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On different ways of being equal

Bruno Bentzen

Abstract The aim of this paper is to present a constructive solution to Frege’s puzzle (largely limited
to the mathematical context) based on type theory. Two ways in which an equality statement may
be said to have cognitive significance are distinguished. One concerns the mode of presentation
of the equality, the other its mode of proof. Frege’s distinction between sense and reference,
which emphasizes the former aspect, cannot adequately explain the cognitive significance of equality
statements unless a clear identity criterion for senses is provided. It is argued that providing a solution
based on proofs is more satisfactory from the standpoint of constructive semantics.

1 Introduction

There is hardly any doubt that some mathematical equality statements carry a real piece of
information while others contain no epistemic content whatsoever. One striking aspect of
this curious phenomenon is well known since the work of Frege (1892):

– Objects on both sides of an equality statement may be presented in different ways.
Recognizing objects as the same again when they are given to us differently is surely not
a simple matter in mathematics. Compare, for example, the trivial equality 9391536 =
9391536 with the prime factorization 24 · 32 · 72 · 113 = 9391536, a non-self-evident
truth that can only be known after a large amount of calculation. Why is this equality
not obvious if both objects are the same?

Frege’s theory of cognitive significance (Erkenntniswert) attempts to explainwhatmakes some
equality statements have epistemic value by means of a distinction between the sense and
reference of an expression. More concretely, it says that when we apprehend the truth of
an equality claim relating objects that are given to us in a different way, we are capable of
extending our current knowledge by drawing new inferences about the different modes of
presentation (senses) of those objects (referents). To give an example, the knowledge that
24 · 32 · 72 · 113 = 9391536 is the case allows us to realize that the number 9391536 is divisible
by 49 straight away, without having to do too much calculation. By the same token, some
equality statements seem less revealing because they relate two objects with the same mode
of presentation or sense. Equalities that must hold by definition like 1 = 0.9 appear to fall
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into this category, for one can hardly say that their knowledge produces a gain of information.
Even though 1 and 0.9 are entirely different as expressions, they have the same sense.

The main goal of this paper is to call attention to a second aspect of Frege’s puzzle, a new
dimension which so far has received little consideration, but offers a brand new perspective
to the understanding of cognitive significance. It concerns not the “mode of presentation” but
what we call the “mode of proof” of an equality:

– Substantial arguments might be required to support a claim that two objects are one
and the same. Proving an equality statement is often a difficult task in everyday
mathematics. Why is this so hard if the objects are just the same? This is most likely
because elaborate arguments are needed in the proof. Unlike −1 = −1, which is a
straightforward consequence of the reflexivity of equality, some mathematical maturity
is required to prove that eiπ = −1 is true.

Those are really just two facets of the same problem: on the one hand, difference in mode
of presentation causes an equality to require a sophisticated proof, and, on the other hand, if
non-trivial arguments are necessary to make an equality proof go through then clearly the
mode of presentation of both objects cannot be the same.

When talking about proofs it is natural to think of the constructive conception ofmathematics,
a longstanding tradition established by Brouwer, Heyting, Dummett, Prawitz, Martin-Löf,
and Sundholm, among others, where a notion of “construction” that is similar but subtly
different to that of a proof is given a prominent role in the determination of the meaning
of the logical constants and the truth of a proposition. Indeed, the starting point of this
paper is this very constructive semantics, or, more specifically, a correspondence between
constructive semantics and type theory given via the meaning explanations of Martin-
Löf (1982). There, a construction represents an untyped computation which is generally
accepted as a correct step-by-step specification of how to obtain a certainmathematical object,
an idea that is perhaps best expressed by Bishop’s (1967) notion of a “person program”. Based
on those assumptions regarding the correctness of the meaning explanations and their role
in understanding constructive mathematics, this paper proposes a solution to Frege’s puzzle
using type theory. As we shall see, it is no coincidence that we favor the “mode of proof”
aspect of the puzzle: just as any other concept in mathematical constructivism, the cognitive
significance of an equality statement is to be based on the fundamental notions of construction
and proof.

The rest of the paper is structured as follows: First, a review of the problem of cognitive
significance and Frege’s theory of sense and reference is given in Section 2. Then, a brief
articulation of constructive semantics is provided in Section 3. Next, we discuss type theory
and compare some aspects of its two traditional flavors, which contrast an extensional
and intensional interpretation of equality. We claim that the extensional version is a
good approximation to the principles of constructive semantics, so it may closely represent
cognitive significance from this perspective. This is the subject of Section 4, which is the
central section of the paper, for it also contains our own theory of cognitive significance.
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Section 5 is concerned with the sense/reference distinction within constructive semantics.
Alternative homotopy type-theoretic accounts of cognitive significance are considered in
Section 6. Some features of our account, related work, and possible objections are discussed
in Section 7. Finally, Section 8 provides our conclusions.

2 The problem of cognitive significance

The problem of cognitive significance known as Frege’s puzzle is the problem of explaining
the informativeness of mathematical equality statements: if equal means “exactly the same
as”, then all theorems of the form a = b would collapse into an obvious truth a = a and
all mathematical equations would be trivially true.1 The puzzle is so called because it is a
recurrent topic in Frege’s writings. In particular, Frege’s concerns are clearly expressed in a
letter to Peano, in which he writes the following about the view that equality means exactly
the same:

What stands on the way of a general acceptance of this view is frequently the
following objection: it is thought that the whole content of arithmetic would
then reduce to the principle of identity, a = a, and that there would be nothing
more than boring instances of this boring principle. If this were true, mathematics
would indeed have a very strange content. (Frege, 1982a, p. 126)

It is difficult to saywhat is, according to Frege, the nature of the things that may have cognitive
significance, for he never gave an explicit account of the subject. Perhaps a better question
is whether we should attribute cognitive significance to the things that the rules of inference
operate on (judgments) or the things that the logical connectives operate on (propositions).
Unlike propositions, judgments have assertive force and may state that one or more objects
have a property or stand in a relation. When one asserts a particular judgment one expresses
the knowledge that what is being judged is indeed the case. It is thus common to regard
judgments as objects of knowledge (Martin-Löf, 1985).

