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Abstract.  What is a set? The conventional answer is that it is an extra individual over and above its 
members. We explore the idea that a set just is its many members, but spoken of as though they were 
one thing. The language is full of such pseudo-singular idioms, grammatically singular but 
semantically plural. We pick on ‘multitude’ as our all-purpose pseudo-singular noun. It covers both 
sets and classes, as multitudes that are or are not members of another multitude. The key to making 
sense of all this is plural logic, whose use of plural variables capable of taking many things at once as 
values provides the requisite sense in which a multitude of things can be said to be one. The second 
part of the paper presents an axiomatic theory that explores the hierarchy of levels of plurality with 
respect to which multitudes are located, and also accommodates without difficulty the inevitable 
absence of empty and singleton multitudes. It is topic-neutral, having no existential presuppositions 
and admitting empty terms, in keeping with the fact that a ‘theory of multitudes’ is only a notational 
variant of a system of plural logic. 
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What is a set? The conventional answer is that it is an extra individual over and above its 
members. We explore the idea that a set just is its many members, but spoken of as though 
they were one thing. The language is full of such pseudo-singular idioms, grammatically 
singular but semantically plural. We pick on ‘multitude’ as our all-purpose pseudo-singular 
noun. It covers both sets and classes, as multitudes that are or are not members of another 
multitude. The key to making sense of all this is plural logic, whose use of plural variables 
capable of taking many things at once as values provides the requisite sense in which a 
multitude of things can be said to be one. The second part of the paper presents an axiomatic 
theory that explores the hierarchy of levels of plurality with respect to which multitudes are 
located, and also accommodates without difficulty the inevitable absence of empty and 
singleton multitudes. It is topic-neutral, having no existential presuppositions and admitting 
empty terms, in keeping with the fact that a ‘theory of multitudes’ is only a notational variant 
of a system of plural logic. 
 
 
§1  Plural logic, Topic neutrality, Pseudo-singularity. 
 
Here we introduce the three themes that shape our approach to characterising sets and classes. 
Since we have already written at length on the first two in our book Plural Logic (2016), we 
offer only the minimum on them needed to make the present article self-contained. The third 
idea—that a syntactically singular term may nonetheless be semantically plural—is only 
sketched in the book, and is developed altogether more thoroughly here. We should add that 
it has been fiercely attacked (by Eric Snyder and Stewart Shapiro, 2021), but in our 2024 we 
reject their critique entirely.  
 
 1.1.  Plural logic   At the heart of plural logic is the relation of plural denotation (plural 
reference). It relates the semantically plural terms of the language and the worldly items they 
stand for. The relation itself is plural in the sense that a given term may denote many items at 
once, not just one or maybe none. Plural logic thus deals naturally not only with the usual 
singular suspects—proper names and definite descriptions—but also their plural counterparts. 
Notably, it can handle plural descriptions like ‘the authors of Principia’ or ‘the Brontë 
sisters’ or ‘the first three prime numbers’. Then there are lists, such as ‘Whitehead and 
Russell’ and ‘Anne, Charlotte, and Emily Brontë’ and ‘2, 3, and 5’, offering another means of 
denoting several things at once. Another variety are the functional terms, for instance ‘2+3’ 
or ‘Whistler’s mother’, that denote the values produced when a function is applied to some 
choice of arguments. When the function is multivalued these terms are typically plural: thus 
‘Ö-1’ denotes the two numbers i and -i, and ‘Henry VIII’s wives’ denotes six queens. 
Functional terms are especially significant for logic because of the potential for iteration 
inherent in them; think how much of mathematics involves the manipulation of terms 
constructed on the lines of f(g(h(a))), such as e2pi or log(sin-10). As to predicates, plural logic 
enables one to draw the very important distinction between distributive predicates such as 
‘is/are even’ or ‘is/are prime’, for which it is analytic that they are true of several things iff 
they are true of each of them separately, and collective predicates such as ‘is/are consistent’ 
or ‘is/are infinite’, for which there is no such link. 
 Perhaps the most important feature of plural formal logic is its use of plural variables. Just 
as a plural term may denote several items at once, so a valuation may assign several items at 
once as the values of a plural variable, opening the door to a proper treatment of plural 
quantification and plural description. We use bold letters x, y, z to stand for plural variables, 
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keeping italic x, y, z for singular variables of the familiar sort. The beginning of the alphabet 
is used for schematic letters; so for example a and b will stand for arbitrary terms. Note that 
there is a choice between reading ‘plural’ strictly so as to exclude the singular, and taking it 
in an inclusive sense by adding in the singular as a limiting case. It is the difference between 
the strictly plural ‘more than one’ and the inclusive ‘one or more’. The inclusive usage allows 
orthodox singular variables x, y, z to be sifted out as those plural variables that do not take 
more than one individual at a time as their value. 
  Although our book presents a formal system of first-level plural logic, it barely makes a 
start on higher-level plurality. To do so, one needs to pick out the fundamental logical 
relation between one item and many, namely vertical inclusion or membership, expressed by 
‘is one of’ and also by ‘is a member of’ where grammar allows it:  
 
 Vertical inclusion Emily is one of the Brontë sisters. 
 (aka membership) 2 is one of / a member of the multitude of even numbers. 
  Whitehead is one of / a member of the pair who wrote Principia. 
 
See §1.3 for the use of the pseudo-singular ‘the multitude’ and ‘the pair’ here.  
 Vertical inclusion differs from set membership as standardly conceived in one essential 
respect, namely the nature of the arguments they take. Both the arguments of orthodox set 
membership are individual things, one an urelement or a set, the other necessarily a set. By 
contrast, for vertical inclusion the first argument may be any item, individual or multitude, 
provided only that the second is of a higher level of plurality. That is why we call it ‘vertical’ 
inclusion—‘Emily is one of Anne’ or ‘2 is a member of 2’ would be false at best. The two 
relations are however structurally analogous in several ways (irreflexivity, asymmetry, and 
non-transitivity in both their singular and plural forms), and one need have no qualms in 
following Russell’s lead in using Î to symbolize ‘is one of’ (1903, §489).  
 Vertical inclusion can be used to define two other key relations, both of which are lateral 
in the sense that they either permit (in the case of lateral inclusion) or require (in the case of 
identity) the related items to be of the same level of plurality. The first of them is lateral 
inclusion as expressed by ‘are some of’ or maybe ‘are among’: 
 
 Lateral inclusion 2, 3, and 5 are some of the prime numbers. 
 Emily and Charlotte are among the Brontë sisters. 
 
It reappears in §6 under the name ‘submultitude’ and symbolized by Í. The other lateral 
relation is plural identity 
 
 Plural identity The authors of Principia are Whitehead and Russell. 
 
When ‘plural’ is understood strictly, plural identity a=b is definable as aÍb Ù bÍa. In our 
own formal treatment (§4), however, we treat it inclusively, and so need to take = as 
primitive since it now covers singular identity too. 
 All these relations carry over to higher levels of plurality. So we have 
 
 Vertical inclusion 3 and 5 are one of the pairs of twin primes. 
 
 Lateral inclusion  3 and 5, 5 and 7, and 11 and 13 are some of the pairs of twin 

 primes. 
 Plural identity The authors of multivolume classics on logic are Aristotle, Frege, 

Whitehead and Russell, and Hilbert and Bernays. 
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The plural definite descriptions in each example, and the (nested) lists in the last two, are all 
second-level plural terms. 
 
 1.2.  Topic neutrality   Formal logic has traditionally been conceived as the study of those 
aspects of arguments that are independent of any particular subject-matter or ‘topic neutral’, 
to use the phrase coined by Gilbert Ryle (1954). The current predicate calculus, however, 
fails to be topic neutral in one vital respect. For built into it is the assumption that the 
universe of discourse—the domain of individuals—is nonempty. This leads to dubious 
argumentation. Consider for example the attempt by three leading set theorists of the later 
20th century to demonstrate the existence of an empty set. Their idea was to use separation or 
replacement to derive it from the existence of any set chosen at will. Where, one might ask, 
does this initial set come from? The answer, as given by Joseph Shoenfield (1977, p. 328) 
and Robert Vaught (1985, p. 67), is ‘one can use the usual axioms of logic to conclude that 
there is at least one set’, or ‘by logic there is some set’ The third member of the trio, Azriel 
Levy (1979, p. 20), gives the game away: ‘since $x(x=x) is a theorem of first order logic, and 
since our only objects here are sets, we can say that we assumed the existence of at least one 
set when we decided to adopt first order logic here.’ 
 We cannot accept a logical system that invites and legitimises such question-begging. But 
then one needs to devise an acceptable replacement. From the outset, however, this project 
has been dogged by a difficulty over free variables (see Jaśkowski 1934). For, given that a 
valuation assigns a value to every variable, in an empty domain there will be no valuations, 
making every open formula come out as vacuously true. So if A is an open formula like x=x, 
which is true in every non-empty domain, then both A and A®$xA will come out as true in 
every domain, but $xA will not. Some reformers have resorted to expedients as desperate as 
disallowing modus ponens or invoking a mysterious ‘null thing’ or ‘outer domain’. But in 
fact all that is needed is to modify the standard idea of a valuation so that variables as well as 
proper singular terms may either take an individual as value or may receive no value; for the 
detailed implementation of this solution see §5 below. In our book we used this idea to prove 
the soundness and completeness of a system we called ‘singular logic’, with modus ponens as 
its sole rule of inference and as axioms the following schemes, both as they stand and 
prefaced by any number of universal quantifications. Note E!a abbreviates $x(x=a) and 
symbolises existence, while ℩ is the description operator. 
 
(i)  A where A is tautologous 
(ii)  "x(A®B) ® ("xA ® "xB) 
(iii)      A ® "xA where x is not free in A 
(iv)  "xA(x) ® (E!a ® A(a)) where A(a) has free a wherever A(x) has free x 
(v)  "x x=x 
(vi)  a=b ® (A(a) « A(b)) where A(b) has free b at zero or more places where A(a) has 

free a 
(vii)  (¬E!a Ù ¬ E!b) ® (A(a) « A(b)) where A(b) has free b at zero or more places where 

A(a) has free a 
(viii)  a=b ® E!a Ù E!b 
(ix)  "y(y=℩xA « "x(A « x=y)) where y does not occur in ℩xA 
 
This explain why it is these schemes, with plural variables, that reappear as the ‘elementary 
axioms’ of §8.1. 
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 1.3.  Pseudo-singularity   We start with a puzzle of a type first presented, but batted away, 
by Russell (1903, §71). It is perfectly correct to say that Whitehead and Russell were the pair 
who wrote Principia, but whereas ‘Whitehead and Russell’ is, in Russell’s words, ‘essentially 
plural’, ‘the pair’ is singular. What is going on? 
 We all learn about nouns like ‘scissors’ or ‘pants’, which (i) only occur in the plural, yet 
(ii) head terms standing for one thing, like ‘the scissors’ or ‘my pants’. Grammarians pick up 
on (i) and call them ‘pluralia tantum’ (plurals only), but we prefer to emphasise (ii) and call 
them ‘pseudo-plurals’. Now we meet almost the opposite phenomenon. ‘The pair who wrote 
Principia’ may be grammatically singular but, we claim, it is actually plural. It does not stand 
for an extra individual such as a whole, but stands for the two men themselves, just like the 
explicitly plural ‘The authors of Principia’ or the list ‘Whitehead and Russell’. In short, it is 
pseudo-singular. The same is true of the whole family of nouns of multitude running up from 
‘pair’ through ‘trio’ and ‘foursome’ and so on. Our all-purpose choice of pseudo-singular 
noun will be ‘multitude’, the least specific and so most versatile of them all and the word we 
think best translates Cantor’s ‘Vielheit’; others may say ‘plurality’ or ‘multiplicity’. Since we 
shall want to speak of multitudes and individuals in the same breath, we need a neutral word 
that will cover both. The word we choose, as carrying the least baggage with it, is ‘item’. 
 We now need to spell out and defend our claim. Its origins, we suggest, lie in a striking 
limitation in expressive resources that English suffers, in common with many other 
languages. We all know how to pluralize a noun—apart from a few irregular formations, one 
simply adds an ‘s’. But it is not possible to repeat the procedure in order to further pluralize a 
noun that is already plural: the language has no ‘thingss’ or ‘thingsss’ to follow ‘things’. How 
then to proceed? One’s first thought is to replace the target expression by a semantically 
equivalent but grammatically singular one, which can then be pluralized in the usual way. For 
example, ‘the two men who wrote Principia’ can be replaced by ‘the pair of men who wrote 
Principia’, which can then be pluralized as usual to give ‘the pairs of men …’. Or again, 
‘some prime numbers’ can be replaced by ‘some multitude of prime numbers’, which can 
then be pluralized to give ‘some multitudes of prime numbers’. Moreover, once we have hit 
on the idea we can simplify and extend it by applying it from the start, beginning with the 
singular ‘N’ and pluralizing it by going straight to ‘multitude of Ns’ and thence to expressions 
of ever-higher levels of plurality: pairs of multitudes, multitudes of multitudes of multitudes 
etc.  
 We can describe the proposed procedure roughly as the replacement of a plural noun ‘Ns’ 
by ‘multitude of Ns’. But it cannot always be a simple substitution, for the obvious reason 
that the grammatical rules of concord will be a constant obstacle. It is therefore necessary to 
look beyond the noun itself to the immediate linguistic context in which it occurs. So we start 
with the various determiners that serve to fix different roles for the accompanying noun. The 
relevant ones are of two types, according as they can go with both singular and plural nouns 
(call this type D1), or only with plurals (D2). D1 includes the, some, any, no, my, your etc. D2 
includes all, many, several, most, few, both; two, three etc. Correspondingly, the problematic 
noun phrases fall into two classes, of the form (1) D1 + Ns and (2) D2 + Ns. For (1) one can 
indeed simply replace ‘Ns’ by ‘multitude of Ns’. For (2) a preliminary addition of ‘of the’ 
will bring them into line with (1), the point being that instead of e.g. ‘both Ns’ one can 
equally well say ‘both of the Ns’. 
 Once ‘multitude of Ns’ is recognized as an iterable alternative to ‘Ns’, one sees that this 
also resolves a quite different problem of pluralization. For as well as the two types of 
determiner described above, there is a third, call it D3, consisting of those that only go with 
singular nouns. They include each, every, neither, a/an, one. And phrases of the form D3 + N 
are problematic because although normally there is of course no difficulty in pluralizing a 
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singular noun, these contexts are exceptional—‘each things’ is ungrammatical. The solution 
is to use the alternative procedure in which ‘each N’ is pluralized as ‘each multitude of Ns’.  
 If we pause at this point, it is not because there is no more to say. We have said nothing 
about languages other than English, or the history of language. All we have offered so far is a 
hypothesis, a rational reconstruction of the current situation. What we need is more evidence 
that it is true. It would be a waste of effort to trawl through all the varieties of noun phrase. 
We focus on terms, noun phrases which denote some item or items that can be identified 
uniquely in the contextual or general knowledge shared by speaker and hearer, failing which 
they denote nothing. The wording is taken from Quirk’s account of ‘definite reference’ 
(1985: p. 265), but we have added a mention of empty terms, since ‘the greatest prime 
number’ surely belongs to the same lexical class as ‘the least prime number’, and we have 
emphasised the possibility of a term denoting many things at once. Our plan is to throw more 
light on nouns of multitude by exploring the denotational behaviour of the terms they head.  
 A term may be classed as singular or plural in more than one way. First, it may be 
grammatically singular or plural. Then it may be actually singular or plural on an occasion, 
according as on that occasion it denotes at most one individual or many items at once (to get 
a comprehensive dichotomy, ‘actually singular’ includes empty terms as well as terms 
denoting a single individual). And it is semantically singular or plural according as there can 
only be occasions on which it is actually singular, or it is possible for there to be an occasion 
on which it is actually plural. Finally, we say that a noun is semantically singular if every 
term that it heads is semantically singular; it is semantically plural if it heads at least one 
semantically plural term.  
 We start by presenting a test for whether a term a is semantically singular or plural. It 
turns on the validity of this inference scheme, call it the or-rule 
 
 From ⌈F or G⌉a infer Fa or Ga.  
 
