, but
that the subjectivist reading is unavailable because the choice being made af-
fects society as a whole rather than a single individual. However, I think the
cost of abandoning formal decision theory is far greater than that of accepting
subjectivism in this context. The damage can be illustrated by considering the
negative effect of the precautionary principle on rational discourse.

Although there are many formulations of the precautionary principle (Man-
son, 2002), it typically invokes a necessity to act if an outcome involving irre-
versible environmental damage is possible. As usually interpreted, the principle
violates formal decision theory because: a) rather than weigh costs and benefits
across all outcomes, it singles out a distinguished class of outcomes, those involv-
ing environmental damage; and b) the relative probabilities of these outcomes
are not taken into account, their mere possibility motivates action. Typically,
the precautionary principle is triggered by scientific uncertainty about the po-
tential effects of an action and is then used to ban that action, for instance the

3The intent is to include diverse procedures for calculating action from these values, united
by a willingness to represent the problem mathematically, but perhaps differing on which
mathematical properties of the representation are most important. For instance, instead of
taking expectation, one might take the mode or median of the distribution as most significant
for guiding action; instead of taking probabilities directly, one might work with a more com-
plex function of the probability distribution, say to represent uncertainty aversion. A classic
example of such non-expectational decision theory is the prospect theory of Kahneman and
Tversky (1979); for some more recent examples, see Thalos and Richardson (forthcoming) and
Hahn (2013).
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planting of genetically modified crops (Tait, 2001) or the building of schools
with exposure to radio frequency fields (Foster et al., 2000).

However, if the descriptive claim that actual agents make choices on the
basis of weights across the probabilities and utilities of outcomes is correct, then
invoking the precautionary principle shuts down rational debate. For example,
if you and I disagree about whether or not to take a particular action a, where
the potential outcome o involves environmental damage, then we either disagree
about how likely the outcome is, P (o|a), how terrible it is, L(o), or perhaps
in our respective degrees of aversion to risk or uncertainty, which might be
quantified in various ways. If you invoke the precautionary principle in our
argument, you obscure which of these values we actually disagree over. But
this is dangerous to public discourse, because we should take different actions
to resolve our disagreement in each case. A disagreement about P might be
resolved by appealing to more data or further modeling, a disagreement about
L will require an elucidation of our respective moral norms, and a disagreement
about risk aversion might simply be irresolvable. If these quantities are explicitly
represented as distinct components of the decision making calculation, as they
are in formal decision theory, then the locus of our disagreement can be clarified
and effectively addressed.

So, policy decisions should be framed in the context of formal decision theory,
but the parameters of a decision-theoretic model should be open to debate.
This allows for a more effective means of locating disagreement and targeting
discussion than attempts to jettison decision theory in favor of value-biased
qualitative guidelines such as the precautionary principle. However, this in turn
implies that in the context of policy decisions informed by scientific models
exhibiting high-level uncertainty, we will need to place a probability distribution
somehow over possible outcomes. How can this be done?

The first point to emphasize is that, even if the model (or modelers) offers
no recommendation for a probability distribution over outcomes, nevertheless,
some distribution can be assigned. At the very least, one could assign a dis-
tribution subjectively, constrained only by norms of internal coherence. Even a
purely subjectivist theory of such probability distributions is constrained by ra-
tional norms on probability change (e.g. Bayes’ rule). At least in finite contexts,
initially divergent probability assignments will converge on underlying “objec-
tive” probabilities when updated on enough additional evidence, mitigating the
worry that their “arbitrary” character defeats rational decision making.

More importantly, however, we may be able to do even better than this. If
the only aspect of our decision-theoretic model which comes from our scientific
model is the probability distribution over outcomes, and that distribution was
itself assigned arbitrarily due to our high-level uncertainty, we have taken very
little from the science. In fact, we have only taken the list of possible out-
comes, leaving behind information about why these particular outcomes have
been identified, or how they relate to the low-level parameters in the model. Yet
this information may be relevant for our decision. If, for example, parameter
α has a large effect on whether a particular outcome of interest obtains, while
parameter β has a very small effect, it is in our interest to make more careful
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measurements of α in order to improve the quality of our decision, even if more
precise values for α do not reduce our overall high-level uncertainty.