Since the works of Bolzano (1837) and Frege (1879), modern logic has been based on one basic
form of judgment, namely, the judgment form A true which states that a proposition is true.
From passages such as the following one, it appears that Frege chooses to attribute cognitive
significance to true propositions, that is, judgments:2

the cognitive value of a = a becomes essentially equal to that of a = b, provided
a = b is true (Frege, 1892)

In any event, Frege (1892) seems more concerned about the conditions under which a
true equality should have cognitive significance, which, according to him, is when it may
contribute to one’s advance of knowledge. One way of refining this idea is to propose the
following adequacy criterion:

1See for instance Corazza and Dokič (1995); May (2001).
2False equality propositions have cognitive significance in our account, see Section 7.
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Definition 2.1 (Adequacy). A theory of cognitive significance is adequate if it ensures that an
equality statement has cognitive significance provided that a rational subject who gets to know
the truth of this statement is justified in extending their knowledge.

Therefore, a rational subject is justified to extend their knowledge with the assertion of an
equality statement if the knowledge that this statement is true allows them to draw new
inferences, as in Corazza and Dokič (1995). In modern logic which only has one form of
judgment, this means that a subject who knows a = b true and gets to know P (a) true is
well-justified in extending their knowledge by deducing P (b) true. Since we shall be dealing
with type theory later on, it is useful to bear in mind that this characterization of extension
of knowledge can be applied to other forms of judgment as well.

2.1 Frege’s theory of sense and reference

Frege’s (1892) well-known solution to the puzzle that bears his name is to introduce a threefold
division between expression, sense and reference. Expressions are either singular terms or
sentences. The reference of a singular term is the object it stands for and its sense the mode
of presentation of the reference. The theory is classical: the reference of a sentence is a
truth value and its sense the truth condition expressed, which is typically identified with
the proposition expressed by the sentence. Different senses may correspond to the same
reference, but in an exact science, each sentence must determine exactly one truth value (i.e.
either true or false), so every sentence in mathematics should respect the law of excluded
middle.3

With a clear separation between sense and reference, Frege is able to explain that the
cognitive significance of an equality statement comes from the difference of the senses of
the expressions standing in both sides of the equality sign. One might think that his theory
of sense and reference is therefore adequate: if ‘a’ and ‘b’ have different senses, then, as the
sense of a sentence is the proposition it expresses, ‘P (a)’ expresses a different sense from
‘P (b)’, for some predicate P . Thus, assuming that ‘a’ and ‘b’ have different senses, one is
immediately able to infer, from the knowledge that a = b and P (a) are the case, that a new
proposition P (b) holds. Unfortunately, this is not quite true. Even in a limited scope such as
mathematics, Frege’s theory of sense and reference has problems of its own, for it does not
specify what it is for two expressions to have different senses.

Frege’s solution to the puzzle presupposes a clear specification of what sort of identity criteria
are applicable for senses, and he does make a strong case for the importance of equality of
sense, as can be seen in passages such as:

It seems to me that an objective criterion is necessary for recognizing a thought
again as the same, for without it logical analysis is impossible. (Frege, 1982b, p.
70)

3See Grundgesetze (Frege, 1962, II, §57).
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Yet, Frege (1962) is surprisingly indifferent about the conditions under which two singular
terms express the same sense in Grundgesetze, the book in which he intends to present his
ultimate foundational theory for arithmetic. At the same time, if a cognitively significant true
equality statement is based on the difference of the senses expressed by the terms it is made
up with, then providing a sharp identity criterion for senses is the most crucial step for the
solution of the puzzle.4

Sense is only briefly explained in Grundgesetze (Frege, 1962, I, §2,§32), and there is no mention
of sameness. But since Frege has proposed at least three identity criteria for senses elsewhere,
we have the following candidates:

1. equality up to logical equivalence;

2. equality up to equipollence;

3. equality up to different choices of bound variables.5

As all mathematical theorems are obviously logically equivalent, the first criterion, which
is proposed in a letter to Husserl (Frege, 1982b, pp. 70–71), is surely incompatible with the
sense/reference solution to Frege’s puzzle, so we have no option but to set it aside.

Frege’s second suggestion is given by means of his equipollence principle, which states that
two sentences A and B express the same sense just in case anyone who accepts A as true is
justified in accepting B as true and vice-versa:

Now two propositions A and B can stand in such a relation that anyone who
recognizes the content of A as true must thereby also recognize the content of
B as true and, conversely […] So one has to separate off from the content of a
proposition the part that alone can be accepted as true or rejected as false. I call
this part the thought expressed by the proposition. (Frege, 1906, pp.197–98)

4 The possibility should be considered that Frege did not think that providing an identity criterion for senses
in Grundgesetze was important. Ruffino (1997), Duarte (2009), and Klement (2016) observed that the thesis that
the reference of a sentence is a truth value was absolutely necessary to introduce Axiom IV to the system in the
book. This axiom is crucial to prove that (A ⊃ B) ⊃ (B ⊃ A) ⊃ (A = B), a theorem without which Frege
could not show that the number of the set A equals the number of the set B iff there is a bijection from A to B
(Hume’s principle). But as long as the sense and reference of an expression are not kept apart, there may be false
instances of it. For example, (1 + 1 = 2) ⊃ (2 = 2) ⊃ ((1 + 1 = 2) = (2 = 2)) seems to be a valid instance for
references, but it is false for senses according to Frege (1891). As Ruffino (1997) suggests, Frege’s sense/reference
distinction may have been motivated by purely mathematical reasons, a necessary change in order to make the
technical development of his logicism plausible.

5Klement (2002, 2016) also distinguishes three other identity criteria for senses: (4) an intermediate
interpretation where the identity criterion for senses are stipulated by abstraction principles such as Frege’s
infamous Axiom V and (5) a fine view according to which the sense of a closed term has as its parts only the
senses of the primitive expressions forming it. In either case, Klement (2016, §5) acknowledges that it is hard to
amend the theory of sense and reference of Grundgesetze with these interpretations, given that all these identity
criteria for senses give rise to problems on their own.
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But because of its subjective appeal, the principle seems to go against Frege’s anti-psychologist
view of logic, as it is stated in terms of the psychological attitudes an individual may
potentially have towards the acceptance of the truth of a sentence. Klement (2002, p.90)
remarks that equipollence can be understood objectively using Leibniz Law, that is, two
sentences A and B express the same sense just in case A and B can be substituted for each
other in all (ordinary or oblique) contexts without change of truth-value.