The use of symbols here calls for explanation. Fa and Ga stand for sentences with subject a 
and distributive predicates F and G respectively. We treat predicates as lexical items, so that 
e.g. is even and are even are regarded as different morphological forms of the same predicate. 
⌈F or G⌉a	stands for a sentence whose predicate is obtained by linking F and G by or 
(coordination), while the ceiling brackets ⌈				⌉	indicate that the result has been reduced as far 
as possible by the pruning (ellipsis) of shared material, as may be seen below in ‘is odd or is 
even’, ‘are odd or are even’, ‘were educated at boarding school or were educated by private 
tutors’. If there is no shared material there is no further room for reduction, but that is not an 
issue here, since for every a there is always a potential infinity of F and G with shared 
material: just think of all the predicates that begin is/are, or the possibility of using the 
contrary of F to play the part of G.   
 There is nothing artificial about reduction—on the contrary, the maxim for good usage is 
‘reduce where possible’ (Quirk 1985: pp. 860, 927). To grasp its importance one need only 
see what happens if it is ignored. In his book on Frege’s philosophy of language, Michael 
Dummett tries to define what it is to be a Fregean ‘proper name’ by presenting a series of 
negative tests, each designed to rule our certain expressions, in the hope that they will do the 
job when taken together. His test to rule out plurals turns on the validity of the inference from 
‘It is true of b’s either that A(they) or that B(they)’ to ‘Either it is true that A(b’s) or it is true 
that B(b’s)’ (1973: p. 60). But as we read his premise, with its repetition of that and the way 
it puts that within the scope of either and or rather than vice versa, it amounts to the 
disjunction of two predications rather than the predication of a single disjunctive predicate. 
As such, it is equivalent to the conclusion, making the test useless. A proper test would use 
reduction to achieve the right reading, as in the case were b’s is prime numbers and A(  ) and 
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B(  ) are are odd and are even, when the right premise would be ‘It is true of prime numbers 
that they are either odd or even’.  
 Turning now to the application of our test, first, whenever a is an ordinary grammatically 
singular term the or-rule is obviously valid, and one illustrative example will suffice. Let a be 
the least prime number, let F be is odd and G be is even, so that ⌈F or G⌉ is is odd or even. 
The test inference is thus from ‘the least prime number is odd or even’ to ‘the least prime 
number is odd or the least prime number is even’, and this, as we said, is clearly valid. Next, 
let a be grammatically plural. Here we need to distinguish two cases: (i) a is semantically 
plural, (ii) a is semantically singular. In case (i) the or-rule fails at the first hurdle. Thus let a 
be the prime numbers, and let F be are odd and G be are even, so that ⌈F or G⌉ is are odd or 
even. Then the inference fails, for it is true that the prime numbers are odd or even, but not 
that the prime numbers are odd (2 is an exception), nor that the prime numbers are even (2 is 
the only example). Case (ii) is less common, but still significant. It is where the term is 
semantically singular for the special reason that it is doomed to be always empty. For 
examples we turn to nouns with contradictory or self-contradictory modifiers, such as feature 
in the odd even numbers or the non-existent occupants of the building. Here the or-rule holds 
good, but for the special reason that its premise is necessarily false.  
 Now take our putative cases of pseudo-singularity. First let a be the multitude of prime 
numbers, with F and G as before. It is true that the multitude of prime numbers is odd or 
even, but not that it is odd, nor that it is even, and the inference fails. Next let a be the pair 
who wrote Principia, let F be was educated at boarding school, and G be was educated by 
private tutors. We know that Whitehead went away to Sherborne while Russell was home 
schooled. So it is true that the pair who wrote Principia were educated at boarding school or 
by private tutors; that is to say, ‘⌈F or G⌉a’ is true. (The switch from was to were is a case of 
what grammarians call ‘plural override’, a characteristic of British English; a speaker of 
American English might not make the switch.) But neither Fa nor Ga is true and so ‘Fa or 
Ga’ is false. In short, in both cases the inference fails, and moreover fails for exactly the same 
reason that it fails for an explicitly plural term. Lastly, we add the case where a is the 
multitude of non-existent occupants of the building. Here a is doomed to be empty on every 
occasion, no matter how many occupants there actually are, and the or-rule is valid because 
its premise is necessarily false—again, just like the case of the corresponding explicitly plural 
term. 
 Both blocs of examples can stand as representative of countless others, and we take them 
as providing the desired support for our two contentions. First, we take it as now established 
that the validity or invalidity of the or-rule is a good test of a term’s being semantically 
singular or plural. Second, and using this test, we take it as now established that a 
grammatically singular noun of multitude such as ‘multitude of Ns’ behaves semantically in 
just the same way as the conventionally generated plural ‘Ns’, give or take such inevitable 
discrepancies as the use of the plural idiom in generic propositions.  
 Our conclusion, then, is that talk about multitudes embodies a systematic mismatch 
between syntax and semantics. Logicians should not be surprised by this. For what is the 
modern badge of their profession if not the recognition of a systematic mismatch between the 
syntax and semantics of ‘everything’, ‘something’ and ‘nothing’, and the construction of a 
whole new language of quantifiers and variables to put the matter right? Now it is the turn of 
set theory to undergo the same sort of revision. When faced with a mismatch of this sort, the 
logician typically has a choice of two strategies. One is to continue with the grammar of their 
natural language, while using the resources of their logic to illuminate the semantical 
situation. The other is to create a fresh language (or at least an illustrative fragment) whose 
syntax has been reworked to match the semantics. We follow the first strategy in §§3 and 4, 
before developing the second thereafter. We are not the first in the field: pseudo-singularity is 
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there in Russell’s ‘the class as many’ (see §2.1 below). But we have something Russell did 
not have, namely access to a functioning plural logic. 
 
 
§2  Multitudes.    
 
 2.1.  The hierarchy of multitudes   The outcome of our discussion of pseudo-singularity is 
that a multitude is its many members, but spoken of as though they are one and treated 
accordingly. As we said earlier, we are not the first to take this approach to set theory. In The 
Principles of Mathematics Russell debates the merits of the idea of a ‘class as many’ (1903, 
§70ff and §489ff). By and large this is the same as what we mean by a multitude (though for 
a more critical look see our 2016, §2.5). In quoting him we have therefore taken the liberty of 
substituting our terminology of ‘multitude’ and ‘individual’ for his ‘class’ and ‘term’, as well 
as using plural variables in formula (2) below to give effect to what would surely have been 
his intention had he got such a resource to hand. His great moment of clarity comes right at 
the end of the book: 
 

Although a [multitude] is many and not one, yet there is identity and diversity among 
[multitudes] and thus [multitudes] can be counted as though each were a genuine 
unity; and in this sense we can speak of one [multitude] and of the [multitudes] which 
are members of a [multitude] of [multitudes]. One must be held, however, to be 
somewhat different when asserted of a [multitude] from when it is asserted of an 
[individual]; that is, there is a meaning of one which is applicable in speaking of one 
[individual], and another which is applicable in speaking of one [multitude], but there 
is also a general meaning applicable to both cases. (1903, §490).  

 
This can do with some unpacking. Russell has just explained (§489) what he means by ‘there 
is identity and diversity among [multitudes]’, namely that they are the same or different 
according as they have the same members or not. And he has previously (§128) defined ‘one’ 
as a quantifier, which we symbolize as $1. His pattern of definition can be spelt out to give 
different versions, according as the relevant variables are taken to be (1) singular or (2) 
strictly or inclusively plural.  
 
 (1) $1xA(x) =df $xA(x) Ù "x"y(A(x)ÙA(y) ® x=y) 
 
 (2) $1xA(x) =df $xA(x) Ù "x"y(A(x)ÙA(y) ® x=y) 
 
We say that (1) delivers Russell’s ‘there is a meaning of one which is applicable in speaking 
of one individual’. We say too that if the variables in (2) are read as strictly plural then it 
delivers his ‘and another which is applicable in speaking of one multitude’, while if they are 
read as inclusively plural it delivers his ‘there is also a general meaning applicable to both 
cases’. We note too that $1x x=a is true for any multitude a; in other words every multitude is 
one in the appropriate sense. Crucially, this is enough to justify speaking of ‘the multitudes 
which are the members of a multitude of multitudes’.  
 It is a great pity that Russell never developed his thoughts on plurals beyond the remarks 
we have cited. Instead, he promptly repudiated both halves of  
 

the fundamental doctrine upon which all rests … that the subject of a proposition may 
be plural, and that such plural subjects are what is meant by classes which have more 
than one term. (1903, §490)  
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Such violent about-turns are characteristic of Russell, but this one may have been precipitated 
by a pair of far-reaching argumentative missteps which led him to reject multivalued 
functions and accept singletons (see our 2016, §§9.4 & 14.4). 
 With this introduction, we are in a position to say more about multitudes. We all know that 
Cantor defines a set as a collection of many things into one whole. More specifically, he says 
it is a separate thing (Ding für sich), a unified whole of which its members are components or 
constituent elements (1932, pp. 282 & 379). This, we argue, is where ‘Cantor’s Paradise’ 
reveals its resident Serpent. Cantor needs a sense in which a set is one but can only find it by 
bringing in an extra individual, his ‘unified whole’. By contrast, it can hardly be said too 
often that a multitude is not an extra individual over and above its members. Though one in 
the appropriate sense, it is nothing more or less than its many members. The theory of 
multitudes just is plural logic, treated in a thoroughly pseudo-singular manner. (Max Black 
may be mentioned here for his Russell-inspired polemic ‘The elusiveness of sets’, 1971; for 
our assessment of it, see our 2016, §2.6. We may also mention Peter Simons’ ‘The ontology 
and logic of higher-order multitudes’ (2016). After a gentle introduction to the topic, he 
offers a prospectus for a Leśniewski-inspired theory based on a novel membership relation, 
with the result that individuals go from having no members to having themselves as sole 
member. See §2.4 of our 2016 for our assessment of his claim that Leśniewski’s ‘logical 
system called “ontology” contains a theory of multitudes in the first-order fragment’ (p.61).) 
 The picture that now guides us is of speaking of given individuals one at a time, also of 
many at once (a multitude), of many such ‘manys’ (a multitude of multitudes), and so on up 
into the transfinite. There is no quasi-temporal talk of ‘stages’ or ‘formation’ in this picture. 
As soon as the individuals are given, all the multitudes of individuals are given with them, 
and the multitudes of multitudes etc, all there too and only awaiting recognition. But before 
developing this idea we have to allay a fundamental doubt: can we be sure that our 
conception of multitudes allows for such a hierarchical structure? Oliver Tatton-Brown has 
helpfully spelled out for us the grounds for doubt in the shape of a hypothetical objection, 
which we now paraphrase. Consider a supposedly second-level multitude, for example the 
pair of pairs of twin primes, 3 and 5 and 5 and 7; call it a. Then, says the hypothetical 
objector, 
 

On your thesis, a is its members. But by the same token, its members are its members’ 
members. Doesn’t it follow, by the transitivity of identity, that a is its members’ 
members, namely the prime numbers 3, 5 and 7—so not a second-level multitude nor 
even a pair? 

 
Our response is that this contains a subtle fallacy of equivocation. In the opening sentence the 
phrase ‘its members’ can be replaced by ‘the members of a’, referring to the many members 
together. It cannot, however, be replaced by ‘each member of a’, referring to the members 
taken separately, since the relation of plural identity is emphatically not distributive: 
Whitehead and Russell are Whitehead and Russell but they are not Whitehead and they are 
not Russell. Whenever ‘its members’ occurs subsequently, however, if it is reduce the level 
of plurality it must be read as equivalent to ‘each member’, referring to the members taken 
separately. In short, the repetition of occurrences of the same phrase is deceptive, vitiating 
any appeal to transitivity. We called the fallacy a subtle one, because the distinction between 
the two readings of ‘its members’ is so easily overlooked. In our formal language below, 
however, it is clear as anything could be. ‘The members of a’ remains a genuine plural term, 
symbolized x·xÎa (see Exhaustive description in §6), but ‘each member of a’ becomes an 
incomplete symbol, a fragment of a quantified expression "x(xÎa ® …). 



PhilSci-Archive version: 15 June 2024 
 

10 

 As we said above, the picture that guides us is of speaking of given individuals one at a 
time, of many of them at once, of many such multitudes, and so on by way of ever more 
plurally plural layers. We envisage each such layer as superimposed on the accumulation of 
the lower ones, to form cumulative levels (in orthodox set theory, this was Dana Scott’s name 
(1974) for the cumulative segments or Abschnitte of Zermelo’s 1930). This cumulativity 
allows for multitudes with members drawn from mixed levels, as with the authors of 
multivolume classics in §1.1. It can be shown that levels are well-ordered by vertical 
inclusion (see §10.1), so the effect is to impose a clearly marked vertical dimension on the 
overall scene. 
 
 2.2.  Empty and singleton multitudes?   On our account a multitude just is its members, so 
a multitude with no members would be nothing, i.e. nonexistent. A multitude with exactly 
one member a would likewise be identical to a. But it would follow that aÎa, and this is 
ruled out by the irreflexivity of Î. In arguing this way we are not proscribing empty and 
singleton multitudes, merely drawing attention to their nonexistence.  
 Is this discovery damaging, should it be troubling? Not at all. We are aware of four places 
where there has seemed to be a need for an empty set or singletons, and we have criticized 
various attempts to make sense of them (see our 2018, §2). Our purpose here, however, is not 
polemical, but only to show how in each case the difficulty can be handled in an alternative 
way. But it is worth reminding the reader that the issue is only the visible tip of the iceberg. 
The big difference between orthodox set theory and a theory of multitudes is a conceptual 
one, which requires a switch of gestalt from thinking of a set as another individual to seeing 
it as the multitude of its members. 
 Intersection.   This is the prime example. The idea that the intersection of several sets 
should always be the set of their common members has led to positing an empty and 
singleton sets to be the intersection in the case where there is no common member or only 
one. But with multitudes there is an equally natural alternative. For in general the multitude 
of all the common members just is those common members, which suggests taking them to 
be the intersection in every case. So when there are no common members we take the 
intersection to be nothing, zilch. And when there is exactly one, we take the intersection to be 
it. To avoid any misunderstanding, we are not positing an empty multitude, nor identifying a 
singleton multitude with its sole member. It is a matter of judicious replacement rather than 
(mis)identification. See §6.  
 Separation.   The classical principle of Separation envisages the separation of any number 
of members from a set, and asserts that the separated members always form a set too. Cantor 
proposed to restrict this assertion to the case where the number of separated items is more 
than one, and expressed this in a lapidary manner: ‘Every submultitude of a set is a set’ (Jede 
Teilvielheit einer Menge ist eine Menge: 1932, p. 444). All we need to do is to follow his 
lead: see §8.3.  
 Ordered pairs.   Kuratowski’s definition is not suitable for us, since it relies on singletons. 
The definition we propose as an alternative is a variant of the one Hausdorff presents in his 
1914, pp. 32–3. That calls for a pair of individuals as markers, which he calls 1 and 2 but 
whose identity is arbitrary. We propose to use as markers the two lowest levels, V1 (the 
individuals) and V2 (the individuals plus the various multitudes of individuals). See §10.6. 
 The foundational role of set theory.   Many mathematicians are happy to give a 
foundational role to the natural numbers supplemented by set theory; see for instance 
Landau’s classic treatise Grundlagen der Analysis (1930, p. 1). Writers of a strongly 
reductionist persuasion, however, are attached to the idea of defining the natural numbers as 
‘pure’ sets. Since there is no such thing as a pure multitude we offer an alternative process of 
reduction, under which the natural numbers, starting with the first, 0, are identified with the 
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successive finite levels, starting with the first, V1. See §10.5. 
 