The solution I explore in the following section is integrated subjectivism. The
idea is to integrate subjective parameters relevant to decisions into the model,
which may otherwise be interpreted objectively, i.e. as characterizing aspects of
the world independent of any agent’s attitudes or values. Rather than simply
summarize the model’s predictions with a bare probability distribution, richer
aspects of the scientific model are retained side by side with parameters for the
decision maker’s loss function, risk aversion, prior beliefs, etc. The idea is to
transform a scientific model into a decision-theoretic one in which objective pa-
rameters (about the world) and subjective parameters (about the agent) peace-
fully coexist. By integrating these subjective features into an objective model,
qualitative and quantitative constraints on rational decision making may emerge
which are independent of the values of the subjective parameters themselves.
These constraints can then inform the debate as they apply to any rational
agent, while the subjective parameters themselves can represent the loci of dis-
agreement between policy-makers. The possibility of integrated subjectivism
and examples of constraints such as these are illustrated in the following case
study from the history of economics.

4 An Example: Optimal Monetary Policy

This section examines a sequence of models in the literature on optimal mone-
tary policy.4 We shall see that, by supplementing models initially intended to
characterize objective features of the world with subjective parameters, novel
qualitative and quantitative constraints on rational policy emerged and loci of
policy disagreements were made more precise.

Friedman (1953) addressed the topic of optimal monetary policy by treating
it as a question of how countercyclic action could be used to increase the stability
of an inherently fluctuating system. Levels of (total) income fluctuate as a
function of both natural pressures and policy interventions, each of which is
themselves susceptible to fluctuation. This motivates the model

Y (t) = Q(t) + U(t), (1)

where Y (t) is the level of total income (i.e. GDP); Q(t) is the effect of policy
at time t (not an intervention made at t, but the effect at t of policy whenever
implemented); and U(t) is the fluctuation in income due to factors other than the
intervention. The model is general enough to capture any fluctuating economic
quantity of interest, and has been influential in the literature on optimal policy
considered generally.

Friedman’s insight was that, if monotonic trends are discounted, the stability
of Y (t) can be measured by its variance, σ2

Y . Then the relevant equation for

4I previously discussed this example in Isaac (forthcoming). This discussion expands and
supplements that one, focusing here on norms for policy rather than general norms for science.
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assessing the stabilizing effects of policy is given by

σ2
Y = σ2

Q + σ2
U + 2rQUσQσU (2)

where rQU is the correlation between Q and U . This setup allows Friedman to
argue for the novel result that not all countercyclic interventions are stabilizing.
Of course, if rQU is positive, i.e. interventions are “in the wrong direction,”
they destabilize. The insight here is that rQU may be negative, yet still increase
σ2
Y , i.e. contribute to instability.
(1) is intended as a model of objective factors in the world. Friedman is

concerned with our level of uncertainty about these factors, but he does not
explicitly represent this uncertainty in the model. Friedman’s policy recom-
mendations turn on his doubts about our ability to sufficiently reduce our un-
certainty about those factors crucial for making effective policy decisions, such
as σQ or rQU . This conclusion is in line with Friedman’s general stance against
overly activist / interventionist government policy. However, we can also see
this stance reflected in the choices Friedman made concerning the relevance of
various objective factors while building this model. For instance, his choice to
include the effects of policy, but not policy actions themselves, implicitly down-
plays any relevance of the particulars of policy choice for his conclusions about
the possibility of optimal policy in general.

An economic tradition with radically different theoretical commitments is
the targets and instruments approach of Tinbergen and Theil (e.g. Tinbergen,
1952). This approach embraces an activist attitude toward government policy,
and reveals this attitude in models which explicitly relate “targets,” properties
of the economy (more generally society) of interest, to “instruments,” policies
or political actions. In general, many targets and instruments interact simulta-
neously, but the simplest model in this approach is

y = aP + u, (3)

where y is the target (Friedman’s Y ), P is the policy instrument, a calibrates
the effect of P on y, and u represents exogenous influences on y (Friedman’s U).
A fundamental result in this approach is the principle of certainty equivalence,
which states that, if a is known, then optimal policy when u is unknown is
equivalent to optimal policy when u is known (Simon, 1956; Theil, 1957).