Frege has also at least once explicitly said that two sentences express the same sense if they
only differ in the choice of bound variables, which suggests that he had a conception of α-
conversion for senses, a notorious equivalence in the lambda calculus.

If we just had ‘x2 − 4x’ we could write instead ‘y2 − 4y’ without altering the
sense; for ‘y’ like ‘x’ indicates a number only indefinitely. (Frege, 1891, p.11)

It is not easy to say whether Frege thought that α-equivalence determines equality of sense.
However, as it provides a fine identity criterion that conforms to the equipollence principle
described above, it seems a quite compelling alternative.

3 Constructive semantics and type systems

Either classically or constructively, a claim that a proposition is true is justified by means of
a proof. Put differently, proofs are given for judgments. What is specific to the constructive
conception is the basic idea that a proposition is true if there is a construction of it. In this
context, constructions are given for propositions.

It is clear that, on pain of circularity, a construction of a proposition cannot be the same thing
as the proof of a judgment, otherwise the assertion of a judgment of the formAtruewould not
lead to a gain of knowledge. The reason judgments are regarded as objects of knowledge is
because their assertion reflects real knowledge. Constructively, when one asserts a judgment
of the form A true, that is, when one gives a proof of that judgment, one gets to know a
certain construction that realizes the truth of A. But there is no reason to assume that the
construction of the proposition A obtained is the proof of the judgment A true.

This subtle but crucial point should mark the distinction between the formalist and
constructivist standpoints, for the formalist believes that there is nothing beyond a proof
that a proposition is true (except for the proof itself), while the constructivist holds that it
gives us a construction of that proposition.6 Of course, Brouwer (1954) strongly criticizes the
formalist position. For Brouwer, constructions are mental processes given in intuition, free
creations of the mind. The idea of a totality of all constructions is unfounded, for the range of
all possibilities is open-ended (Brouwer, 1907, pp.148-149). But the prevalence of elements

6 Yet, this circular identification of constructibility with provability is now widespread in the literature. It
can be traced back to Dummett’s (1978) influential reconstruction of the intuitionism of Brouwer and Heyting
in terms of proof as the primitive notion, which is a result of his radical rejection of the traditional account of
constructions as free mental processes given in intuition.
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of mysticism in Brouwer’s writings precludes a precise understanding of his philosophy.
Heyting (1931) does a better job at connecting constructions to intuition. For even though
there is almost no explicit reference to intuition in his work, his explanation of constructions
as fulfillments of intentions can be interpreted in light of Husserl’s theory of intentionality,
as already observed by Martin-Löf (1985) and Tieszen (1995). That is because, in Husserl’s
writings, intuition is understood in terms of fulfillment of intentions.

Recently, Martin-Löf (1982) proposed an alternative account of constructions that is purely
computational but can nevertheless be articulated in a similar vein. It views constructions as
programs given in a primitive (untyped) notion of computation. If we think of the ability of
performing computation as a product of our human faculties, such as a form of intuition of
computation, then it is perhaps fair to say that those constructions are free mental creations as
well, in the sense of Brouwer (1907). From this standpoint, constructivism can be articulated as
an informal semantics that interprets propositions as program specifications and then assign
constructions to propositions based on the values they compute to. In addition to that, this
intuitive semantics, called the “meaning explanations”, is used to provide a justification for
the rules of inference of type theory—a family of formal systems based on Russell’s idea of
annotating objects with types and restricting operations to objects of certain types.

The moral of the story is that type theory can serve as a language to talk about the basic
concepts of mathematical constructivism: we view types as propositions and the elements of a
type (called terms) as constructions that realize that proposition (Martin-Löf, 1982). Naturally,
this means that terms are programs and types are program specifications. There are actually
many different versions of type theory in existence, but their most relevant divergences
can be succinctly described as a dichotomy between intensional and extensional approaches
to type theory. Both accounts give a distinct portrayal of constructive semantics via the
meaning explanations, depending on how close their formal system mirrors the intended
interpretation. It goes without saying that both portraits are necessarily incomplete given
Gödel’s first incompleteness theorem. The question is which one provides a more faithful
representation of constructivism in the sense above.7

4 Equality in type theory

Equality is one of the most controversial topics in type theory. This disagreement appears to
be the result of a much deeper discussion concerning the questions of what should count as
a proof and what a term of a type should represent.

In intensional type theory (Martin-Löf, 1975), terms act as formal representations of proof
trees in a given formal system and their types serve as the corresponding judgments which
are being proved. Typically the formal system in question is inspired by a constructive theory

7This is certainly not a trivial question, considering that Martin-Löf Martin-Löf (1975, 1982), the originator
of both intensional and extensional traditions in type theory, has vacillated between regarding one approach
as most fitting with the meaning explanations—until he finally decided adopting intensional type theory as the
basis of his philosophical investigations in the late 80s. It appears this decision is inspired by a shift of viewpoint
regarding the nature of constructions, which begin to be explicitly treated as proofs (Martin-Löf, 1987). But, as
I mentioned in Section 3, the failure to distinguish proof and construction can be quite problematic.
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of arithmetic such as Heyting arithmetic, and, consequently, the type theory must make sure
that if a is a derivation of a judgment A true in that system, then a is a term of type A. This is
the syntactic correspondence observed by Howard (1980), which is better called “judgments-
as-types” because it is not about the constructions (programs) that realize a proposition in
the sense of constructive semantics discussed in the previous section, but instead about the
formal proofs of a judgment in a fixed formal system. One of the key aspects of mathematical
constructivism is the idea that constructibility determines truth (Martin-Löf, 1985) and, again,
given Gödel’s incompleteness results, it is not surprising to see that constructions cannot be
identified with formal proofs, as the judgments-as-types correspondence seems to imply.