 The last two of these proposals rely on the same assumption, namely that there are many 
(at least two) individuals. On the face of it this assumption, to which we give the honorific 
title of the Axiom of Plurality, is a very modest proposition. After all, the classical predicate 
calculus is already committed to there being at least one individual, and to double that 
commitment is no more than to endorse a truism (shades of G. E. Moore’s ‘Here is one hand 
and here is another’). The impact of the Axiom of Plurality on the theory of multitudes, 
however, is dramatic. For if it fails to hold, there are no multitudes at all, but whenever it 
does hold, there are infinitely many. It does not qualify as a logical truth, however, since it 
violates the principle of topic neutrality which we take to be the criterion of the genuinely 
logical. So we confine it to its minimum role as a hypothesis for those propositions that 
depend on it. 
 
 
§3  Sets and classes.    
 
Some multitudes are elements—members of a further multitude—while, it turns out, others 
are not. We call them sets and classes, respectively.  
 
 3.1.  Sets   Each set is located within a transfinite, cumulative hierarchy of levels (using 
‘level’ now in a defined sense). A level is itself a particular kind of set. We may index levels 
with ordinals, taking V1 to be the first level, and generally Va, Vb etc, with the hierarchy 
defined by transfinite recursion. The guiding idea is that a level is the set of all the 
individuals together with all the members and subsets of all lower levels, where Va is lower 
than Vb if a<b.  
 Since it has no lower levels, the first level V1 is simply all the individuals, assuming there 
are more than one. The second level V2 is obtained from the first by application of the power-
plus operation, which maps any multitude to the multitude of all its members and subsets. 
Every higher level Va is the union of the power-plus multitudes of all levels lower than Va. 
Anticipating the notations for exhaustive description, individual and power-plus to be 
explained in §6, the hierarchy is defined by 
 

V1 = x×Ux 
V2 = P+(V1) 
Va = Èb<a(P+(Vb)) where a is any ordinal > 2. 
 

 An equivalent characterization starts with V1 as all the individuals, then defines Va+1 as the 
power-plus multitude of Va, with unions taken at limits 
 

V1 = x×Ux 
Va+1 = P+(Va)  where a is any ordinal 
Vl = Èb<lVb  where l is any limit ordinal.  

 
 Each set is a member of some level higher than the first. The choice of individuals, 
comprising the first level, determines the make-up of every higher level, and so completely 
determines what sets there are. To illustrate, suppose there are just two individuals a, b. Then 
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the first three levels are as follows (we use |a, b| to denote the multitude whose members are a 
and b, so that |a, b, |a, b|| denotes the multitude whose members are a, b, and |a, b|, and so on). 
 

V1 includes a  V2 includes a   V3 includes  a 
   b    b    b 
       |a, b|     |a, b| 

|a, |a, b|| 
           |b, |a, b|| 
           |a, b, |a, b|| 
 
Note that although Va+1 is P+(Va), the number of members of Va+1 is not, in general, the 
number of members of Va plus the number of subsets of Va, since this would double count 
those subsets of Va which are also its members. Thus in our example V3 has 6 members, not 
7, since |a, b| is both a member and subset of V2. To obtain the correct rule, we use the 
equivalent characterization of Va+1 as x×(Ux Ú xÍVa), that is to say, the multitude of all the 
individuals plus all the subsets of Va (see §11, Theorem 31). Then the rule is that if there are 
m individuals (for m >1), then V1 has m members; and if a level Va has n members, Va+1 has 
m+2n-n-1 (we need to subtract both 1 and n, since there are no empty or singleton 
multitudes). Thus starting with finitely many individuals, the first limit level Vw is the first 
level to have infinitely many members. 
 If Va+1 is the lowest level of which a particular item is a member, we call a the rank of the 
item, which may be regarded as a measure of its height within the hierarchy. It follows that 
each Va is the multitude of all items with rank less than a. In particular, V1 is the multitude of 
all items with rank 0, i.e. the set of all individuals.  
 
 3.2.  Classes   When and why might something be a class rather than a set? The answer 
offered in the literature is von Neumann’s doctrine of ‘limitation of size’ (1925), but the idea 
is now known to go back to Cantor himself. In his 1899 letter to Dedekind (1932, p. 443), he 
describes a multitude as ‘inconsistent’ if the idea of an assembly (Zusammensein) of all of its 
members leads to a contradiction. Though the language is a little different from the 
‘collection into a whole’ of his published statements, the import is the same. Such a multitude 
cannot be treated as one, and a fortiori is not ‘one of’ anything. An item fails this test when it 
is at least as big as the class of all ordinals (Cantor), or when it has as many members as there 
are items of all sorts (von Neumann).  
 Both writers thus see the trouble as lying in the excessive size of classes, though neither 
says why size should matter. A reason for thinking that size does not matter is to be found by 
exploiting the extra degree of freedom offered by making different choices of individuals; cf. 
the ‘higher set theories’ of von Neumann’s article. Suppose somebody chooses to represent a 
state of affairs in which there are such-and-such individuals, and that their notion of 
unacceptable size (the number of all items, say) is consequently n, say. Now suppose that 
somebody else chooses to represent a state of affairs in which there are n individuals. If size 
is what matters, their choice will be ineligible, which to our mind is absurd. To a logician, 
what matters about a multitude is its height, not its size.  
 In any case it is completely misguided to look for something about a multitude, like 
Cantor’s ‘inconsistent’ or von Neumann’s ‘too big’, that makes it unfit to be collected into 
one thing. As we have seen, every multitude is one in the same appropriate sense; there is no 
further test of ‘collectability’ for it to pass or fail. No: if a multitude is not an element, it is 
simply because, for whatever reason, there is no further multitude for it to be a member of.  
 To complete the sketch begun in §3.1, there are topmost multitudes outside the ordinal 
hierarchy of sets. These are classes, and one can say what they have in common. First, there 
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is no funny business about their membership. Their members are sets, or a mixture of sets 
and individuals, and nothing else. But, second, for any given level V they each have a 
member of a level higher than V (see §11, Theorem 41(ii)). It follows that they cannot be 
assigned an ordinal as rank, since they are not members of any level. We have called classes 
‘topmost’ multitudes, since we do not believe in superordinals beyond the ordinals: once one 
has exhausted the ordinals, that’s it. 
 It may be helpful to illustrate both these features at work in the altogether simpler context 
of multitudes of natural numbers. There one has, obviously enough, multitudes bounded 
above by some number; these are the analogues of our sets. But there are also unbounded 
multitudes, such as the even numbers, the odd numbers, or the primes, not to mention others 
whose membership weaves through the numbers in some more elaborate way, but such that 
for any given n they eventually have a member greater than n. These are the analogues of our 
classes.  
  
 3.3.  Ineffability   Although one can speak of topmost multitudes i.e. classes, one cannot 
speak of a topmost layer of classes, or a topmost level, for this way of speaking is liable to 
run into trouble. We can put the difficulty in terms of plural description. One can naively 
define exhaustive description as  
 
   x·Fx =df 	℩y(My Ù "x(xÎy«Fx) 
 
That is to say,  x·Fx is the multitude whose members are all and only the items that each 
separately satisfy F. As the ℩ symbol shows, this definition relies on another version of plural 
description which we here call unique description (see §5.3). Exhaustive description is the 
version best suited to the case where the predicate in question is distributive. For if F is 
distributive then many items jointly satisfy F iff each does so separately, so that x·Fx has a 
good claim to be read, not just as ‘the items that each F’, but simply as ‘the Fs’.  
 All this, however, ignores the phenomenon of non-elementhood. Suppose that F holds of 
some non-element a, as with ‘a is not a member of itself’, or ‘a is a multitude’, or ‘a is a 
class’. Then it is true that Fa but not that a is a member of x·Fx, for by hypothesis a is not a 
member of anything. So the universally quantified clause in the definition of x·Fx fails, and 
we discover that despite there being many Fs, ‘x·Fx’ denotes nothing.  
 The upshot is that classes are partially ineffable. Any way of speaking of items that 
requires classes to be members of multitudes is bound to fail. The ineffability is only partial, 
however, since we can make definite reference to classes one at a time using unique 
description, and can also freely generalize about them using quantifier phrases such as ‘every 
class’, ‘some class’, and ‘no class’, since their correct use does not depend on there being a 
multitude of all classes.  
 When talking about multitudes there is bound to be some kind of ineffability, whether or 
not the full hierarchy of levels is admitted, and whether or not classes are admitted. Suppose 
first that the hierarchy of levels is curtailed. This may happen in two ways, either by (i) 
including only those levels below some limit level Vl. or (ii) including only those levels 
below some successor level Va+1, where Va itself may be any level, limit or successor. (The 
bounded and unbounded sets of natural numbers described at the end of §3.2 are a good 
analogy, with Vl and Va both taken to be Vw.) These curtailments correspond to different 
restrictions on multitudes, namely to (i) members of levels below Vl, or (ii) members of 
levels Va and below (equivalently, given that levels are cumulative, members of Va).  
 In their turn, these restrictions give rise to two broad varieties of ineffability. We can 
distinguish them by using the naïve version of exhaustive description to explore the different 
ways in which x·Fx may be empty. It is convenient to take (ii) first. The restriction to 
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multitudes which are members of some level Va means that x·Fx will be empty if Va is the 
lowest level of which some F is a member. Since higher levels are excluded, so is any 
multitude including the relevant F item. As an illustration, consider the obstacle faced by 
‘first-level’ pluralists, who admit only multitudes of individuals. They can make definite 
reference to such multitudes one at a time. But for them the exhaustive description x·Fx will 
be empty if F is ever true of a multitude. There is a corresponding obstacle to some though 
not all forms of quantification. Thus although they can say ‘some multitude has a as a 
member’, they cannot say ‘some multitudes have a common member’, since that would 
presuppose there being a second-level multitude of the first-level ones in question. 
 The restriction (i) to multitudes which are members of levels below some limit level Vl 
means that x·Fx will be empty if for every a<l, there is some item that is an F whose rank is 
greater than a, or equivalently, if there is no level below Vl of which every F is a member. 
Since Vl and higher levels are excluded, so is any multitude including every F. Consider for 
example the obstacle faced by ‘finite-level’ pluralists, who admit all finite levels but none 
higher. They can make definite reference to their multitudes one by one. But for them the 
exhaustive description x·Fx will be empty if there is no finite level of which every F is a 
member. There is again a corresponding obstacle to some forms of quantification. The finite-
level pluralist can generalize about their multitudes using e.g. ‘every finite-level multitude’. 
But they can only use ‘every multitude of finite-level multitudes’ in what, from the 
perspective of the full hierarchy of levels, is a restricted sense. For although they admit some 
such multitudes, they exclude others, e.g. the multitude of all finite-level multitudes. 
 Both kinds of restriction mean that there may be no multitude of all Fs despite their being 
many Fs. Although a particular case of ineffability may be overcome by admitting further 
levels, the exclusion of any higher ones is bound to generate a new case. How do things 
stand, then, once all levels are admitted? If multitudes are confined to members of levels, i.e. 
to sets, the effect can be compared to curtailing the hierarchy to levels below some limit 
level. For now x·Fx will be empty if there is no level of which every F is a member. This 
difficulty may be overcome by admitting classes outside the hierarchy, as well as sets within 
it. The effect of admitting classes can be compared to curtailing the hierarchy to levels below 
some successor level. As we pointed out above, x·Fx will now be empty provided some class 
is F. The virtue of admitting classes is that all the cases of ineffability that can be overcome 
have been overcome, leaving only this truly inevitable case. 
 
Rayo’s stratified variables.   In a pioneering piece (2006), Agustín Rayo presented a system 
of higher-level plural logic modelled on the simple theory of types. His notation was in 
consequence highly stratified—x, y, z, etc for singular variables, xx, yy, zz for first-level 
plural variables, xxx, yyy, zzz for second-level ones , and so on. The idea of using repeated 
letters originates with John Burgess and Gideon Rosen (1997), and has been very influential 
as far as first-level plural logic is concerned, though one must wonder whether it will be 
workable in practice for higher levels; see for example this formula from Rayo’s 2006, p. 228 
 
 $xxxx("yyy(yyy ≺3,4 xxxx « P3(yyy)) Ù REF1,4 (‘P3(…)’, xxxx)) 
 
Subsequently, however, Rayo’s ideas have changed drastically, as may be seen from Linnebo 
and Rayo (2012); the interested reader will also want to consult Button and Trueman (2022). 
The type structure is now taken to be cumulative rather than exclusive, infinite types are 
allowed, and type restrictions on predicates are removed. Each of these changes is carefully 
argued for, which makes it all the more surprising that Linnebo and Rayo do not even 
mention a possible fourth change, namely removing type restrictions on terms and variables. 
Their continued insistence on stratifying variables means than generalizations about sets can 
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only be made for one level at a time, which from our standpoint seems to be massively over-
cautious.  
 
 
 
§4   The theory of multitudes.   
 
Now we turn to developing a formal theory of multitudes. It draws heavily on Zermelo’s idea 
of a cumulative theory of types (1930) as re-thought by Dana Scott (1974), whose work was 
in turn improved by John Derrick in unpublished work and by Michael Potter in his book Set 
Theory and its Philosophy (2004). This background, along with the changes to the Scott/ 
Derrick/Potter theory necessitated by the nonexistence of empty and singleton sets, is spelt 
out in some detail in §5 of our ‘Cantorian set theory’ (2018).  

 4.1.  Syntax   The language of our system is modelled on the familiar language of the 
predicate calculus with identity, plus the description operator ℩ and allowing for function 
signs as well as predicates and constants. Although we talk of ‘the’ language of our system, 
what one really has is a family of languages making different selections of non-logical 
vocabulary to suit different applications. 
 We opt to take all five principal connectives and the universal quantifier as primitive, but 
define the existential quantifier. Our variables are ‘inclusively’ plural in the sense of §1.1; 
they also may have no value at all (see §5.2). We distinguish them using bold letters x, y, z. 
We also have a primitive logical predicate Î expressing vertical inclusion (membership), to 
stand alongside the predicate = expressing identity. 
 We follow convention and call open as well as closed terms simply terms, including 
variables standing by themselves. As well as constants, terms include descriptions with the 
form	℩xA and ‘functional terms’ with the form fa1 … an, obtained by applying a function sign 
f to its argument terms a1 … an. 
 We use a, b, c as schematic letters for terms of arbitrary complexity, including variables 
standing alone. A, B, C stand for single formulas, and G for any number (none or one or 
more) of formulas. For substitution of terms in formulas, we use the reader-friendly notation 
A(a) and A(b). When stating the necessary provisos against unintended capture of free 
variables we supplement the familiar idea of a term’s being free for a variable by the notion 
of a free occurrence of a term. This permits a uniform treatment of substitution of terms for 
terms, whether variables or not. 