Brainard (1967) begins the process of reconciling these two approaches by
weakening the assumptions necessary for certainty equivalence. Beginning with
(3), he considers the possibility of uncertainty about a. Although P is known
to the policy-maker, if a is not, then the problem of determining optimal policy
is greatly complicated. More generally, Brainard allows for the possibility of
interaction between u, a, and P , capturing the fact that changes in policy may
affect the nature of exogenous influences on the target variable. For example,
a change in interest rate may alter the attitudes of consumers who do not
themselves take loans on the new rate, thereby changing the nature of their
influence on GDP. These assumptions motivate the same transformation to (3)
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that Friedman performed on (1), although Brainard will put it to a different
purpose:

σ2
y = σ2

aP
2 + σ2

u + 2rauσaσuP. (4)

This model may still be interpreted as a description of objective features of
the economy.5 However, since it explicitly includes a value for the policy-maker’s
action, Brainard can combine it with a loss function to derive a decision-theoretic
model. Use x̄ to indicate the average of x, E(x) to indicate the expectation of
x, and L to indicate loss. Following common practice in statistics, Brainard
assumes loss is equivalent to mean squared error:

E(L) = E(y − y∗)2, (5)

where y∗ is the desired value of y. This is equivalent to

E(L) = (ȳ − y∗)2 + σ2
y. (6)

Substituting (3) and (4) into (6) allows Brainard to derive

E(L) = (āP + ū− y∗)2 + σ2
aP

2 + σ2
u + 2rauσaσuP, (7)

which he then differentiates with respect to P in order to state the relationship
between optimal policy P ∗ and characteristics of u and a:

P ∗ =
ā(y∗ − ū)− rauσaσu

ā2 + σ2
a

. (8)

Brainard’s analysis is an instance of integrated subjectivism in the sense
defined in the previous section. He combined equations (3) and (4), which rep-
resent “objective” aspects of the economy, with (6), which represents the “sub-
jective” beliefs and values of the policy-maker, into a single integrated model.
The variables on the right of (8) can be given empirical significance if they are
interpreted as measurements from the previous economic cycle. The combined
equation then allows the derivation of surprising qualitative and quantitative
constraints on optimal policy.

For instance, a counterintuitive consequence of this analysis is that it is not
always optimal to act to bring ȳ maximally close to y∗. As the policy-maker
adjusts policy on successive economic cycles, closing only part of the gap between
expected and desired values of y may allow for a more efficient convergence on y∗

in the long run. A particularly striking instance of this principle obtains when
there is very high positive correlation between a and u. Under these conditions,
it may actually be optimal in the short term to act to move ȳ away from y∗,
i.e. move the expected value of y further from the desired value. Intuitively,

5It is perhaps helpful to acknowledge an equivocation here on the interpretation of the
variances in (2) and (4). Friedman discusses them as mere summaries of the fluctuations in
(1), while Brainard discusses them as actual (low-level) “uncertainties” about the values in
(3). This equivocation on the interpretation of the variance is irrelevant, however, since the
mathematics of the analysis is the same, as are the implications for policy choice.
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if moving ȳ in the “wrong” direction reduces the variance in u (because rau
is positive) enough, then the overall loss may be smaller since the increase in
distance between ȳ and y∗ is counterbalanced by the reduction in σ2

y (Brainard,
1967, 416–7).

Although Brainard’s model illustrates the recommendation of the previous
section in the sense that it converts a scientific model into a decision-theoretic
one, one might nevertheless object that it is inappropriate to call it “subjec-
tive.” The notions of “loss” and “expectation” characterized in (5) are only
metaphors. “Expectation” is just average, a purely mathematical notion, while
the mean squared “loss” function employed is widely agreed upon by statisti-
cians, and chosen for mathematical convenience, not because of any contentious,
subject-dependent norms. Thus, these quantities are really better understood as
“objective,” i.e. matters of mathematical elegance and widespread agreement
which do not depend in any irreducible way on properties of a single agent.
I agree with these points to some degree, but they are mitigated by the final
step in our example, which demonstrates the constructive value of incorporating
irreducibly subjective risk aversion into the model.