Extensional type theory, on the other hand, is a formal approximation of the view of
constructions as computations. In this version of type theory, the terms of a type do not
stand for formal proofs but programs which realize the truth of the proposition that is being
represented by that type. It is not intended as a theory of proof but as a theory of computation:
terms are programs that may not even terminate. By contrast with the intensional approach,
it does not make sense to regard terms as proofs here because, just as realizers serve no
proof-theoretic purpose, terms need not convey information about the argument used to
show that they are indeed well-typed. That is why the typing relation a : A (pronounced
“a is a term of A”) is usually expected to be decidable in intensional type theory, since we
should be able to recognize a proof when we see one, as suggested by Kreisel (1962). But
this is merely an idealization of the notion of construction. If one is to fully adhere to the
view of construction as a free product of a primitive “intuition” of computation, then one
should also take constructions that may run forever into account and there is no reason to
suppose that there exists a procedure for deciding when a construction realizes a proposition
(See Subsection 4.1). In extensional type theory, this is reflected by the fact that the typing
relation is generally undecidable. Only the proof of a typing judgment counts as evidence,
never the term itself, much like the distinction between proof and construction in constructive
semantics.

Ultimately, constructive semantics justify both the intensional and extensional flavors of type
theory, so perhaps the choice of one over another is philosophically inessential after all. But,
even so, it is not unreasonable to ask whether one kind of formalism is more complete with
respect to the intended interpretation than the other, meaning that it reflects a picture that is
closer to the truth, so to speak.

4.1 Intensional versus extensional equality

Both intensional and extensional type theory are based on the same notion of a type, so it
is appropriate to begin the discussion with a general account of what is a type. In order to
prescribe a type one has to specify

(i) how to construct the canonical terms of that type;

(ii) how to show that two canonical terms of that type are equal.

Note that this is supposed to reflect the quintessential idea in constructive semantics that
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to know what a proposition is is to know how to obtain a construction of it (Martin-
Löf, 1985), except that it adds an additional requirement that we should also know when
two constructions of that proposition are equal. Note also that the notion of a type is closely
related to that of a set in the sense of Bishop (1967).

The type of natural numbers nat provides a good example of a type. It can be constructed by
first establishing that 0 is a canonical term of nat and that succ(n) is a canonical term of nat
for any term n of nat. Then, we say that 0 equals 0 in nat and that succ(n) equals succ(m) in
nat if n equalsm in nat (Martin-Löf, 1984). Those specifications can be symbolically translated
as rules of inference:

(i)
0 : nat

(ii)
0 ≡ 0 : nat

n : nat
succ(n) : nat

m ≡ n : nat
succ(m) ≡ succ(n) : nat

Because computation is central to type theory, there must be a distinction between canonical
and non-canonical terms in the definition of a type such as nat—otherwise one would have to
give an exhaustive account of what counts as a natural number in all cases, thus preventing the
possibility of having types at a later stage of construction with elimination rules that return
a natural number.

We say that non-canonical terms are terms which do not have an explicit form by which we
can directly check that they are the result of the introduction rules of a type, but given a
notion of evaluation (a finite reduction of one-step computations), it can be shown that they
compute to a canonical term of a certain type. This is one of the key ideas underlying the
meaning explanations (Martin-Löf, 1982), an informal semantics for type theory that may be
briefly presented as follows:

(i) To know a type is to know that it evaluates to a canonical type;
To know a canonical type is to know

(a) how to construct a canonical term of that canonical type;

(b) how to show that two canonical terms of it are equal;

(ii) To know that two types are equal is to know that they have the same terms;

(iii) To know a term of a type is to know that it evaluates to a canonical term of it;

(iv) To know that two terms of a type are equal is to know that they evaluate to equal
canonical terms of that type.
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The stipulations above are just a small part of the meaning explanations, but they suffice
to indicate that type theory has a constructive justification based on the interpretation of
terms as constructions, which are in turn viewed as computations. Because it is always
possible to extend the present domain of types by stipulating new ways of obtaining terms as
possible constructions, themeaning explanations validate Brouwer’s conviction that the range
constructions is open-ended (Brouwer, 1907). Not surprisingly, the internal representation
of Church’s Thesis in the meaning explanations is false. Just as it was first envisioned by
Brouwer, construction is not an exhaustive notion, for nothing prevents the extension of
our underlying computation system with the additional constants and computation rules
that follow the introduction of a newly postulated type. There is no restriction to a fixed
programming language, thus it is in principle impossible to determine what cannot be
computed.

In type theory, membership a : A and member equality a ≡ b : A are treated as primitive
forms of judgment. Intensional type theory is so called because the judgmental equality a ≡
b : A has an intrinsic intensional nature. To give an illustration, we consider the addition
function, defined by induction on the second argument:

m+ 0 ≡ m
m+ succ(n) ≡ succ(m+ n)

From the definition of the function, it is immediately clear that m+ 0 ≡ m holds but it is not
the case that 0 +m ≡ m in intensional type theory, for the definition says nothing about it.
For the same reason, the equality m+ n ≡ n+m does not hold judgmentally.

It is desirable to have a type that acts as an internalization of judgmental equality, since the
type theory is unable to express equality propositions otherwise. We deal with propositional
equalities via the identity type, a type inhabited by witnesses that two terms of a type are
the same. Following the pattern above, this type is usually prescribed as follows (Martin-
Löf, 1975). For any terms a, b : A, the identity type of a and b at A, written a =A b, has
reflexivity as a canonical term and the obvious equality relation:

(i) a ≡ b : A

refla : a =A b
(ii) a ≡ b : A

refla ≡ reflb : a =A b

But what the elimination rule for the identity type should say? Formally speaking, this
question marks the divide between the intensional and extensional type theory. The
dichotomy between the two flavors of type theory can be explained in terms of the failure of
the reflection of propositional equality in judgmental equality. The intensional elimination
rule is designed to keep propositional and judgmental equalities apart without reflection,
while the extensional elimination rule treats them as respectively internal and external
representations of the same equality relation.

Let us first consider the extensional elimination rule. In extensional type theory, every
elimination rule follows the usual pattern that guarantees that all data used in the
introduction can be recovered correctly in the elimination. This is known as the inversion
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principle (Gentzen and Szabo, 1969; Prawitz, 1965). It is described by Gentzen as follows:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned,
and the eliminations are no more, in the final analysis, than the consequences of
these definitions. This fact may be expressed as follows: In eliminating a symbol,
we may use the formula with whose terminal symbol we are dealing only ‘in the
sense afforded it by the introduction of that symbol’. (Gentzen and Szabo, 1969,
p.80-1)

It should be noted that, in constructive semantics, the inversion principle is an implicit
assumption underlying the idea that a proposition is specified by stating how to obtain a
construction of it (otherwise we would also need to tell how to eliminate them).