 Logical vocabulary  
Variables x, y, z, countably many  
Connectives ¬	®	«	Ù	Ú, plus brackets for punctuation  
Universal quantifier "	
Unique description operator ℩	
Identity, a two-place predicate =	
Vertical inclusion (aka membership), a two-place predicate Î	 

 Non-logical vocabulary 
Constants 
Predicates, each of a specified finite degree  

 Function signs, each of a specified finite degree  
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 Formation rules 
Variables and constants are terms. 
If f is an n-place function sign and a1 ... an are terms, fa1 ... an is a term.  
If x is a variable and A a formula, ℩xA is a term. 
If F is an n-place predicate and a1 ... an are terms, Fa1 ... an is a formula.  
If A and B are formulas, so are ¬A, (A®B) etc, with the usual conventions for omitting 
brackets. 
If x is a variable and A a formula, "xA is a formula.  
 

 Scope, free and bound occurrences of variables, terms and formulas 
The scope of an occurrence of " or ℩ is defined as the shortest formula or term in which it 
occurs. These operators always occur with a variable attached, as in "xA or ℩xA, and an 
occurrence of x is bound if it is within the scope of an operator whose attached variable is 
x; otherwise it is free. More generally, an occurrence of a term a or formula A in another 
term or formula is bound if it is within the scope of an operator whose attached variable 
occurs free in a or A; otherwise it is free.  	

 4.2.  Semantics   Here we summarise the semantics that underpins our theory, commenting 
on its principal novelties in the next section. 
 

Individuals 
The individuals may be any objects; there may be none or one or more. 
 
Valuation and satisfaction 
For each variable x, val x is any item (individual or multitude) or zilch. 
For each constant a, val a is any item or zilch. 
For each n-place predicate F, val F is an n-place relation on items, in particular val = and 
val Î are the relations of identity and vertical inclusion. 
For each n-place function sign f, val f is an n-place function on items. 

 
val satisfies Fa1 … an iff val F holds of val a1, …, val an. 
val fa1 … an is the value, if any, of val f for arguments val a1, …, val an; otherwise it is 
zilch. 
val satisfies ¬A iff it does not satisfy A. It satisfies A®B iff it satisfies B or does not 
satisfy A. Similarly for the other connectives. 
val satisfies "xA iff every x-variant (see §5.3 below) of val satisfies A. 
val ℩xA is val¢ x if a unique x-variant val¢ of val satisfies A; otherwise it is zilch. 

  
 Logical consequence and logical truth 
G ⊨ C iff every valuation, over no matter what individuals (none or one or more), satisfies 
C if it satisfies every one of G. Similarly for ⊨ C (logical truth). 

 
 
§5  Comments on the semantics. 
 
 5.1.  Items   The values of variables are items. An item may be an individual or a 
multitude. Variations may be obtained by confining items to certain ranks. At the extreme, 
items are restricted to those of rank 0: this will be a system of singular logic, where a variable 
can only have an individual as value. Next comes the theory of multitudes of rank at most 1, 
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… , n; then the theory of all multitudes of finite rank, and so on up into the transfinite. These 
truncated systems can serve as aids for studying the behaviour of sets and classes. For 
example, when multitudes are confined to those of rank 1, they are all in effect classes, since 
we are deliberately excluding the higher-level multitudes of which they would otherwise be 
members. The difference with the unconfined case of §3.3 is simply that in the latter there is 
nothing beyond classes to be excluded. Similarly, we have seen that the theory of multitudes 
of rank £ w is a fair simulation of the situation with respect to classes and the uppermost 
stretch of the hierarchy of sets. 
 The reader may readily see that what we are here calling a ‘theory of multitudes’ is merely 
a notational variant of a system of plural logic. So, for instance, the theory of multitudes of 
rank at most 1 is the same as the ‘full plural logic’ of our 2016 (Ch. 13), modulo differences 
in the choice of primitives. One such difference is that there we take undifferentiated 
inclusion ≼, whereas here we have vertical inclusion Î and identity. And where we had two 
styles of variable, singular and plural, we now only have the latter; but, as we showed (2016, 
§13.3), all the relevant procedures involving singular variables can be replicated using only 
plural ones.  
 
 5.2.  Empty terms    A salient feature of the system is its employment of empty terms, that 
is, terms that denote nothing, aka zilch. Constants, descriptions and functional terms may all 
be empty. Indeed, no term of any kind necessarily denotes something, since we allow for the 
possibility that nothing at all exists. In other words, we drop the assumption built into the 
semantics of the classical predicate calculus that it is logically necessary that something 
exists. As we have said, we think this violates the topic neutrality that should characterize any 
logic properly so-called. In the case of variables, and open terms in general, our method for 
dealing with the possibility that there might be nothing is to permit them, like closed terms, to 
be empty. So we relax the standard idea of valuation so that variables may either take an item 
as value or receive no value (be empty). This has the great advantage of settling the logical 
status of open formulas without disturbing modus ponens. 
 
 5.3.  Variable-binding    Empty variables affect the semantics of open formulas with their 
free variables but do not affect the semantics of bound variables. Thus the quantification "xA 
is true iff A is true for every assignment of an item as value of x. When we rephrase this in 
terms of valuations and satisfaction, we need to take care of the case where the operative 
variable x is empty under the given valuation: 
 

val satisfies "xA iff every valuation that assigns a value to x and differs from val at 
most in that fact and in what that value may be, satisfies A. 

 
The valuations on the right-hand side are thus stipulated to assign a value to x even if val x is 
zilch. In the summary in §4.2, we adapted from Mates (1965) the label ‘x-variant of val’, now 
understood as abbreviating ‘valuation that assigns a value to x and differs from val at most in 
that fact and in what that value may be’. 
 The other primitive variable-binding operator is the unique description operator ℩. Its 
denotation conditions are obtained by generalizing Russell’s account of what he calls 
‘denotation’ (1905, p. 51), to allow multitudes as well as individuals to be denoted. Thus if A 
is true for some unique item as value of x then ℩xA denotes that item. If there is no such item, 
the description is empty. It follows that the semantics of variables bound by ℩ is not affected 
by allowing variables to be empty. Just as with quantifiers, we take care of the case where the 
operative variable is empty under the given valuation by using the x-variant idea. 
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 5.4.  Valuations    We use ‘valuation’ or val as an umbrella word covering the assignment 
of values to terms, predicates, and function signs. In each case val is a function from 
linguistic arguments to their semantic values, but the values are very different. For a term a 
as argument, val a is an individual or a multitude or zilch. It is thus a partial function. For an 
n-place predicate F as argument, val F is always an n-place relation (understood as covering 
properties in the one-place case). For an n-place function sign f as argument, val f is always 
an n-place function.  
 It is customary to assign sets (or classes) to predicates and function signs as their semantic 
values. To take the simplest case, a one-place predicate F is assigned a set (or class) such that 
Fa is true iff the denotation of a is a member of the set (or class). If, as we claim, sets and 
classes should be regarded as multitudes, can we simply assign the relevant multitude to the 
predicate? No, for two reasons. In the first place, a predicate may be true of zilch, yet zilch is 
not a member of any multitude. We shall encounter examples below. And, second, in some 
cases there is no multitude comprising every multitude a predicate is true of. Examples were 
given in §3.3. (Note that the problem cases have nothing specially to do with multitudes, 
since they arise, mutatis mutandis, when sets and classes are understood in the orthodox 
fashion, since e.g. zilch still cannot be a member of them.) 
 These problems generalize: multitudes will not do as semantic values for n-place 
predicates or function signs. That is why we have reinstated the relations and functions for 
which multitudes can at best be artificial surrogates as values, conceiving of them like 
Frege’s Begriffe as different from individuals and multitudes, and therefore not values of our 
first-order variables. It follows that generalizing about ‘all valuations’ in the metalanguage 
involves second- (or higher-) order quantification.  
 
 5.5.  Predication    For predication the guiding principle is that  
 
 val satisfies Fa1 … an iff val F holds of val a1, …, val an 
 
For satisfaction to be well-defined the right-hand side must always be determinately true or 
false, whatever the terms a1 … an denote (remembering that they may denote multitudes as 
well as individuals, or may be empty). Hence we require that the value of an n-place 
predicate be an n-place relation on items in the sense that for any items x1 … xn, the relation 
either holds or does not hold of x1 (or zilch), … , xn (or zilch) as arguments.  
 
 5.6.  Strong and weak predicates   We say that an n-place predicate F is strong at its i-th 
place if it is necessary for the truth of Fa1 … an that ai exists; otherwise it is weak at that 
place. When the predicate has just one place, we simply say that it is strong or weak, as the 
case may be. Primitive non-logical predicates have weak places unless stipulated otherwise. 
As to the logical predicates = and Î, we have opted to make them strong at both places, so 
that a=b and aÎb are satisfied only if both a and b exist. A notion of weak identity also 
proves invaluable, however, and we define it in §6 and discuss it in §9.3. 
 
 5.7.  Functions, function signs and functional terms   Functions and relations are 
different kinds of beast. Relations hold of items, whereas functions map arguments to values. 
Relations are as different from functions as they both are from individuals or multitudes. 
Hence we accept both as their own kind of thing, rather than try reducing one to the other. 
(This is not to deny that there is an intimate connection between the two: see our 2016, §9.3.) 
 Just as we allow relations to hold of multitudes as well as individuals, so we allow 
functions to have multitudes as well as individuals as their arguments or values. This is not 
the whole story, however. Just as relations may hold of zilch, so there are functions that have 
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no value for certain arguments, in other words, they map those arguments to zilch. These 
partial functions are familiar both in mathematics and everyday life. In our semantics, the 
function val as applied to terms is a case in point. Less familiar are co-partial functions, 
which map zilch to some value, such as the least natural number that isn’t, which yields 0 
when applied to the greatest prime, or tan-1, which maps zilch to all the angles whose cosines 
are 0. A third possibility is the kind of function that maps zilch to zilch, such as the moons of 
applied to Vulcan. Of course, when there is nothing at all, every function is bound to map 
zilch to zilch. In our semantics, then, we allow for all three kinds: partial, co-partial, zilch-to-
zilch.   
 As with predicates, we distinguish strong and weak places of function signs. We say that 
an n-place function sign f is strong at its i-th place if it is necessary that if fa1 … an exists then 
so too does ai, otherwise it is weak at that place. When the function sign has just one place, 
we simply say that it is strong or weak, as the case may be. Thus the function sign ‘tan-1’ is 
weak, since it expresses a co-partial function, whereas ‘the moons of’ is strong, since it 
expresses a zilch-to-zilch function.  
 For functional terms the guiding principle is  
 

val fa1 … an is the value, if any, of val f for arguments val a1, …, val an; otherwise it is 
zilch. 

 
In order to ensure that the left-hand side is well-defined, we require that the value of an n-
place function sign be an n-place function on items in the sense that for any items x1 … xn, 
the function either has some item as value for the arguments x1 (or zilch), … , xn (or zilch), or 
else has no value for those arguments.  
 
 5.8.  Logical truth and consequence    In interpreting the language it is enough to specify 
the individuals, since they determine what multitudes there are. Hence the clause ‘over no 
matter what individuals (none or one or more)’ in the definitions of logical truth and 
consequence. Open formulas as well as closed ones can be logically true, e.g. ⊨ A(x) Ú¬A(x). 
Indeed, a glance at the elementary axioms in §8.1 reveals that all but one have instances 
featuring free variables. The exception is Axiom (v) "x x=x. This cannot be replaced by the 
unquantified x=x, since none of the latter’s instances are logically true. For the strong reading 
of identity means that x=x is not satisfied when x is empty. Open formulas can also enter 
relations of logical consequence, e.g. x=y	⊨ A(x)«A(y). 
 
 
§6.  Initial definitions.    
 
Here we comment on some initial definitions before tackling levels in the next section. 
Rather than put selection restrictions on the eligible arguments of predicates and function 
signs, we have opted to define them for all terms. So, for instance, aÍb and aÇb are defined 
even when a or b denotes an individual or is empty, but in such cases the definitions make 
aÍb false and aÇb empty. We have taken as read details about the choice of variables in the 
definitions. As usual, slashed two-place predicates are convenient shorthand: a¹b abbreviates 
¬(a=b), etc. 
 As well as defining the existential quantifier in terms of ", we use identity to define two 
others.  
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 Existential quantifier    $xA =df ¬"x¬A 
 ‘Exactly one’ quantifier  $1xA(x) =df $x"y(A(y)«x=y) 
 ‘Many’ quantifier   mxA(x) =df $x$y(x¹y Ù A(x) Ù A(y)) 
 
The quantifier $1 may be read as ‘there is exactly one’, or simply ‘one’, while m may be read 
as ‘there are many’ or simply ‘many’, taking it in its weakest sense as equivalent to ‘more 
than one’, i.e. ‘at least two’. 
 We use E! to symbolize existence 
 
 Existence   E!a =df $x x=a 
 
The semantics of ℩ means that E!℩xA(x) is equivalent to $1xA(x). 
 As already noted, we have chosen to make = strong at both places. This is embodied in the 
definition of E!a above. But we also define a symbol for weak identity: 
 
 Weak identity  aºb =df a=b Ú (¬E!a Ù ¬E!b) 
 
The identities a=b and aºb only differ when a and b are both empty, so we can move freely 
between them when either or both terms are non-empty. Definitions of terms a =df  b permit 
one to infer the weak aºb but not the strong a=b unless E!b.  
 The ‘many’ quantifier m is used to define the predicate ‘are many’ symbolised by M. 
Since all and only multitudes are many, M may also be read ‘is a multitude’ 
 
 Multitude   Ma =df mx xÎa 
 
M is strong by the definition of m and the strength of Î. We use E! and M to define the 
predicate U 
 
 Individual   Ua =df E!a Ù ¬Ma 
 
U is thus strong too. Together, U and M provide an exclusive and exhaustive classification of 
items. Just as M is true of all and only multitudes, so U is true of all and only individuals. 
Hence it may be read as ‘is an individual’. Since our individuals are the urelements of 
orthodox set theory, we have opted to use the letter U, which also recalls Russell’s idea that 
an individual is a genuine unity, in contrast to a multitude which can only be counted ‘as 
though’ it were a genuine unity.  
 Multitudes are divided into sets and classes using the notion of element, symbolized by E. 
 
 Element   Ea =df $x aÎx 
 
 A set (symbolized by S) has members and is a member, whereas a class (symbolized by C) 
has members but is not a member: 
 
 Set    Sa =df Ma Ù Ea 
 
 Class   Ca =df Ma Ù ¬Ea 
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Elements are therefore either individuals or sets.   
 We define submultitude Í and proper submultitude Ì in the obvious way. 
 