Mitchell (1979) completes the reconciliation of the Friedman analysis with
the targets and instruments approach by incorporating a new parameter into
equation (6), 0 ≤ γ ≤ 1:

E(L) = γ(ȳ − y∗)2 + (1− γ)σ2
y. (9)

Mitchell calls γ the “risk aversion parameter” and states it “may be subjec-
tively picked by the policy-maker” (913). The value of incorporating this new
parameter into the model is that Friedman’s model and Brainard’s generaliza-
tion of the targets and instruments approach each fall out as special cases. If
γ = 1/2, we get Brainard’s model, and variance and deviation from the target
receive equal weight in calculating the loss function. If γ = 0, we get Friedman’s
model, where the particular target y∗ is irrelevant, and the only goal of policy
is to dampen cyclic action in the economy. As γ grows closer to 1, the policy-
maker becomes less and less “risk averse” (as he cares less and less about the
predicability (variance) in the target).

The difference in opinion between Friedman’s non-interventionist approach
and the more activist targets and instruments approach is now explicitly quan-
tized in the decision calculation. By substituting (3) and (4) into (9), Mitchell
can derive qualitative and quantitative results about the relationship between γ,
P ∗, y∗, and σ2

y. For example, as risk aversion grows in a specific (but plausible)
range, the strength of its effect on σ2

y also grows, implying that the more risk
averse you are, the more precisely you must specify your degree of risk aver-
sion in order to calculate optimal policy (Mitchell, 1979, 917).6 Results such
as this do not tell the policy-maker what degree of risk aversion to adopt, this

6I omit the full details of the argument in the interests of space, but here’s a sketch:
Mitchell substitutes his expression for P ∗ back into (4) and differentiates with respect to γ
in order to determine the sensitivity of the minimum σ2

y on γ. Since the second derivative is
negative when ā > 2σa and γ is low, the function is concave in this range and, as γ shrinks,
minimum σ2

y changes more and more rapidly.
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is subjectively up to them, but they rationally constrain how that subjective
parameter interacts with policy choice, for instance how precisely it must be
stated in order to calculate a specific action.

The models of Brainard and Mitchell demonstrate how integrated subjec-
tivism is possible as a strategy for generating decision-theoretic models from
scientific models. Such models can be used to generate richer qualitative and
quantitative constraints on policy choice than those which simply weight out-
comes by a probability distribution. Furthermore, supplementing them with
irreducibly “subjective” parameters such as risk aversion can have the effect of
sharpening debate by illustrating the precise effects of contentious subjective
value commitments on policy choice. This example by no means constitutes a
recipe for applying integrated subjectivism in all cases. Nevertheless, it shows
the potential power of the approach for both a) making use of information in a
scientific model not captured by its predictions alone, and b) motivating rational
constraints on policy choice by examining the interaction between objectively
and subjectively interpreted parameters.

5 Applications in Climate Science

The literature on the management of uncertainty in climate science is vast, and
I will not pretend to survey it comprehensively here. Rather, I hope to draw
a few small morals on some targeted points in this literature from the above
discussion.

First, a quick overview of the nature of the problem. In order to assess long
term trends in climate change, and in particular the relationship between hu-
man activities, such as carbon emissions, and warming trends, there has been a
concerted effort in recent decades to build large computer models of the earth’s
climate. Many discussions of the uncertainty in these models focus on two types
of uncertainty: parametric uncertainty and structural uncertainty (e.g. Tatang
et al., 1997; Webster et al., 2003; Biddle and Winsberg, 2010).7 Parametric
uncertainty is just low-level uncertainty: uncertainty about the value of pa-
rameters such as ice albedo, quantity of human CO2 emissions in a given year,
rate of oceanic heat uptake, etc. These parameters are related to each other
via mathematical equations, and structural uncertainty is uncertainty about
the validity of these equations. This includes both uncertainty due to the lack
of a confirmed theory about the relationship between particular quantities and
uncertainty due to the acknowledged use of approximation methods in the equa-
tions in order make computer simulation feasible. This structural uncertainty
constitutes only one contributor to what I have called high-level uncertainty.