Justified by the inversion principle, the elimination rule that is in harmony with the
introduction rule for the identity type should state that, given two terms a, b : A and an
equality p : a =A b, it must be the case that a and b are judgmentally equal.

a, b : A p : a =A b

a ≡ b : A
. (R)

This “reflection” rule conflates judgmental and propositional equalities, which makes the
former undecidable. Given the above introduction rule for the identity type, this is the only
way of conforming to the inversion principle and meaning explanations.8

To keep propositional and judgmental equalities apart, the intensional elimination rule has to
be weaker than that. Given two terms a, b : A, an equality p : a =A b and a type family P , it
states that it is enough to have a term u : P (a, a, reflx) in order to define a term of the type
P (a, b, p) (Martin-Löf, 1975, §2.7),

a, b : A p : a =A b u : P (a, a, refla)
JP (a, b, p, u) : P (a, b, p)

.

It is not obvious why this should be the correct elimination rule for the identity type. The
inversion principle, which also underlies the meaning explanations, tells that the meaning of
a type is determined by its canonical terms, that is, it ought to be the case that the terms of a
type are (equal to) those introduced by the introduction rules. But when the identity type is
consideredwith the above introduction and elimination rules, the inversion principle becomes
false in intensional type theory because the corresponding inference commonly referred to
as “K” (Streicher, 1993)

a, b : A a ≡ b : A p : a =A b

p =a=Ab refla true
, (K)

8The reflection rule is sometimes viewed negatively because it is responsible for “loss of knowledge”. That
is, one might argue that when moving from the premise to the conclusion of the rule the proof-term p gets lost
in a way that can no longer be recovered, thus going against the general requirement that in the rules for a
constructive theory knowledge should never get lost (Sambin and Valentini, 1998). This is an interesting point,
but I believe it incorrectly assumes that terms are always intended to represent proofs. In extensional type
theory, terms codify realizers and we should not expect them to carry proof-theoretic information.
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does not hold (Hofmann and Streicher, 1998), where A true is a derived form of judgment
that can be proved whenever there exists a term a such that a : A is the case. This very fact
inspired the development of homotopy type theory, which we discuss in Section 6.

This should not be taken as suggesting that any form of intensional type theory does not
adhere to the inversion principle. Without getting into too much trouble, it is possible to
change the introduction rule slightly and provide an intensional eliminator that is able to
prove (K) (Barzan, 2016). But, like in most variants of intensional type theory, the resulting
identity type is still unable to prove fundamental equalities that are true in the meaning
explanations. Some of those equalities are crucial for the development of actual mathematics,
such as the identification of pointwise equal functions:

((∀x : A)f(x) =B g(x)) → f =A→B g.

This function extensionality principle is not provable in most forms of intensional type
theory.9 In extensional type theory (which is so called because, among other things, it proves
function extensionality), this is not a problematic principle because the reflection rule allows
for a full extensional treatment of propositional equality. Indeed, several equalities which
are not provable in the intensional version of the framework are provable in the extensional
counterpart.

The normalization theorem, which says that that every well-typed term reduces to a normal
form, is usually taken as a justification for intensional type theory, since it implies that the
empty type, that is, the type defined by no constructors, does not have an inhabitant, thereby
establishing the consistency of the formalism. Normalization provides strong evidence that
intensional and not extensional type theory is correct from this perspective—but the point
is that this perspective is entirely proof-theoretic. If we wish to take the view of terms as
programs seriously then we should not expect that all programs terminate. Especially because
programs (constructions) are products of an untyped notion of computation. Now consider
the following judgment, where Ω := (λx.xx)(λx.xx) is an infamous non-terminating term
of the lambda-calculus:

p : 0 =N 1 ⊢ Ω : nat

From the standpoint of the meaning explanations, this is a valid judgment because there are
no canonical terms of type 0 =N 1 (Martin-Löf, 1982). Unlike the intensional counterpart,
extensional type theory is designed to reflect this computational aspect of terms in the
formalism (in fact the above judgment is provable by the reflection rule). Every formal proof
can be expressed as a program, but the converse is not true.

4.2 Cognitive significance

If one wishes to examine cognitive significance via type theory, then, as long as one is
fully committed to the meaning explanations, as we are, it appears that there are benefits
in considering extensional type theory, for it adequately expresses the view of terms that

9Although there are exceptions. See Section 6.
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we want to stress: terms, being constructions, are open-ended computations and should not
be limited to derivations in a fixed formal system. Unless explicitly stated otherwise, what
follows is specifically concerned with extensional type theory.

In light of the distinction between proofs of judgments and constructions of propositions
drawn in Section 3 for constructive semantics, it is useful to distinguish, now in the context
of a type theory, proofs of typing judgments from terms of a type. It is crucial to tell terms
and proofs apart in extensional type theory, especially when the identity type is involved,
for, when we have a proof of the judgment p : a =A b, then, by the reflection rule, the
term constructed p is reflexivity. But the proof of this judgment need not be trivial. As
judgmental equality is undecidable, judgments such as refla : a =A b do not always have
straightforward proofs, since that presupposes a demonstration that both sides of the equality
sign are judgmentally equal. In many cases, we are dealing with non-trivial proofs that may
appeal to the reflection rule.

An example of a propositional equality that does not have such a straightforward proof may
be welcome at this point. Given terms x, y : A, a function f : A → B and an equality
p : x =A y (call this context Γ), in order to construct an inhabitant of f(x) =B f(y), that
is, a reflexivity term reflf(x), we must first show that f(x) ≡ f(y), but in order to convince
ourselves that this judgmental equality is the case, a little ingenuity is required to come up
with an argument that serves as an explicit evidence.

Γ ⊢ reflf(x) : f(x) =B f(y)

(=-INTRO)Γ ⊢ f(x) ≡ f(y) : B

(≡-SUBST)Γ ⊢ x ≡ y : A

(=-ELIM)Γ ⊢ p : x =A y

(CTX)

Γ ⊢ f(x) ≡ f(x) : B

(≡-REFL)Γ ⊢ f(x) : B

(CTX)

(1)

In other words, there cannot be a direct reflexivity proof of this equality because there is no
immediate proof that f(x) and f(y) are judgmentally equal: any proof will make essential
use of the reflection rule.