 Submultitude  aÍb =df Ma Ù "x(xÎa®xÎb) 
    aÌb =df aÍb Ù a¹b 
 
Sets and classes are alike in that they have submultitudes and are themselves submultitudes. 
If a is a set and a submultitude of b, we say that a is a subset of b. If a is a class and a 
submultitude of b, we say that a is a subclass of b. As we shall see, every class has both 
subsets and subclasses, indeed, infinitely many of each (see §10.7), but the axiom of 
separation (see 2(iii) in §8.3) means that a set has only subsets, never subclasses. 
 We symbolize the paradigm empty term ‘zilch’ by an italic capital O. Although O may be 
taken as a primitive constant, we opt to define it: 
 
 Zilch   O =df  ℩x(x¹x) 
 
The description ℩x(x¹x) is necessarily empty on account of the logically unsatisfiable 
condition x¹x. Hence if F is strong FO is logically false, like O=O, though when F is weak 
FO may be true or even logically true, like OºO or ‘O is a history’ in §7. Also aºO is 
equivalent to ¬E!a, and therefore provides another way to express non-existence, and a neat 
way to say that a function f has no value for an argument a, viz. faºO. 
 We need to emphasize that O does not denote anything whatever, however special or 
recondite. It denotes zilch, that is, it denotes nothing. Our use of ‘zilch’ corresponds to the 
unjustly neglected use of ‘nothing’ as a necessarily empty term rather than a quantifier. For 
more see our 2016, pp. 111–14 & 120–28.  
 Enough has been said to forestall confusion between O and Æ as this latter symbol is 
conventionally understood, namely as standing for the empty set, which is something, not 
nothing. Zilch and the empty set are alike in that both fail to have members, but the reason in 
the case of zilch is that it is not even there to have members, which also explains why it is not 
a member of anything, unlike the empty set. Like Î, the predicate Í is strong at both places. 
So OÍa and aÍO are bound to be false, whereas orthodox set theory makes the empty set a 
subset of everything, itself included.  
 We use ℩ to define the notion of exhaustive description. There are two versions, 
exclusively and inclusively plural, symbolized by a raised dot and a colon respectively, with 
x·A(x) read as ‘the elements each satisfying A(x)’, while x:A(x) is read as ‘the element or 
elements each satisfying A(x)’. 
 
 Exhaustive description  x·A(x) =df 	℩y(MyÙ "x(xÎy«(Ex Ù A(x)))) 
 (exclusive version) 
 
The definition means that x·A(x) is the multitude comprising all the elements each satisfying 
A(x); if there is no such multitude, the description is empty. As we shall see in §8.2, Axiom 
1(v) governing exhaustive description yields the appropriate comprehension principle: x·A(x) 
exists just in case there are many elements each satisfying A(x). It is, of course, a further 
question whether x·A(x) is a set or a class. 
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 Exhaustive description  x:A(x) =df 	℩y(y=℩x(Ex Ù A(x)) Ú y=x·A(x)) 
 (inclusive version) 
 
So the descriptions x:A(x) and x·A(x) only differ in denotation when A is satisfied by a 
unique element. For then the inclusive x:A(x) denotes that element whereas the exclusive 
x·A(x) is empty. In such a case, the orthodox reading of {x:A(x)} makes it denote the 
singleton whose sole member is the element satisfying A(x). Our x:A(x), however, denotes 
the element itself. To repeat, there are no singleton multitudes.  
 These definitions are restricted to elements. The reason was given in §3.3, where we saw 
that the presence of even one non-element among many items satisfying A(x) is enough to 
destroy the equivalence between ‘x is an A’ and ‘x is one of the As’.  
 The distinction between two versions of exhaustive description makes it easy to 
distinguish two kinds of pair, the proper pair |a, b|, which has the distinctness of a and b built 
into it, so that it has two members whenever it exists, and the broader notion of the improper 
pair [a, b]. Both kinds will be used together to define ordered pairs: see §10.6.  
 
 Proper pair   |a, b| =df  x·(x=a Ú x=b) 
 
 Improper pair   [a, b] =df  x:(x=a Ú x=b) 
 
|a, b| º [a, b] provided a and b exist and are distinct. The textbooks usually sneak in 
singletons as a special case of a pair—{a} =df {a, a}—but this trick does not work here, since 
|a, a| º O, while [a, a] º a itself.  
 The pairing functions expressed by |    | and [    ]  are partial. We have already given an 
example where |a, b| º O. Also |a, b| º [a, b] º O when a º b º O, or when a and b are classes, 
since no class is an element. Note that [a, O] º [O, a] º a, while |a, O| º |O, a| º O. 
 We also use exhaustive description to define intersection, union, adjunction, power and 
power-plus operations. Some of the definitions need the inclusive version. For the rest it 
makes no difference which we use, and we opt for the exclusive version simply because it 
tends to make proofs smoother.  
 The inclusive version is used to define the intersection of a and b, symbolized aÇb, as the 
item, if any, that is either their sole common member or the multitude of their many common 
members.  
  
 Intersection   aÇb =df x:(xÎa Ù xÎb)  
 
The intersection aÇb may exist when a or b is a class as well as a set, but not when a or b is 
zilch or an individual, since neither has members. 
 In the orthodox context, the behaviour of Ç is determined by the equivalence xÎaÇb « 
xÎa Ù xÎb. In the present context, the corresponding equivalence xÎaÇb « xÎa Ù xÎb 
holds if a and b have many common members or none, and we highlight the importance of  
establishing when this is so in our comments on Theorem 5(iii) in §11. But if they have just 
one common member the left-hand side needs to be replaced by x=aÇb, for now aÇb is this 
item itself, not its members; and experimentation soon produces counterexamples to the 
associativity of Ç. For instance, let a and b be disjoint sets and c be |a, b|, and compare |a, c| 
Ç (|a, c| Ç |b, c|) with (|a, c| Ç |a, c|) Ç |b, c|. The former is |a, c| Ç c =  |a, c| Ç |a, b| = a, while 
the latter is |a, c| Ç |b, c| = c. This deviation is no more surprising than the failure of ordinal 
addition to be commutative, and it turns out to be insignificant in practice, since throughout 
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the entire development described in §11 and the Appendix, although we work with iterated 
applications of intersection, the absence of associativity is never an obstacle. 
 For a generalized version of intersection we reuse Ç as a variable-binding operator 
forming terms from formulas.  
 
 Generalized intersection ÇxA(x) =df x:("y(A(y)®xÎy) Ù $yA(y)) 
 
Thus ÇxA(x) may exist even when there is just one item satisfying A(x) or when a class 
satisfies A(x). We use Ça to abbreviate Çx xÎa, symbolizing the case where A(x) expresses 
membership in some multitude.  
 The union of a and b, symbolized aÈb, is defined to be the multitude, if any, of items that 
are members of a or of b.  
 
 Union aÈb =df x×(Ma Ù Mb Ù (xÎa Ú xÎb))   
 
Like the intersection aÇb, the union aÈb may exist when a or b is a class as well as a set, but 
not when a or b is zilch or an individual. We have used the exclusive × to define aÈb, but the 
inclusive : would do equally well, since aÈb, if it exists, is always a multitude.  
 To obtain a generalized version of union, we reuse È as a variable-binding operator. 
 
 Generalized union  ÈxA(x) =df x×("y(A(y)®My) Ù $y(A(y) Ù xÎy)) 
 
As with generalized intersection, ÈxA(x) may exist even when there is just one item 
satisfying A(x) or when a class satisfies A(x). We use Èa to abbreviate Èx xÎa, thus 
symbolizing the case where A(x) expresses membership in some multitude. 
 In orthodox set theory, the result of adding an element to a set (or class) is the union of the 
singleton of the element with the set (or class). But we can obtain the same result without 
singletons by defining an adjunction operation, symbolized a⨁b (see Bernays 1937, p. 68). 
 
 Adjunction    a⨁b =df x×(Ma Ù Eb Ù (xÎa Ú x=b)) 
 
As with union, the inclusive : would do equally well here. 
 Next comes the power multitude of a, symbolized P(a), which may be read ‘the subset or 
subsets of a’ 

 
 Power P(a) =df x:xÍa  
 
When a is an individual or zilch, P(a) is empty, since neither has subsets. When a is a 
multitude, P(a) is non-empty, since any multitude has at least one subset. Note that if a is a 
class, only its subsets get into P(a), since its subclasses are not elements. Also, if a is a set 
with exactly two members, a has just one subset, namely itself. We have found it marginally 
more convenient to define P(a) inclusively, so that in this case P(a)=a; the alternative 
exclusive definition would render P(a) empty.  
 Finally, the power-plus multitude of a, symbolized P+(a). This is defined as the members 
and subsets of a. 
 
 Power-plus P+(a) =df  x×(xÎa Ú xÍa) 
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Like P(a), P+(a) is non-empty just in case a is a multitude, and when a is a class, only its 
members and subsets belong to P+(a). But unlike P(a), using the inclusive : to define P+(a) 
would make no difference. For the formula embedded within the relevant description will be 
multiply satisfied if it is satisfied at all, since only multitudes have members or subsets, and 
any multitude has many members.  
 
 
 
§7   Levels.    
 
Recall the guiding idea that a level is the set comprising all the individuals plus the members 
and subsets of all lower levels, or for short, a level is the accumulation of its history, where 
the history of a level is the level(s), if any, lower than it. In §3.1 we used ordinals to impose a 
well-ordering on levels and thereby give a clear meaning to ‘lower level’. But inside the 
system we can use the well-ordering provided by Î itself. We reserve the variables u, v, w 
for levels. Then u is lower than v if uÎv. The history of any level v can be neatly covered by 
the inclusive description w:wÎv.  
 Rather than take ‘level’ as primitive and rely on an axiom to ensure that a level is the 
appropriate accumulation, we give a definition of ‘level’ that makes the axiom redundant. 
(This was John Derrick’s idea. See our 2016: 276.) The key is a prior definition of history 
which does not presuppose the notion of level but ensures that the history of a level v is 
w:wÎv. It uses two versions of accumulation. We symbolize the first by acc: 
 
 Acc function  acc(a) =df x·(Ux Ú $y(yÎa Ù (xÎy Ú xÍy))) 
 
This delivers the right result for any level higher than V2, for then the relevant a is the 
multitude of many lower levels. But it fails for V2 with its sole lower level V1, for the 
condition yÎa picks out the members of V1, not V1 itself. Since V1 comprises all the 
individuals, and nothing is a member or submultitude of any individual, the result is that  
acc V1 = x·Ux =V1, not V2. We therefore introduce another version, obtained by replacing 
yÎa by y=a in the definition of acc, which then simplifies to  
     
 Accum function  accum(a) =df x·(Ux Ú xÎa Ú xÍa) 
 
V2 can now be defined to give the desired result: 
 
 Second level  V2 =df  accum(V1) 
 
This leaves V1, whose history is zilch. Again we use accum to define it: 
 
 First level   V1 =df  accum(O) 
 
 Although we introduced them separately, it is worth remarking that acc can be defined in 
terms of accum as follows: 
 

acc(a) =df x·(Ux Ú $y(yÎa Ù xÎaccum(y))) 
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Both functions may take any item or zilch as argument, but the corresponding value, if any, is 
always a multitude. If there is but one individual, both map it to zilch, that is to say, they are 
partial.  
 The definitions of V1 and V2 illustrate the utility of exclusive exhaustive description. We 
want them, like all levels, to be sets if they exist at all. But if inclusive : is used in defining 
accum, then when there is but one individual x, V1 = accum(O) = x, but at the same time  
V2 = accum(V1) = accum(x) = x. 
 Next we define ‘is a history’, symbolized by H, without invoking the notion of level: 
 
 History Ha =df  (aºO Ú Sa) Ù (a=V1 Ú "x(xÎa®(x=V1 Ú x=V2 ® x=accum(aÇx)) Ù  
   (x¹V1 Ù x¹V2 ® x=acc(aÇx)))) 
 
 
This needs a little explanation. We reserve the variable h for histories. If V1=accum(h), we 
say that V1 has h as a history; similarly for V2. If v is any level other than V1 or V2, and 
v=acc(h), we say that v has h as a history. We want any level v to have w:wÎv as its unique 
history. But uniqueness fails if an individual x counts as a history. For supposing V1 exists, V1 

= accum(O) and also V1 = accum(x). To rule this out, the first conjunct in the definition 
requires that a history, if it exists at all, be a set. We cannot weaken this to multitude, for then 
the class of all levels would count as a history, which runs counter to the idea that histories 
are histories of levels, since there is no level whose lower levels comprise all levels. The first 
conjunct in the definition also counts zilch as a history: it is the history of V1, which has no 
lower levels. Consequently, H is a weak predicate. 
 As to the second conjunct, naturally we deal separately with the possibility that x is V1 or 
V2 by replacing acc by accum for these cases. But we also need to cover the possibility that a 
is V1. The problem is the same as before. Every member of V1 is an individual and is 
therefore neither V1 nor V2. But no individual x is acc(aÇx), since acc only has multitudes as 
values.  
 We have now assembled all the materials needed for the definition of ‘is a level’, 
symbolized by V. It should be no surprise that the exceptional levels V1 and V2 are mentioned 
separately, while the rest can be characterized as acc(x) for some history x 
 
 Level   Va =df  a=V1 Ú a=V2 Ú $x(Hx Ù a=acc(x)) 
 
 We next define two functions, V* and V†, which mark the location of elements within the 
hierarchy of levels using the salient relations of subset and membership. V*(a) is the lowest 
level of which a is a subset (the level of a, for short). V†(a) is the lowest level of which a is a 
member.  
 
 V*    V*(a) =df 	℩x(Vx Ù aÍx Ù ¬$y(Vy Ù yÎx Ù aÍy)) 
 
 V†    V†(a) =df 	℩x(Vx Ù aÎx Ù ¬$y(Vy Ù yÎx Ù aÎy)) 
 
 There are three exclusive and exhaustive kinds of level: the first level, levels next above a 
level, and limit levels. We have already defined V1. The level next above a, symbolized by a¢, 
is defined to be the lowest level that is higher than the level a, that is to say, the lowest level 
of which a is a member: 
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 Level next above  a¢ = df 	℩x(Va Ù x=V†(a)) 
 
The definition means that a¢ º V†(a) provided a is a level; otherwise a¢ is empty.  
 Finally, we define ‘a is a limit level’, symbolized by La, to mean that a is a level not of the 
first two kinds, that is to say, neither the first nor next above any level. 
 
 Limit level   La=df  Va Ù a¹V1 Ù ¬$x a=x¢ 
 
 
 
§8  Axioms.    
 
In this section we present an axiomatic system for plural logic with modus ponens as the sole 
rule of inference. The axioms are all the instances of the following schemes both as they 
stand and prefaced by any number of universal quantifications. After the elementary axioms, 
we present the remaining ones in two groups, according as they govern membership or levels. 
 
 8.1.  Elementary   The elementary axioms pluralize the axioms given in §1.2 for a topic-
neutral version of the predicate calculus, by substituting plural variables for singular ones 
throughout.  
 
(i)  A where A is tautologous 
(ii)  "x(A®B) ® ("xA ® "xB) 
(iii)      A ® "xA where x is not free in A 
(iv)  "xA(x) ® (E!a ® A(a)) where A(a) has free a wherever A(x) has free x 
(v)  "x x=x 
(vi)  a=b ® (A(a) « A(b)) where A(b) has free b at zero or more places where A(a) has 

free a 
(vii)  (¬E!a Ù ¬ E!b) ® (A(a) « A(b)) where A(b) has free b at zero or more places where 

A(a) has free a 
(viii)  a=b ® E!a Ù E!b 
(ix)  "y(y=℩xA « "x(A « x=y)) where y does not occur in ℩xA 
 
  
 8.2.  Group 1: Membership   Axiom 1(i) ensures that Î is strong at both places. 1(ii) is 
extensionality for multitudes. 1(iii) ensures that Î is irreflexive, while 1(iv) rules out 
singletons, i.e. there is no y such that xÎy for just one x. It also, via the definition of U, 
prevents individuals having members. 1(v) governs the exclusive version of exhaustive 
description, and together with 1(i) gives a principle of comprehension: the multitude x×A(x) 
exists provided there are many elements that are each A.   
 