A third type of uncertainty taken to be of particular interest arises due to
the existence of a plurality of distinct models which give conflicting predictions
about future scenarios (Parker, 2006). These models make different structural

7Other types of uncertainty frequently discussed include uncertainty about initial con-
ditions, data, and boundary conditions. The first two are typically instances of low-level
uncertainty, while the third typically contributes to high-level uncertainty.
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assumptions and typically have different virtues (e.g. perform differently at re-
producing short-term vs long-term past data; more realistically capture different
aspects of the mechanism underlying climate change; were tuned on different
data sets; etc.). Just like the conflicting statistical and biological models of cane
toad migration posited in Section 2, there is no community consensus about how
to assess their respective merits, and this poses a significant problem for under-
standing how these models should contribute to policy decisions. Much has
been made of the fact that the development of these models exhibits “path-
dependency” (Lenhard and Winsberg, 2010, 256) and involves “incompatible”
physical assumptions (Parker, 2006), resulting in irreducible model pluralism.
For the sake of a label, call uncertainty about how to reconcile the predictions
of distinct models “plurality uncertainty.”

Perhaps the greatest insight following from the above discussion for the
climate policy debate is that plurality uncertainty is not a qualitatively distinct
problem, but is continuous with structural uncertainty. Both are instances of
high-level uncertainty, and were treated interchangeably when the concept was
introduced in Section 2. The reason is that both types of uncertainty stem
from the exact same cause: a lack of rationally-motivated consensus about the
ranking of conflicting scientific values. This fact is obscured in the climate
science literature by a relatively large de facto consensus amongst many climate
modelers to rank the virtue of plausibility of mechanism (“accuracy”) over all
others when discussing structural uncertainty. Here is a typical example:

Structural uncertainty in models arises because of inaccurate treat-
ment of dynamical, physical, and chemical processes, inexact nu-
merical schemes, and inadequate resolutions. Structural uncertainty
in atmospheric models can be reduced, for example, by increas-
ing model resolution, improving parameterization schemes, refining
model dynamics, and implementing state-of-the-art numerical meth-
ods. (Tatang et al., 1997, 21,925)

But this view commits the map the size of the territory mistake: it assumes
both that the rich detail of the target system may be approached arbitrarily
closely and that this approach improves the quality of the model. Despite the de
facto endorsement of this position by much of the climate modeling community,
it cannot be rationally supported. Modeling, like scientific inquiry generally,
must make trade-offs between competing values. Prioritizing “accuracy” to the
exclusion of other values is insupportable in the long term, and contentious in
the short term.8

The complex role of value judgments in the construction of models ensures
that straightforward methods for assigning a probability distribution over the
outcomes of a single model do not actually reflect high-level uncertainty. Such

8Biddle and Winsberg (2010) also conclude that proposals to reduce structural uncertainty
involve value-laden decisions. Their emphasis is on the role of “non-epistemic” values in this
process. I agree with their discussion, but my point is weaker, merely that some values are
necessarily prioritized over others in a manner open to rational dispute.
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distributions may be assigned from frequency data on large numbers of model
runs (if the model is stochastic), or on model runs with slight changes to param-
eter values (if it is deterministic). Typically, models are too computationally
demanding to allow for so many runs, hence the interest in analytic methods for
propagation of uncertainties through a model. Such methods translate proba-
bility distributions over parameter values, whether measured by variance in the
data (e.g. Webster et al., 2003), or by expert assessment of priors (e.g. Wigley
and Raper, 2001), into a probability distribution over model outcomes. This
provides a quantified assessment of the contribution to model uncertainty made
by low-level uncertainty about parameter values. However, these calculations
do not incorporate structural uncertainty or other value judgments contribut-
ing to high-level uncertainty. One symptom of this neglect is that possible, but
“surprising” climate events, such as an abrupt change in thermohaline circula-
tion, receive no probability mass (Wigley and Raper, 2001, 454; Webster et al.,
2003, 298–9). Model construction requires choices about scientific values, and
a measure of uncertainty over model predictions adequate to guide action must
take these choices into account.9