On the other hand, when compared to the case illustrated above, we can identify a specific
class of equality statements that always seem to have simpler proofs—namely, equalities
whose proof only depend on the reflexivity, symmetry, and transitivity of equality, renaming
of bound variables (α-conversion) or unfolding of definitions. This is shown in the following
examples, where the displayed equality proofs appear to be far more mechanical since
judgmental equality follows from nothing other than mindless applications of ≡-reflexivity,
α-conversion, and definitional abbreviations.
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Γ ⊢ refla : a =A a

(=-INTRO)Γ ⊢ a ≡ a : A

(≡-REFL)
(2)

Γ ⊢ reflλx.x : λx.x =A→A λy.y

(=-INTRO)Γ ⊢ λx.x ≡ λy.y : A → A

(α-EQ)

(3)

Γ ⊢ refl1 : 1 =nat succ(0)

(=-INTRO)Γ ⊢ 1 ≡ succ(0) : nat

(1-DEF)

(4)

There is little to no doubt that the equality statements proven above are less informative than
the one proven earlier in (1). Indeed, (2) is a trivial consequence of reflexivity, both sides of the
equality sign in (3) are identical up to variable renaming, and (4) follows from the unfolding
of the definition of 1, which is here taken as constant that abbreviates the successor of zero,
succ(0).

This suggests that the presence or lack of cognitive significance in an equality statement
depends on the sophistication of thinking needed in a proof that the equality is true. This
can be made more precise as follows:

Definition 4.1 (Cognitive significance). For any a, b : A, the identity type a =A b has cognitive
significance if it does not have a trivial proof.

An identity type has a trivial proof when it is provable by =-introduction, ≡-reflexivity, ≡-
symmetry,≡-transitivity, α-conversion, and definitional rules. Why shouldn’t we count other
rules such as β- and η-reduction as trivial proofs as well? Calculation involves thinking,
no matter how elaborate or subtle. For that reason, computation rules certainly cannot be
regarded as obvious modes of proof.

Onemay object that this theoretical notion of cognitive significance does not properly capture
the intuitive notion of cognitive significance. In general, proving a theorem is a task that
requires considerable knowledge, focus, ingenuity, time, and mathematical skill. This is no
different for equational theorems such as eiπ = −1which cannot be provenwithout appealing
to advanced mathematical arguments. Why is it that we intuitively recognize that eiπ = −1
carries more information than
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∫ 0

∞
xnexdx =

∫ 0

∞
yneydy

or π = C/d? Because the latter two equations are trivially true. There is no gain of knowledge
because absolutely no mathematical ability is required to demonstrate that those “theorems”
are indeed the case.

This notion of cognitive significance gives emphasis to the “mode of proof” rather than the
“mode of presentation” of an equality statement. It is always possible to verify that such a
cognitively significant equality has difference in sense (see Section 5), but this is merely a
consequence of its mode of proof. The notion of proof is, along with that of construction
(computation), one of the primitive concepts on which constructive semantics is built. Proofs
can be found in mathematics journals or textbooks but, although they can be put into words,
proofs are primarily acts for making a judgment known (Martin-Löf, 1985; Sundholm, 1993).
More importantly, proofs always go hand in hand with certain constructions, or, better yet,
a proof of a judgment A true always exhibits a construction that realizes the proposition A.
Brouwer is clear on this point:

The words of your mathematical demonstration merely accompany a mathemat-
ical construction that is effected without words. (Brouwer, 1907, p.127)

Proofs are thus epistemic road maps that guide mathematicians through the conception
of a construction that realizes the truth of a proposition. Given their intrinsic epistemic
nature, proofs provide a natural solution to Frege’s puzzle: the presence or lack of cognitive
significance in an equality statement should only depend on what is required to make the
equality known. Could there be a more appropriate elucidation of cognitive significance than
such an epistemic explanation?

It only remains to be shown that our theory of cognitive significance is adequate. Put another
way, how can the knowledge that the type a =A b is cognitively significant contribute to
an extension of knowledge? According to our stipulations, we need to show that an agent
who gets to know that a =A b does not have a trivial proof has a latent ability to make new
assertions. For the sake of argument, assume that a construction u : P (a) is known, for a type
family P . Then, since the rational subject in question can be justified in knowing that a and b
are judgmentally equal, they will be able to infer that u : P (b) and P (a) =U P (b). Generally
speaking, both statements do not have a trivial proof when a =A b is cognitively significant.
Note that u : P (a) and u : P (b) have different assertions because the latter judgment requires
a more sophisticated proof by substitution and the knowledge that a equals b.

5 Sense and reference in type theory

There is a suggestion made by Martin-Löf (2001) built on the works of Dummett (1978) and
Moschovakis (1994) that the sense of an expression is related to its reference as a program is
related to the result of its execution. This “program-execution” view of the sense/reference
distinction in type theory fits the computational character of the meaning explanations quite
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well, so it conforms to constructive semantics.

It is worth noting that, when compared to Frege’s theory, the program-execution
interpretation of sense and reference has at least three distinctive features, which are discussed
as follows. First, the notion of evaluation of a term to its canonical form plays a central
role as the mediator of the passage from the sense to the reference of an expression. Since
(closed) terms are seen as programs in the meaning explanations, the evaluation of a term
can only be interpreted as a program execution. Second, when read constructively, Frege’s
thesis that the reference of a sentence is a truth value implies a means of deciding whether
a type is inhabited or not (Frege, 1892, p.63). It must be rejected and replaced with the idea
that the reference of a sentence is a canonical proposition (Martin-Löf, 2001). Third, equality
of execution results of programs must be given extensionally whereas equality of programs
is intrinsically intensional—suppose a programmer is given two programs in a same language
that find prime numbers in a given range, except that the former program gets exorbitantly
slower than the latter one for large inputs; they both always yield the same output, but the
programmer is most likely to say that the latter program is not the same as the former.