1(i)  aÎb ® E!a Ù E!b 
1(ii) Ma Ù Mb ® "x(xÎa«xÎb) ® a=b where x is not free in a or b 
1(iii)  aÏa 
1(iv)  $x xÎa ® Ma  
1(v)  "y(yÎx×A(x) « mz(Ez Ù A(z)) Ù Ey Ù A(y)) where A(z) and A(y) have free z and free 

y, respectively, wherever A(x) has free x  
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 8.3.  Group 2: Levels   Axiom 2(i) ensures that if many individuals exist, then each is an 
element, from which, together with other axioms, it follows that the first level V1 exists. 2(ii) 
says that there are no multitudes, and hence no levels, unless there are many individuals. 
2(iii) is modelled on Cantor’s own principle of separation, ‘every submultitude of a set is a 
set’ (1932, p. 444). 2(iv) restricts sets to the hierarchy of levels but without assuming that 
there are any. In the context of the other axioms, the converse of 2(iv) follows from 2(iii), 
with the result that a multitude is a set just in case it is a submultitude of a level. 2(v) says 
that for every level there is a higher one—from which it follows that there are infinitely many 
levels, if there are any at all. 2(vi) says that a limit level exists if there are any levels at all. 
Both the notation and the significance of 2(vii), the Axiom of Ordinals, are explained below. 
We have not explored its implications for the independence of the other axioms. 
 
2(i)  mxUx ® "x(Ux®Ex) 
2(ii)  $xMx ® mxUx 
2(iii)  Sa Ù bÍa ® Sb 
2(iv) Sa ® $x(Vx Ù aÍx) where x does not occur in a 
2(v)  "x(Vx ® $y(Vy Ù xÎy)) where x and y are distinct 
2(vi) $xVx ® $xLx   
2(vii) "x(ord x ® $y(Vy Ù r(y)=x)) where x and y are distinct 
 
 8.4.  Axiom of Ordinals   In §3.1 we introduced the rank of a set as an ordinal measure of 
its height in the hierarchy of levels of plurality. The problem now is to represent the notions 
of ordinal and rank within the formal theory, so as to be able to formulate a suitable axiom 
reflecting the height of the hierarchy itself. Our axiom is a simplified analogue of the more 
specific ‘axiom of ordinals’ presented in Potter’s 2004. Our account is necessarily highly 
compressed, and the reader is recommended to consult §§4.4, 4.10, 11.1, 11.2, 11.5, 13.2 of 
Potter’s book, while taking into account the adjustments sketched below, which are needed to 
suit the present context. 
 Ordinals are commonly introduced as the order-types of well-ordered sets, but to avoid 
ambiguity a well-ordered set will be represented by a structure, an ordered pair whose first 
coordinate is the set and whose second is a well-ordering on it, the relation being represented 
by a set of ordered pairs. In order to provide for structures whose ordinals are 0 and 1, we 
allow the first coordinate of structures to be zilch or an individual; they are both well-ordered 
by zilch considered as a relation. As to structures whose ordinal is 2, the first coordinate is a 
pair set and the well-ordering relation is a single ordered pair, not a set of pairs. These 
adjustments are necessary in the absence of empty and singleton sets.  
 Our surrogate ordinal of such a structure would be expected to be the multitude of all 
structures isomorphic to it, with a slight tweaking of the definition of isomorphism to take 
account of the newly admissible coordinates in structures. But we follow Potter in using 
Scott’s ‘trick’ (Potter 2004 §4.4, Scott 1955) to ensure that the result is always a set. For any 
structure a, there is a unique lowest level v which has as a subset some structure isomorphic 
to a. Then ord a can be defined as the set of structures isomorphic to a whose level is v (the 
exception is the structure <O, O> which will be its own ordinal, viz. the ordinal 0).  
  
  



PhilSci-Archive version: 15 June 2024 
 

28 

 In the general case, the rank r(x) of a set can now be represented by the ordinal 
 
  r(x) =df 	ord <v×vÎV†(x), Í> 
 
where V†(x) is the lowest level of which x is a member, as introduced in §7, and Í is an 
ordered pair or set of ordered pairs as the case may be, representing the restriction of the 
submultitude relation to the relevant levels. The exception is when V†(x) is the second level 
V2, in which case r(x) =df 1.  
 Our axiom 2(vii) says, then, that for every ordinal there is a level whose rank is that 
ordinal. Potter (2004, §§11.5, 13.2) goes a step further and defines for each ordinal a 
particular corresponding level as candidate for the role. 
 Commenting on his axiom, Potter points out that the existence of the new levels which it 
entails ensures the existence of further ordinals that were not previously available, and the 
axiom applied to them guarantees the existence of corresponding levels; and so on. ‘The 
hierarchy described by the new theory is therefore colossally higher than anything we could 
have countenanced before’ (2004, p. 218).  
 Since our concern is with the conceptual question about the nature of sets and classes, our 
development of the theory is limited to what is needed to put the general theory of levels on a 
proper footing, and to enunciate some results about sets and classes that will hold good 
independently of issues about higher infinities. We happily leave the investigation and 
application of the Axiom of Ordinals to any interested reader.  
 
 
§9   Developing the system: options. 
 
 9.1.  Incompleteness   Any axiomatization of plural logic is necessarily incomplete. This 
can be shown in the same way as the unaxiomatizability of second-order logic, namely by 
formulating a version of Peano arithmetic with a finite number of axioms. The resulting 
theory is categorical and therefore complete, whence by Gödel’s theorem it follows that the 
logical truths of the underlying logic are not effectively enumerable. In each case the key step 
is the replacement of the axiom scheme for induction by a single axiom, achieved here as 
follows 
 
 "x("y(yÎx®Uy) Ù 0Îx Ù "y(yÎx®syÎx) ® "y(Uy®yÎx)) 
 
In English: if some individuals include zero and also the successor of any of them, every 
individual is one of them, i.e. the individuals are all and only the natural numbers. 
 
 9.2.  Axiom of Choice   Any added axioms are likely to be plural analogues of ones 
already in circulation in a singular form. The Axiom of Choice is a good illustration of the 
considerations involved. In one standard version it runs 
 

For every nonempty set x of nonempty, pairwise disjoint sets, there exists a ‘choice’ 
set whose intersection with each member of x is a singleton. 

 
The first and most important step is to replace all reference to sets understood as individuals 
by sets understood as multitudes. There is no need to repeat the requirement that all the 
relevant sets are nonempty, since that is now a given. But the treatment of intersection calls 
for the policy of ‘judicious replacement’ of §2.2. Where sets y and z were said to be disjoint 
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if yÇz=Æ, the analogous condition is yÇzºO, and where two sets share a unique member it is 
that common member itself, not its singleton, that is their intersection. Lastly, there is always 
the question whether the plural version must also be confined to sets, or whether it can be 
applied to multitudes in general. For this may not be a simple matter of strength. Obviously 
‘For any set … there is a choice set’ does not imply ‘For any multitude … there is a choice 
multitude’, but equally the latter does not trivially imply the former. And there may or may 
not be a place for a ‘class’ version of the axiom, viz. ‘For every class … there is a choice 
class’. 
 
 9.3.  Weak identity   Our system accommodates two variant notions of identity, differing 
according to the truth-value of an identity statement when both its terms are empty. Strong 
identity, symbolized by =, makes a=b false if either or both terms are empty. Weak identity, 
symbolized by º, agrees in making aºb false if just one of a and b are empty, but makes it 
true if both are empty. (For a fuller discussion, see our 2016, §7.2.) The two relations are 
interdefinable in an almost symmetrical way 
 

aºb =df a=b Ú (¬E!a Ù ¬ E!b)  a=b =df aºb Ù (E!a Ù E!b)  
 
where in the second definition E!a is defined as $x xºa instead of $x x=a. If we choose to 
take º rather than = as primitive, then the first three ‘elementary’ axioms of §8.1 stay as they 
are, while the remaining six, which involve = either explicitly or implicitly via E!, are 
replaced by 
 
(iv)¢  "xA(x) ® (E!a ® A(a))  
(v)¢  "x xºx 
(vi)¢   "x E!x 
(vii)¢  aºb ® (A(a) « A(b)) 
(viii)¢  (¬E!a Ù ¬E!b) ® aºb 
(ix)¢  "y(yº℩xA « "x(A « xºy))  
 
All the new axioms carry the same technical provisos as those they replace. Axiom (iv) is 
replaced by the visual replica (iv)¢, but where E!a is now defined as $x xºa. Axioms (v)¢ and 
(vi)¢ together are equivalent to the old (v), while (vii)¢ is equivalent to the old (vi) and (vii) 
taken together. Axiom (viii) is replaced by (viii)¢, while (ix)¢ is obtained from (ix) by 
replacing = by º.  
 There are no considerations of economy or convenience in favour of taking = rather than º 
as primitive, and our decision to do so was motivated by nothing more than a desire to make 
as few changes as possible to the familiar format of the predicate calculus. So far, so 
unremarkable, but it turns out that the matter has an altogether greater significance, as we 
now explain. 

  
 9.4.  Ineliminability of definite description   The reader may have wondered why we have 
taken the definite description operator ℩ as primitive. Surely Russell long ago demonstrated 
the contextual eliminability of ℩, starting with the  
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  Basic equivalence F(℩xA) « $1xA Ù "x(A®Fx) 
 

where F is any primitive predicate, and appealing to the substitutivity of equivalents to 
produce an ℩-less match for any formula.  
 The presence of a weak primitive predicate, however, demolishes this argument by 
undercutting its premise. For take any case where nothing satisfies A. Then certainly $1xA is 
false and with it the right-hand side of the basic equivalence. Also, the definite description 
℩xA is now an empty term, but if F is weak it no longer follows that F(℩xA) is false. In short 
the left-hand side of the basic equivalence may be true while the right-hand side is false, 
making the equivalence itself fail. Indeed, by taking Fa to be aºa we can sharpen this result, 
for now there is no ‘may be’ about the failure of the basic equivalence, since as a matter of 
logic its left-hand side is always true. 
 The outcome, then, is that descriptions, and more generally function signs, are only 
eliminable if empty terms are ruled out of consideration, and it is a great pity that both the 
founding fathers of the predicate calculus, Frege and Hilbert, would go to any lengths to 
avoid dealing with them. 
 
 
§10   Developing the system: topics.    
 
Here we give a prose overview of the topics covered in our development of the system, 
referring forward to the relevant results stated in §11.     
 
 10.1.  Well-ordering of levels   The key property of a history is that membership is well-
founded on it (Theorem 7). It follows that levels are transitive and hereditary sets: any 
member or subset of a member of a level is also a member of that level (Theorems 8 and 9). 
Membership between levels is a transitive relation by the transitivity of levels, and irreflexive 
by Axiom 1(iii). It can also be shown that membership between levels is well-founded 
(Theorem 13), and that levels are comparable under membership (Theorem 14). Hence 
membership well-orders levels. So too does proper submultitude, since the two relations are 
equivalent among levels (Theorem 27).  
 
 10.2.  History and composition of levels   A level has the levels below it, if any, as its 
unique history (Theorem 16). Since V1 is the lowest level of all, its history is zilch. The 
history of V2 is the single level V1, while the history of any other level is the multitude of the 
many levels below (Theorem 10). V1 exists just in case there are many individuals. It is the 
multitude of all the individuals (Theorem 29). For any level v, there is a unique level v¢ next 
above v, which can be shown to be the power-plus multitude of v. Equivalently, v¢ is the 
multitude of all individuals plus all the submultitudes of v (Theorems 30 and 31). Finally, a 
level is a limit level just in case it is the union of the levels below, that is to say, the union of 
its history (Theorem 34). So, for example, the lowest limit level Vw is the union of all the 
finite levels.  
 
 10.3.  Elements and levels   An element’s location with respect to the hierarchy of levels 
can be characterised using the salient relations of membership and subset. Every individual is 
a member of every level (Lemma 8(iv)) and by definition a subset of none. Every set is a 
member of some level (Theorem 22(i)), and also a subset of some level (Axiom 2(iv)). Since 
levels are transitive and hereditary, if a set bears either relation to a level, it bears it to every 
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higher level. Transitivity also implies that if a set is a member of some level, it is a proper 
subset of it too. But not always vice versa, as the following shows. For every set x there is a 
unique lowest level V*(x)—the level of x—of which it is a subset (Theorem 17(i)). Also, for 
every set x there is a unique lowest level V†(x) of which it is a member. It is not the level of x, 
however, but the level next above (Theorem 32).  
 
 10.4.  Derived principles for multitudes and sets   Comprehension is a straightforward 
consequence of Axiom 1(v) governing the exclusive version of exhaustive description. 
 
 Comprehension  mz(Ez Ù A(z)) ® M(x×A(x))   Lemma 2(i)  
 
Comprehension readily yields the following principles for multitudes: 
 
  Union   (i)  Mx Ù My « M(xÈy)   Theorem 20(i) 
      (ii) ("y(A(y)®My) Ù $zA(z)) « M(ÈxA(x))      Theorem 21(i) 
 Pairing  (Ex Ù Ey Ù x¹y) « M|x, y|  Theorem 23(i) 
  Adjunction   Mx Ù Ey « M(x⨁y)   Theorem 24(i) 
  Power   Mx « M(P(x))   Theorem 25(iii) 
  Power-plus   Mx « M(P+(x))   Theorem 26(i) 
  
Like any other multitude, sets exist when and only when there are many individuals 
(Theorems 28(i) and 28(iii)). For sets, Comprehension has been replaced by the weaker 
principle of Separation, and for us this means Cantor’s own version enunciated as Axiom 
2(iii) in §8.3, in which the separated items must be many. Since levels are sets, it follows by 
Separation that to prove that a multitude is a set it suffices to find a level of which it is a 
submultitude. This strategy of separating from levels yields the following principles for sets: 
 
  Union   (i) Sx Ù Sy « S(xÈy)   Theorem 20(ii) 
      (ii) ("y(A(y)®Sy) Ù S(z:A(z))) « S(ÈxA(x)) Theorem 21(ii) 
 Pairing  (Ex Ù Ey Ù x¹y) « S|x, y|  Theorem 23 
 Adjunction  Sx Ù Ey « S(x⨁y)   Theorem 24(ii) 
  Power   Sx « S(P(x))   Theorem 25(ii) 
 Power-plus   Sx « S(P+(x))   Theorem 26(ii) 
 
We can also derive   
   
 Foundation  Mx ® $y(yÎx Ù xÇyºO)   Theorem 18 
    
which says that any multitude has a member whose intersection with that multitude is zilch. It 
is a general version of the familiar foundation (regularity) principle, covering both sets and 
classes. It follows from a narrower foundation principle governing levels to the effect that 
there is a lowest among the levels included in any multitude (Theorem 13), which in turn 
follows from the well-foundedness of membership on any history (Theorem 7). 
 
 10.5.  Representing the natural numbers   We define a to be inductive if (i) V1 is a 
member of a and (ii) if a level is a member of a, so is the level next above. Given the Axiom 
of Plurality, the lowest limit level Vw exists and is inductive (Theorems 34(i), 35 and 36). It 
follows that there is an inductive set N* comprising the common members of every inductive 
set (Theorem 37). This intersection N* is the set of finite levels. With the first natural number 
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0 (the cardinal and ordinal number of zilch) defined as the first level V1 and the successor of a 
level defined as the level next above, it is straightforward to derive Peano’s axioms. 
 