These reflections should clarify why I disagree with those who take plural-
ity uncertainty to pose a unique conceptual problem. Lenhard and Winsberg,
for example, argue that one’s attitude toward the possibility of model conver-
gence should inform one’s attitude toward the possibility of assigning a quan-
titative measure of uncertainty (QMU) over outcomes. They are worried that
pragmatists about the assignment of QMUs are not taking the possibility that
convergence will never obtain (i.e. irreducible pluralism) seriously enough:

But the convergence skeptic worries that QMU pragmatist is overly
optimistic about making constructive use of the plurality of mod-
els without a deeper understanding of the sources of model varia-
tion: QMU methods embed climate simulations into a framework of
probabilistic modeling the justification of which is itself uncertain.
Inevitably, some relatively strong assumptions have to go into it.
(Lenhard and Winsberg, 2010, 260)

But the assignment of probabilities to outcomes from single models faces exactly
the same problem: strong assumptions will have to be made about scientific
value for which there is no ultimate basis in understanding or unimpeachable
justification.10 True, my motivations for supporting the assignment of prob-
abilities are pragmatic: as argued in Section 3, such probabilities are both
necessary for rational decision making about climate policy and provide an ex-
plicit representation of one locus of possible disagreement during debate. But
the suggestion that instead of assigning probabilities one should simply “accept
model pluralism as a useful information for the decision process” (Lenhard and
Winsberg, 2010, 261) simpliciter offers policy-makers less rather than more of

9See Tebaldi and Knutti (2007, 2054–5) for a similar argument.
10c.f. Parker’s (2010) discussion of norms for assigning probabilities under plurality uncer-

tainty; it applies mutatis mutandis to high-level uncertainty about individual models.
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the information available from modeling practice. When policy is decided, out-
comes will somehow be weighted probabilistically: if the modelers don’t do it,
then the politicians will (c.f. Schneider, 2001).

Nevertheless, I do support the conclusion that more than just a probability
distribution over outcomes should be communicated to policy-makers if possi-
ble. But is integrated subjectivism of the form discussed in Section 4 possible
in climate science? There is already a concerted effort to integrated economic
models with climate models (so-called “Integrated Assessment Models”), and
the importance of explicitly representing subjective values of policy-makers in
these models has been defended by Morgan and Dowlatabadi (1996). Schneider
(1997) endorses this conclusion and advocates an active role for policy-makers
in collaborating with modelers to understand the limits of integrated models
while providing feedback on those subjective values which should be included to
maximize their efficacy for policy choice. Unfortunately, these models are too
large and complex to be susceptible to the kind of analytic results discussed in
Section 4. While there are some simple models which support analytic conclu-
sions of relevance (e.g. Weitzman’s (2009) analysis of the role of low probability
“catastrophes” in expected utility calculations), they tend to shift debate back
to the probability distribution itself. A successful analysis of the kind discussed
above for monetary policy would need to link the most contentious quantities
for climate policy (precise probabilities and utilities for low probability events)
to (subjective or objective) quantities more easily measurable, but it is not clear
that this is possible.

6 Conclusion: A Plea

While we should indeed strive to find the firmest objective basis for the beliefs
and values which inform our policy decisions, this is not always possible. Some
relevant values, such as our aversion to risk, are irreducibly subjective; others,
such as our uncertainty about the future, may require subjective assessment
when action is urgent. Acknowledging that available evidence may rest on
subjectively assigned values should not be used as an excuse to abandon decision
theory, nor should it forestall the use of science in informing those values, e.g. by
assigning probabilities, even when the norms for how it should do so are not yet
clear. In cases such as this, we should strive to integrate explicit representations
of these subjective values with those quantities which greater scientific consensus
allows us to treat objectively. Such integrated subjectivism can inform and
clarify debate, as well as suggest a path for moving toward rational consensus
when science provides less certain knowledge of the world than we desire.
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