How does the passage from an expression to the sense it expresses takes place? Martin-Löf
did not address this question in his essay, but we propose the following. Since M : A is a
judgment, before it becomes known to a rational subject, the expression ‘M ’ is an ordinary
string of symbols that has no meaning for them. Conversely, although any expressionM may
in principle be known as a term of some type A, this only happens when one gets to know
that M : A holds. This indicates that the passage from an expression to its sense should
be determined by the assertion of a typing judgment, and, under the program-execution
interpretation, it is tantamount to saying that an expression is only entitled as a program
if it has been correctly type-checked.

Now, as Martin-Löf suggested, the passage from a term M (sense) to a canonical term M ′

(reference) is given by evaluation M ↓ M ′ (pronounced “M evaluates to M ′”). In brief,
the route from an expression to its sense and reference is presented in the same way as its
transition to a program and the result of its execution. The situation can be pictured as in the
diagram below.

reference/result

expression sense/program
M :A

M↓M ′

It is not hard to reconcile this computational interpretation of the sense/reference distinction
with the theory of cognitive significance proposed in the previous section: computationally,
it is natural to identify two programs that are equal up to renaming of bound variables and
definition unfolding because they compute in the same way. This is how equality of sense
should be understood. Equality of reference is simply given by propositional equality. So,
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following Frege, we also have that a =A b has cognitive significance iff a and b have a different
sense but the same reference. The difference is that, as our account of cognitive significance is
grounded in the notions of computation and proof, we possess a coherent notion of equality
of sense.

Is Frege’s equipollence principle still valid under this interpretation? Not exactly, because
no internal representation of the principle is possible in a formal system without modalities
such as intensional/extensional type theory. Recall that, according to Frege’s suggestion, two
expressions have the same sense iff they can be substituted for each other in all contexts
without altering the truth-value. Type-theoretically, the principle for sentences seems to
express the requirement that the types A and B have the same sense just in case we have10

a : A

a : B
and a : B

a : A
. (S)

The type-theoretic counterpart of the equipollence principle for singular terms can be
naturally expressed by the principle that two (closed) terms a : A and b : A have the same
sense just in case, given C : A → U ,

c : C(a)

c : C(b)
and c : C(b)

c : C(a)
. (T)

However, as we saw in Section 4, the criteria (S) prescribes exactly what it means for two types
to be judgmentally equal, whereas (T) is a trivial consequence of two terms being judgmentally
equal: interchangeability in all contexts. What is going wrong? Those principles obviously go
against the identity criterion of senses proposed above. However, a second look reveals that
substitution in type theory only occurs in ordinary contexts, unless the framework has means
of expressing oblique contexts with the support of modal operators. Without the presence of
propositional attitude reports, if a equals b, then there is no doubt that C(a) implies C(b) and
vice-versa, regardless of how different the senses of a and b might be.

6 Alternative accounts of cognitive significance

It would be inappropriate to conclude the paper without mentioning the folkloric view that
equality of sense and reference coincides, in intensional type theory, with judgmental and
propositional equality, respectively.11 It is not hard to see that this thesis is problematic for at
least two reasons.

First, judgmental equality is too coarse to account for equality of sense. To be more specific,
judgmental equality is completely oblivious to computational complexity. Every closed term
is judgmentally equal to the value they evaluate to. For instance, the recursive definition of

10After completion of the present paper the author learned that Sundholm (1994) has proposed a similar type-
theoretic interpretation of the equipollence principle for sentences. Sundholm’s account is based on Frege’s
original formulation of the principle, so he did not provide a view for singular terms.

11This interpretation is often mistakenly attributed to Martin-Löf. In his actual account, a judgmental equality
a ≡ b : A says of the senses of ‘a’ and ‘b’ that they are co-referential and a propositional equality p : a =A b
says of the references of ‘a’ and ‘b’ that they are equal objects (Martin-Löf, 2001, pp. 14-17). I am grateful to
Professor Martin-Löf for clarifying his views on the sense/reference distinction to me.
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addition implies that 1+ 1 and 2 are judgmentally equal, or, to give a more extreme example,
the prime factorization 24 · 32 · 72 · 113 is judgmentally equal to 9391536 even though, when
run, it becomes clear from the execution time that they do not determine the same program.
Intuitively, one wants equality of programs (senses) to be a very intensional notion that only
holds for codes with the same computational content—and surely Frege would agree that
terms with different computational complexity cannot express the same sense.12 In contrast,
for equality of values (references) the computational behavior of the programs is irrelevant as
long as they are observationally equal.

Second, propositional equality is too fine to equate references as far as intensional type theory
is concerned. We may require that two functions have the same reference in mathematics
when they coincide on all the values of the domain, but, as discussed in Subsection 4.1, in
general function extensionality does not hold intensionally.

If one still wishes to take the judgmental/propositional interpretation of sense and reference
seriously despite those problems, it appears that one is forced to endow the identity type of
intensional type theory with a more extensional structure, as it is done in homotopy type
theory (UFP, 2013). The idea is that a type A can be interpreted as a space, a term a : A as
a point in A, an equality p : a =A b as a path from a to b in A, a two-dimensional equality
α : p =a=Ab q as a homotopy between paths p and q etc. Because the inversion principle
fails for propositional equality in intensional type theory, the identity type can be augmented
with new canonical terms without loss of consistency. This key observation opened the door
for Voevodsky’s univalence axiom, an axiom which implies that equivalent (≃) types are
propositionally equal

ua : A ≃ B → A =U B

where this notion of equivalence stands for a generalization of the categorical equivalence
of ∞-groupoids or the homotopy equivalence of spaces which can be made precise in the
language of type theory (UFP, 2013, §§4.2–4.5). As a matter of fact, the full univalence axiom
requires that ua be part of the equivalence “equality is equivalent to equivalence”.

With the univalence axiom, the resulting type theory is able to refute (K), so it can show the
existence of a “non-constant loop”, that is, a path p : a =A a that is not propositionally equal
to the constant path refla (UFP, 2013, Thm. 3.1.9). One might then propose that a type a =A b
has cognitive significance just in case it is not only inhabited by constant loops:

Definition 6.1 (Cognitive significance). For any a, b : A, we say that the type a =A b has
cognitive significance iff, if a is judgmentally equal to b, there exists an equality p : a =A b that
is not propositionally equal to refla, that is,

a ≡ b : A

(∃p : a = b)refla ̸= p true
.