  10.6.  Ordered pairs   Our definition of ordered pairs is obtained by reworking 
Hausdorff’s technique, using the first two levels as markers as well as both proper and 
improper pair sets (for more see our 2018, §9).  
 
 Ordered pair  <a, b> =df  |||[a, V1], [a, V2]|, V1|, ||[b, V1], [b, V2]|, V2|| 
 
Ordered pairs exist and have their so-called characteristic property, provided that there are 
many individuals, and also provided that the coordinates of the putative pairs are not classes 
(Theorem 38). A coordinate may thus be an individual or a set or even zilch. Our version of 
Hausdorff is more complicated than it otherwise would have been, since we have aimed for 
greater versatility, allowing O as well as the markers V1 and V2 to feature as coordinates of 
ordered pairs. We could go on to define a still wider notion of ordered pair <<a, b>> to allow 
for classes as coordinates, even though classes cannot be members of unordered pairs. A neat 
way of achieving this is to define <<a, b>> for sets or classes a, b as the ‘disjoint union’ of a 
and b, that is to say, the multitude of all ordered pairs of the form <x, V1> or <y, V2> where 
xÎa and yÎb (our version of Rubin’s definition in her 1967, p. 155). The use of the levels V1 
and V2 as markers ensures that the disjoint union uniquely determines the coordinates a and b 
and their order, as required. This definition can easily be extended to cover individuals and 
zilch as coordinates too. And the definitions of both <a, b> and <<a, b>> can be naturally 
generalized to cover ordered n-tuples, by bringing in further finite levels as markers, V1, V2, 
…, Vn. 
 
 10.7.  Classes   There is more than one orthodox system that admits classes, notably Von 
Neumann–Bernays–Gödel set theory and Morse–Kelley set theory. The latter, however, is the 
only system that treats classes in a spirit of genuine parity with sets, and we recommend Jean 
Rubin’s lucid exposition of it in her 1967, from which the interested reader will be able to see 
the points in which it resembles the theory presented here. 
 Like sets, classes exist when and only when there are many individuals (Theorem 39(iii)). 
From Separation it follows that a multitude is a class provided it has a subclass (Theorem 43). 
There are also principles governing classes and various other operations, which follow from 
their analogues for multitudes and sets as laid out above. The absentee is a pairing principle, 
since proper pairs are always sets (Theorems 45–48).  
 All of these principles yield methods to prove that a multitude is a class, but only given 
that some multitude is a class. Other methods do not rely on such an assumption, starting 
with the proof that the ‘Russell’ multitude x×xÏx is a class, which redeploys the reasoning of 
Russell’s paradox and uses only the logic of quantification. The same goes for the infinite 
series of descriptions of the same class: x× ¬$y(xÎy Ù yÎx), x× ¬$y$z(xÎy Ù yÎz Ù zÎx) etc 
(see Quine 1969, §5). But this is a special case. To prove that other multitudes are classes 
requires more powerful resources. One route goes via Axiom 1(iii) prohibiting self-
membership: if the multitude x×A(x) is an A provided it is a set, then x×A(x) must be a class 
(Theorem 40). This result can be used in swift proofs that x×Mx, x×x=x, x×Sx and x×Ex are 
classes. Still more powerful resources are needed for yet other classes. One technique 
exploits the location of classes outside of the hierarchy of levels (Theorems 41 and 42). 
  Further necessary and sufficient conditions for classhood are given by Theorem 49, from 
which it follows that classes are infinitely reproductive, in two directions. Downward: every 
class has a proper subclass, and so, for any subclass of a class, there is a less inclusive 
subclass of the same class. Upward: for any subset of a class, there is a more inclusive subset 
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of the same class. To take the simplest example of the upward phenomenon, adjoining any 
subset of x×xÏx to itself gives a more inclusive subset of x×xÏx. This, we contend, is the way 
to make sense of Russell’s notion of a ‘self-reproductive process’ (1907, p. 36) and Michael 
Dummett’s notion of an ‘indefinitely extensible concept’ (see his 1991, p. 317 fn. 5, where he 
acknowledges Russell’s priority). A self-reproductive process is embodied by a function 
which maps any set of elements each having a certain property to another element also 
having that property but not belonging to the set. In the case of non-self-membership, the 
function is identity. Russell concluded that ‘we can never collect all the [items] having the 
said property into a whole’ (1907, p. 36), whereas we say that the property determines a class 
rather than a set.  
 
 
 
§11   Lemmas and theorems.    
 
Here we present our current development of the system. Proofs are given in the Appendix. 
The proofs and results are to be understood as including the familiar provisos to prevent 
unintended capture of variables. As before, it is convenient to reserve the variables u, v, w for 
levels and h for histories. 
 
 
LEMMA 1.    Extensionality for exhaustive description 
 (i) "x(A(x)«B(x)) ® x×A(x) º x×B(x)  (ii) "x(A(x)«B(x)) ® x:A(x) º x:B(x) 
Weak identity is needed, since the antecedents do not guarantee that x×A(x) and x:A(x) exist.  
 
LEMMA 2.    Comprehension 
 (i)  mz(Ez Ù A(z)) « E!(x×A(x)) (iii)  $1z(Ez Ù A(z)) « x:A(x) = ℩x(Ex Ù A(x))  
 (ii)  mz(Ez Ù A(z)) « x:A(x) = x×A(x) (iv)  $z(Ez Ù A(z)) « E!(x:A(x)) 
The ® halves of (i) and (iv) are comprehension principles: x×A(x) exists if many elements are 
each A, while x:A(x) exists if at least one element is A. Parts (ii) and (iii) spell out the 
denotation of x:A(x), according as one or many elements are each A.  
 
LEMMA 3.  What there is  
 (i) E!a « Ua Ú Ma      (ii) Ma « Sa Ú Ca      (iii) Ea « mxUx Ù (Ua Ú Sa) 
The ® halves of (i), (ii), and (iii) divide items into individuals and multitudes, multitudes 
into sets and classes, and elements into individuals and sets. The ¬ half of (i) expresses the 
strength of the predicates U and M, and together with the ¬ half of (ii) and the ® half of 
(iii), the strength of S, C and E also follows. The right-hand side of (iii) needs the initial 
conjunct mxUx, since if there is but one individual, there is nothing for it to be a member of.  
 
LEMMA 4. Exhaustive description and reduction 
 a=x×A(x) «  Ma Ù "y(yÎa«(Ey Ù A(y))) 
This provides for the introduction or elimination of x×A(x) via its membership condition. 
 
LEMMA 5. Membership   
 (i) aÎb ® Ea Ù Mb   (ii) a=x×xÎa«Ma (iii) a=x:xÎa«Ma 
Part (i) says that membership holds only between elements and multitudes. The ¬ halves of 
(ii) and (iii) allow for movement between different expressions for a multitude. 
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LEMMA 6.  Submultitude 
 (i) aÍb®Mb  (ii) Ma«aÍa    (iii) aÌb®$x(xÏa Ù xÎb) 
Elementary properties of Í and Ì  
 
LEMMA 7.  Zilch    
 (i)  ¬E!O     (iv)  ¬EO  (vii)  ¬VO 
 (ii)  ¬UO Ù ¬MO     (v)  aÏO Ù OÏa  (viii)  HO 
 (iii) ¬SO Ù ¬CO    (vi)  a⊈O Ù O⊈a  (ix) ¬E!a « aºO 
Parts (i)-(vii) express the strength of leading predicates. Part (viii) is the exception: H is 
weak, since zilch is a history. Part (ix) says that a is non-existent iff a is (weakly identical to) 
zilch.  
 
LEMMA 8.  Levels Let Va, then (i) Ma, (ii) Ea, (iii) Sa, (iv) "y(Uy®yÎa). 
Levels are multitudes, elements, and sets, and have every individual as a member. 
 
LEMMA 9.  The first two levels  
 (i)  V1 º z×Uz º acc(O) º acc(V1) (v) E!V2 « MV2 Ù "y(yÎV2«(Uy Ú yÍV1)) 
 (ii)  E!V1 « MV1 Ù "y(yÎV1«Uy) (vi) E!V2 « E!V1     
 (iii)  $xMx « V1 = z×Uz (vii) E!V2 « V1ÎV2 
 (iv)  V2 º z×(Uz Ú zÍV1)  (viii) V1¹V2 
A recurrent feature of the theorems and their proofs is the separate treatment of the first two 
levels. We prepare the ground for this by including their main peculiarities here. In particular, 
provided there is at least one multitude, V1 is the multitude of all the individuals, and V2 is the 
multitude of all the individuals plus all the submultitudes of V1, whence V1ÎV2  and V1¹V2. 
 
THEOREM 1.  Separation    
 (i)  Sx Ù my(yÎx Ù A(y)) ® S(z×zÎx Ù A(z)) 
 (ii)  Sx « $u xÍu 
 (iii)  S(x×A(x)) « (my(Ey Ù A(y)) Ù $u"z((Ez Ù A(z))®zÎu))  
The scheme (i) is derived from Axiom 2(iii). (ii) gives a necessary and sufficient condition 
for x to be a set, namely that x is a submultitude of some level. From (ii) we derive the 
scheme (iii). The  ¬ halves of (ii) and (iii) are useful principles of separation from levels.  
 
THEOREM 2.  Intersection  
 (i)  $z(zÎx Ù zÎy)«E!(xÇy)      
 (ii) Let $1z(zÎx Ù zÎy), then E(xÇy).   
 (iii)  Let mz(zÎx Ù zÎy), then M(xÇy).   
 (iv)  Let mz(zÎx Ù zÎy) and (Sx Ú Sy), then S(xÇy). 
Part (i) spells out the existence conditions of the intersection xÇy, while (ii)-(iv) characterise 
it, given assumptions about the number and nature of the common members. 
 
THEOREM 3.  Histories I  Let v=acc(h), then (i) xÎh ® xÎv, (ii) v¹V1 ® Mh Ù h¹V1. 
THEOREM 4.  Histories II Let h¹V1 and xÎh, then Mx. 
THEOREM 5.  Histories III Let h¹V1, xÎh, x¹V1 and x¹V2. Then (i) x=acc(hÇx), 
     (ii) E!(hÇx), (iii) mz(Ez Ù zÎh Ù zÎx), (iv) S(hÇx). 
THEOREM 6.  Histories IV Let h¹V1 and xÎh, then H(hÇx) and Vx. 
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Theorems 3-6 state basic properties of histories and their members. Theorem 5(iii) plays a 
critical role in the proofs of subsequent theorems, where we need to infer hÇx = z×(zÎh Ù 
zÎx) and so yÎhÇx « yÎh Ù yÎx. Caution is needed with this inference, since if there is 
but one common member of h and x, the intersection hÇx is that member itself. This is the 
one place where the absence of singleton multitudes presents a serious challenge. For the 
inferences to go through, we need to have shown that there are many common members of h 
and x. Theorem 5(iii) does this, subject to the conditions in the hypothesis. The conjunct Ez 
in mz(Ez Ù zÎh Ù zÎx) is strictly redundant but we include it to allow for direct application 
of lemma 2(ii).  
 
THEOREM 7.    Î is well-founded on any history  Let xÍh, then $y(yÎx Ù xÇyºO). 
In English: any submultitude of a history has a member whose intersection with that 
submultitude is zilch. This is one of three foundation principles of increasing generality; see 
Theorems 13 and 18 for the others. 
 
THEOREM 8.  Levels are transitive sets  Let xÎy and yÎv, then xÎv. 
 COROLLARY. Let My and yÎv, then yÍv. 
In particular, membership between levels is transitive. It also follows that if a set is a member 
of a level, it is a member of all higher levels. The corollary tells us that it is a subset of all 
those levels too, the original included. 
 
THEOREM 9.   Levels are hereditary sets  Let xÍy and yÎv, then xÎv. 
In particular, if a set is a subset of a level, it is a member of all higher levels.  
 
THEOREM 10. Lower levels I 
 (i)  ¬$w wÎV1 and w:wÎV1 º O 
 (ii)  Let E!V2, then $1w wÎV2 and w:wÎV2 = ℩w(wÎV2) = V1. 
 (iii)  Let E!v and v¹V1 and v¹V2, then mw wÎv and w:wÎv = w×wÎv. 
These cover the three possibilities for the number of levels lower than a given level: none, 
one or many. 
 
THEOREM 11. Lower levels II 
 (i)  Let v=V1 or v=V2, then v=accum(w:wÎv). 
 (ii)  Let E!v and v¹V1 and v¹V2, then v=acc(w:wÎv). 
THEOREM 12. Lower levels III     H(w:wÎv) 
Theorems 11 and 12 together ensure that any level v has w:wÎv as a history. 
 
THEOREM 13. Foundation for levels  
 (i)  Let $u uÎx, then $v(vÎx Ù ¬$w(wÎv Ù wÎx)). 
 (ii) Let $u A(u), then $v(A(v) Ù ¬$w(wÎv Ù A(w))). 
Part (i) says that there is a lowest level belonging to a multitude provided some level belongs 
to it. (ii) is the corresponding scheme. It follows that membership between levels is well-
founded: any submultitude of the multitude of all levels has a lowest member.  
 
THEOREM 14. Comparability of levels vÎw Ú v=w Ú wÎv 
In other words, given any two levels, one is lower than the other. Theorems 13 and 14 
together entail the uniqueness of lowest levels, as stated in the following theorem. 
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THEOREM 15. The lowest level principle  
 (i)   Let $u uÎx, then $1v(vÎx Ù ¬$w(wÎv Ù wÎx)). 
 (ii)  Let $u A(u), then $1v(A(v) Ù ¬$w(wÎv Ù A(w))). 
 
THEOREM 16. Uniqueness of histories 
 (i)  Let V1=accum(h), then h º w:wÎV1. 
 (ii) Let V2=accum(h), then h = w:wÎV2. 
 (iii) Let v¹V1 and v¹V2 and v=acc(h), then h = w:wÎv. 
This theorem ensures that a level v has w:wÎv as its unique history. 
 
THEOREM 17. Sets and levels I  
 (i)  Sx«E!V*(x)    (iv)  Let Sx Ù Sy Ù xÎy, then V*(x)ÎV*(y). 
 (ii)  xÏV*(x)    (v)  Let Sx Ù Sy Ù xÍy, then V*(x)ÍV*(y). 
 (iii) V*(u)=u    (vi) Sx«(Mx Ù $u"y((Sy Ù yÎx)®V*(y)Îu)) 
Parts (i)-(v) state properties of the V* function. Part (vi) gives a necessary and sufficient 
condition for a multitude to be a set, namely that there is some level higher than all the levels 
of the sets, if any, among its members. 
 
THEOREM 18. Foundation for multitudes Let Mx, then $y(yÎx Ù xÇyºO). 
In English: any multitude has a member whose intersection with that multitude is zilch.  
 
THEOREM 19.  Generalized intersection 
 (i)  $x("y(A(y)®xÎy) Ù $zA(z)) « E!ÇxA(x) 
 (ii) Let $1x("y(A(y)®xÎy) Ù $zA(z)), then E(ÇxA(x)). 
 (iii) Let mx("y(A(y)®xÎy) Ù $zA(z)), then M(ÇxA(x)). 
 (iv) Let mx("y(A(y)®xÎy) Ù $z(A(z) Ù Sz)), then S(ÇxA(x)). 
 COROLLARY. Let mz"y(yÎx®zÎy) Ù $z zÎx, then SÇx. 
This theorem does for generalized intersection what Theorem 2 does for the binary version. 
 