12See Frege (1891, p.29).
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(Readers who are familiar with homotopy type theory will immediately notice that this
definition says that every cognitively significant type is not contractible with reflexivity as
the center of contraction.)

However, even though it can be shown to be adequate, this notion of cognitive significance,
which has been suggested in Bentzen (2018), presupposes that propositional equality in
homotopy type theory indeed reflects ordinary mathematical equality. While it is open
to question whether every mathematician would say that two objects are identical when
they are isomorphic, isomorphic objects of a certain field are always indistinguishable
within that field, as they share all the properties that matter. Given that point, one might
attempt to justify univalence following Awodey (2014) in arguing that it captures a common
principle of reasoning embodied in everyday mathematical practice. But this argument
is only able to justify the existence of the function ua. Why should one assume that
considering equality as equivalent to equivalence (which is what the full univalence axiom
states) is a common practice among working mathematicians?13 Even worse, higher inductive
types (generalizations of inductive types that allow for the generation of paths) present an
insuperable obstacle to this approach. To see why they pose a problem, consider the following
higher inductive type:

(i)
base : S1

(ii)
loop : base =S1 base

base ≡ base : S1 loop ≡ loop : base =S1 base

Explicitlymotivated by the homotopical interpretation, the circle type S1 can be seen as a type-
theoretic representation of the unit circle. Nevertheless, it is patently clear that its existence
as a type cannot be justified by mathematical practices involving the treatment of the unit
circle in terms of equality conditions.

Another problem is that the implementation of univalence and higher inductive types as
axioms in homotopy type theory blocks computation due to the fact that they introduce new
canonical terms without specifying how to compute with them. This breaks the process
of evaluation of a term to its canonical form and, from the perspective of the program-
execution interpretation, interrupts the way an expression denotes its reference. Cubical type
theory (Cohen et al., 2016; Angiuli et al., 2019), which has univalence, higher inductive types,
and function extensionality as theorems, solves this problem but, as the formalism is explicitly
based on a sophisticated mathematical structure of cubical sets, it is unclear whether or not
it can be given an informal (pre-mathematical) justification. A more serious objection is that
homotopy/cubical type theory appears to go against the program-execution interpretation of
sense and reference proposed in the previous section: if propositional equality determines
equality of reference, then the reference of a term cannot be the result of its execution, for,
in general, if a =A b holds in an empty context in those type theories, then a and b need
not evaluate to the same value. This objection applies to any alternative account of how to
compute with univalence (outside of the cubical case) that may be found in the future.

13See Ladyman and Presnell (2019) and Bentzen (2020) for a more detailed discussion.
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7 Implications and further considerations

Before we close this paper, we briefly discuss some features of the theory of cognitive
significance we presented, directions in which it could be extended, related work and
objections.

It is reasonable to argue that false equality statements may contribute to one’s advance of
knowledge as well, for the knowledge that a contradictory statement is true certainly allows
one to draw any other inferences by the ex falso quodlibet, a rule which is usually accepted as
constructively valid. As we have seen in Section 2, Frege only ever speaks of true cognitively
significant equalities, but because no false equality has a proof in extensional type theory
(hopefully), every false equality has cognitive significance in our account. The presence of
informative false equalities suggests that we should regard cognitive significance as a property
of propositions a = b and not judgments a = b true, for when a judgment that says of an
equality that it is true is asserted the equality cannot be false.

One issue worth exploring is whether two logically equivalent propositions should express
the same sense or not. Consider the following pair of conjunctions

p ∧ q and q ∧ p.

Should they have the same sense? In type theory, this question is not well-posed unless one
assumes a stronger form of univalence, “propositional extensionality”:

(A → B) → (B → A) → A =U B

that is, the types A and B are propositionally equal if there is a function in the forward
direction from A to B and another function in the opposite direction from B to A.

In homotopy type theory, univalence implies propositional extensionality but only for a
specific class of types called “mere propositions” (UFP, 2013, §3.3). In intensional and
extensional type theory, propositional extensionality is not provable and, as a result, p ∧ q
and q ∧ p cannot express the same sense in our account. Does this agree with the intuitive
notion of cognitive significance? If we were to agree that logically equivalent propositions
had the same sense, then it should be immediately obvious that

p ∧ q ∧ p ∧ q ∧ q = p ∧ q ∧ p ∧ p ∧ q

and that both sides have the same mode of presentation, but this hardly the case. Perhaps
the lesson to be learned here is that it is impractical to find a clear divide between seemingly
obvious and challenging logical equivalences.

Rodin (2017) offers an alternative solution for the problem of cognitive significance (in the
context of empirical sciences) using the distinction between judgmental and propositional
equality in homotopy type theory. Rodin observed that this account is capable of making
sense of (i) equality statements a = b where the terms a and b have the same sense expressed
by different symbols and (ii) how empirical or other sort of evidences justify the truth of an
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equality statement a = bwhen the terms a and b have different senses. (i) is true under Rodin’s
account if judgmental equality determines equality of sense, given that e.g. 3+1 ≡ 2+2 : nat
but both sides of the equality are different as expressions. (ii) also follows from his account,
because, in homotopy type theory, the terms of the identity type can be seen as witnesses of
identifications between terms. Nevertheless, as it is based on homotopy type theory, Rodin’s
approach suffers from the basic problems mentioned in Section 6.

Finally, one may object that our account conflates syntax with semantics because it makes
cognitive significance depend on the proofs of an equality statement while Frege was
primarily concerned with questions of meaning. This objection, however, arises from the
failure to notice that Frege’s puzzle is about explaining what a cognitively significant equality
statement is. We favored an explanation of cognitive significance as difference in mode of
proof, but this implies difference in mode of presentation: if sophisticated arguments may
be needed to prove that the equality is true, then, because no straightforward equality proof
is possible, a and b will have distinct computational content (sense) but the same observable
behavior (reference).

8 Conclusion

We hope to have given sufficient argument that our theory of cognitive significance
adequately captures the intuitive notion with respect to the presence of equality proofs
contributing to one’s knowledge. We have also put forward the thesis that extensional type
theory provides a close formal representation of the view that constructions are programs,
which we take to be one of the basic tenets of constructive semantics. Another contribution
of this paper is that it identifies at least two ways in which an equality statement may be said
to have cognitive significance: one concerns the mode of presentation of the equality, the
other its mode of proof.
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