THEOREM 20. Union  (i) Mx Ù My « M(xÈy)  (ii) Sx Ù Sy « S(xÈy) 
The ® half of part (i) says that if x and y are multitudes, so too is the union xÈy. It is easily 
proved via comprehension. The ® half of (ii) says more specifically that the union is a set 
provided that x and y are sets. Its proof uses separation from levels (see Theorem 1). Similar 
remarks apply to the following theorem. 
 
THEOREM 21. Generalized union  
 (i) ("y(A(y)®My) Ù $zA(z)) « M(ÈxA(x))      
 (ii) ("y(A(y)®Sy) Ù S(z:A(z))) « S(ÈxA(x)) 
 COROLLARIES.  (i) ("y(yÎx®Sy) Ù Mx) « MÈx      
     (ii) ("y(yÎx®Sy) Ù Sx) « SÈx 
 
THEOREM 22.  Sets and levels II (i) Sx«(Mx Ù $u xÎu)  (ii) Sx«(Mx Ù E!V†(x)) 
Part (i) means that a multitude is a set iff it is a member of some level. By Theorem 15 there 
is a unique lowest level of which it is member, which is expressed in (ii) using V†. 
 
THEOREM 23. Pairing   (i) (Ex Ù Ey Ù x¹y)«E!|x, y| (ii) E!|x, y|«S|x, y| 
The proper pair |x, y| exists iff (i) x and y are distinct elements, iff (ii) it is a set. 
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THEOREM 24.  Adjunction  (i) Mx Ù Ey « M(x⨁y) (ii) Sx Ù Ey « S(x⨁y) 
The ® half of part (i) says that the adjunction x⨁y is a multitude provided x is a multitude 
and y an element. This is proved by comprehension, whereas the proof of the ® half of (ii) 
uses separation from levels to show that x⨁y is a set provided x is a set and y an element. 
Similar remarks apply to the proof strategies used to show that power multitudes and power-
plus multitudes are multitudes or sets, respectively (see the next two theorems). 
 
THEOREM 25.  Power multitude 
 (i)  Let $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú y3=y2))), then ℩z(Ez Ù zÍx)=x  
    Ù P(x)=x. 
 (ii)  Let $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù y2¹y3), then mz(Ez Ù zÍx) Ù 
    P(x)=y×yÍx. 
 (iii) Mx « M(P(x)) 
 (iv)  Sx « S(P(x)) 
In general, the power multitude of a multitude comprises its many subsets. Parts (i) and (ii) 
jointly entail that pair sets are the only exceptional case, since they are the sole subsets of 
themselves, and so are their own power multitudes. Part (iii) says that P(x) is a multitude iff x 
is too, while (iv) says that P(x) is a set iff x is too. 
 
THEOREM 26.  Power-plus multitude (i) Mx « M(P+(x))  (ii) Sx « S(P+(x)) 
Part (i) says that P+(x) is a multitude iff x is too, while (ii) says that P+(x) is a set iff x is too.  
 
THEOREM 27.  Membership and proper submultitude among levels vÎw«vÌw 
Since membership well-orders levels, and this theorem says that membership and proper 
submultitude are equivalent among levels, so proper submultitude well-orders levels too. 
 
THEOREM 28.   Numbers of individuals   
 (i)  mxUx«$xMx  (iv) mxUx«mx x=x 
 (ii) mxUx«$xVx (v) $1xUx«$1x x=x 
 (iii) mxUx«$xSx (vi) ¬$xUx«¬$x x=x 
The existence of many individuals (Axiom of Plurality) is necessary and sufficient for the 
existence of (i) multitudes, (ii) levels, (iii) sets. Parts (iv)-(vi) correlate the number of 
individuals with the number of items: there are many/one/no individuals iff there are 
many/one/no items. 
 
THEOREM 29. The lowest level    (i) mxUx«E!V1   (ii) $xVx«E!V1    (iii) V1 º ℩v(¬$w wÎv) 
V1 exists iff (i) there are many individuals, iff (ii) there is any level at all. Part (iii) identifies it 
as the lowest level.  
  
THEOREM 30. Levels next above I  E!u « E!u¢ 
This says that a level exists iff the level next above exists. 
 
THEOREM 31.  Levels next above II     (i) u¢ = x×(Ux Ú xÍu)   (ii) u¢ = P+(u) 
This identifies the level next above a given level u with (i) the multitude comprising all the 
individuals plus all the submultitudes of u, and with (ii) the power-plus multitude of u, that is 
to say, the multitude comprising all the members and submultitudes of u. 
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THEOREM 32.  Sets and levels III    Let Sx, then (V*(x))¢ = V†(x). 
This means that the level next above the level of a set is the lowest level of which the set is a 
member. 
 
THEOREM 33.  Levels next above III  
 (i)  Let $y1$y2(Uy1 Ù Uy2 Ù y1¹y2 Ù "y3(Uy3® (y3=y1 Ú y3=y2))), then ℩z(Ez Ù zÍV1)=V1 
    Ù P(V1)=V1 Ù "u(u¹V1®(mz zÍu Ù P(u)=y×yÍu)). 
 (ii) Let $y1$y2$y3(Uy1 Ù Uy2 Ù Uy3 Ù y1¹y2 Ù y1¹y3 Ù y2¹y3), then "u(mz zÍu Ù 
    P(u)=y×yÍu). 
 (iii) $1z zÍu « u¢=V1⨁P(u) 
 (iv) mz zÍu « u¢=V1ÈP(u) 
Part (iv) means that the level next above a level u is the union of V1 with the power multitude 
of u, provided u has many subsets. Parts (i) and (ii) entail that in general a level has many 
subsets, with part (i) identifying the single exception, namely V1 in the special case when 
there are exactly two individuals, in which case V1 is both the only subset of itself and the 
power multitude of itself, and so by parts (iii) and (iv), the level next above V1 is the 
adjunction V1⨁P(V1), not the union V1ÈP(V1).  
 
THEOREM 34.  Limit levels   (i) mxUx « $xLx (ii) Lu « u = Èv vÎu 
Part (i) says that a limit level exists iff there are many individuals. (ii) says that a level is a 
limit level iff it is the union of its lower levels. 
 
The next three theorems are designed to yield a representation N* of the set of natural 
numbers as the set of finite levels, given the Axiom of Plurality. We first define Vw to be the 
lowest limit level. In symbols, Vw =df  ℩x(Lx Ù ¬$y(yÎx Ù Ly)). Then we define a to be 
inductive if (i) V1 belongs to a and (ii) the level next above any level belonging to a also 
belongs to a. In symbols, Ia =df V1Îa Ù "x((Vx Ù xÎa)®x¢Îa). Finally we define N* as the 
intersection ÇxIx.  
 
THEOREM 35.  The lowest limit level  E!Vw « $xLx 
THEOREM 36.   Vw is inductive   Let E!Vw, then I(Vw). 
THEOREM 37.  N* is an inductive set  Let mxUx, then S(N*) Ù I(N*). 
 
 
We define the ordered pair <a, b> as |||[a, V1], [a, V2]|, V1|, ||[b, V1], [b, V2]|, V2||. 
 
THEOREM 38.  Ordered pairs 

Let mzUz Ù ¬Cx1 Ù ¬Cx2 Ù ¬Cy1 Ù ¬Cy2. Then (i) E!<x1, x2> and (ii) <x1, x2> = <y1, y2> 
« (x1ºy1 Ù x2ºy2). 

Part (i) states the existence of ordered pairs and (ii) their so-called characteristic property. 
Besides the Axiom of Plurality, the hypothesis needs to say that the putative coordinates are 
not classes, while allowing them to be anything else: zilch or an individual or a set.  
 
THEOREM 39.   Existence of classes 
 (i)  Let mxUx, then E!(x×xÏx).   
 (ii) Let E!(x×xÏx), then C(x×xÏx). 
 (iii) mxUx « $xCx 
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Part (i) means that the ‘Russell’ multitude exists provided there are many individuals, and (ii) 
means that it is a class. Part (iii) follows: classes exist just in case there are many individuals.  
 
THEOREM 40.   Classes and non-self-membership     
  Let E!(x×A(x)) Ù S(x×A(x))®A(x×A(x)), then C(x×A(x)). 
This gives a sufficient condition for a multitude x×A(x) to be a class, namely that it is an A 
provided it is a set. 
 
THEOREM 41.   Classes and levels   
 (i)  Cx«(Mx Ù ¬$u xÍu)    
 (ii) Cx«(Mx Ù "u$y(yÎx Ù uÎV*(y))  
 (iii) Cx«(Mx Ù ¬$u xÎu)  
 (iv) Let Mx Ù "u$y(yÎx Ù (uÎy Ú uÍy)), then Cx. 
Parts (i)-(iii) each give a necessary and sufficient condition for a multitude to be a class, 
namely (i) that it is not a submultitude of any level, (ii) that for every level u there is some 
member of the multitude whose level is higher than u, (iii) that it is not a member of any 
level. Part (iv) gives a way for a multitude to fail to be a member of any level, and so 
provides a general method to show that a wide range of multitudes are classes. A sample is 
presented in the following theorem. 
 
THEOREM 42.   Classes: an illustrative sample    
(i)  Let E!(x×yÎx), then C(x×yÎx).          (vi)  Let E!(x×$y x=P(y)), then C(x×$y x=P(y)). 
(ii) Let E!(x×yÏx), then C(x×yÏx).              (vii)  Let E!(x×$y$z x=|y, z|), then C(x×$y$z x=|y, z|). 
(iii) Let E!(x×xÏy) Ù ¬Cy, then C(x×xÏy).  (viii) Let E!(x×$y x=Èy), then C(x×$y x=Èy). 
(iv) Let E!(x×x¹y), then C(x×x¹y).              (ix)   Let E!(x×Hx), then C(x×Hx). 
(v)  Let E!(x×yÍx), then C(x×yÍx).  (x)  Let E!(x×Vx), then C(x×Vx). 
 
Further techniques for proving that a multitude is (or is not) a class are provided by theorems 
43–48 below, which govern classes and various operations.  
 
THEOREM 43.  Classes and separation 
 (i)  Let Cx Ù xÍy, then Cy.                  
 (ii) Let C(z× zÎx Ù A(z)), then Cx. 
 
THEOREM 44.  Classes and intersection 
 (i)  Let C(xÇy), then Cx Ù Cy.   
 (ii) Let C(ÇxA(x)), then "z(A(z)®Cz). 
 
THEOREM 45.  Classes and union 
 (i) (Mx Ù My Ù (Cx Ú Cy)) « C(xÈy)  
 (ii)  ("y(A(y)®My) Ù ($z(A(z) Ù Cz) Ú C(z:A(z)))) « C(ÈxA(x))  
 
THEOREM 46.  Classes and pairing 
 (i) Let E!x Ù E!y Ù x¹y, then ¬E!|x, y| « Cx Ú Cy.        
 (ii)   ¬$x$yC|x, y| 
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THEOREM 47.   Classes and adjunction   Cx Ù Ey « C(x⨁y) 
 
THEOREM 48. Classes, power and power-plus     
 (i)   Cx«C(P(x))  (ii) Cx « C(P+(x)) 
 
THEOREM 49. Classes and reproductivity 
 (i) Cx«$y(Cy Ù yÌx) 
 (ii) Cx«(Mx Ù "y((Sy Ù yÍx) ® $z(Sz Ù yÌz Ù zÌx))) 
This gives two further necessary and sufficient conditions for a multitude to be a class, 
namely (i) that it has a proper subclass, and (ii) for any subset of it, there is a more inclusive 
proper subset of it. 
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Appendix.  Proofs 
 
 LEMMA 1.   Extensionality for exhaustive description   

(i) "x(A(x)«B(x)) ® x×A(x) º x×B(x) 
(ii) "x(A(x)«B(x)) ® x:A(x) º x:B(x) 

 
 PROOF OF (i).   Suppose "x(A(x)«B(x)). Then ℩y(My Ù "x(xÎy«(Ex Ù A(x)))) º ℩y(My 
Ù "x(xÎy«(Ex Ù B(x)))). So by definition x×A(x) º x×B(x). 

 
 PROOF OF (ii).   Suppose "x(A(x)«B(x)). Then ℩y(y=℩x(Ex Ù A(x)) Ú y=℩z(Mz Ù 
"x(xÎz«(Ex Ù A(x))))) º ℩y(y=℩x(Ex Ù B(x)) Ú y=℩z(Mz Ù "x(xÎz«(Ex Ù B(x))))). So 
by definition x:A(x) º x:B(x). 

 
 
 LEMMA 2.   Comprehension (i) mz(Ez Ù A(z)) « E!(x×A(x))  
      (ii) mz(Ez Ù A(z)) « x:A(x) = x×A(x) 
      (iii) $1z(Ez Ù A(z)) « x:A(x) = ℩x(Ex Ù A(x)) 
      (iv) $z(Ez Ù A(z)) « E!(x:A(x)) 
 
 PROOF OF (i).   

1 For the ® half, suppose mz(Ez Ù A(z)). Then Ey Ù A(y) for some y, whence yÎx×A(x) 
by axiom 1(v). Hence E!(x×A(x)) by axiom 1(i).  

2 For the ¬ half, suppose E!(x×A(x)). Then x×A(x) = ℩y(My Ù "x(xÎy«(Ex Ù A(x)))) 
by the definition of x×A(x), whence M(x×A(x)). Hence mz(zÎx×A(x)) by the definition 
of M, whence mz(Ez Ù A(z)). 

 
 PROOF OF (ii).    
 1 For the ® half, suppose mz(Ez Ù A(z)). Then ¬$1z(Ez Ù A(z)), whence ¬E!℩x(Ex Ù 

A(x)). Hence by the strength of identity (y = ℩x(Ex Ù A(x)) Ú y=x×A(x)) « y=x×A(x), 
whence ℩y(y = ℩x(Ex Ù A(x)) Ú y=x×A(x)) º ℩y(y=x×A(x)) º x×A(x). Hence 
x:A(x)ºx×A(x) by the definition of x:A(x). Since mz(Ez Ù A(z)) entails E!(x×A(x)) by 
lemma 2(i), it follows that x:A(x)=x×A(x). 

 2 For the ¬ half, suppose x:A(x)=x×A(x). Then E!(x×A(x)) by the strength of identity, 
whence mz(Ez Ù A(z)) by lemma 2(i). 

 
 PROOF OF (iii).    
 1 For the ® half, suppose $1z(Ez Ù A(z)). Then ¬E!(x×A(x)) by lemma 2(i). Hence by 

the strength of identity (y = ℩x(Ex Ù A(x)) Ú y=x×A(x)) « y = ℩x(Ex Ù A(x)), whence 
x:A(x) º ℩x(Ex Ù A(x)) by the definition of x:A(x). Since $1z(Ez Ù A(z)), it follows 
that E!℩x(Ex Ù A(x)), whence x:A(x) = ℩x(Ex Ù A(x)). 

 2 For the ¬ half, suppose x:A(x) = ℩x(Ex Ù A(x)). Then E!℩x(Ex Ù A(x)) by the strength 
of identity, whence $1x(Ex Ù A(x)). 
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 PROOF OF (iv).    
1 For the ® half, suppose $z(Ez Ù A(z)). Then mz(Ez Ù A(z)) Ú $1z(Ez Ù A(z)). If 

mz(Ez Ù A(z)), then E!(x:A(x)) by lemma 2(ii) and the strength of identity. If $1z(EzÙ 
A(z)), then E!(x:A(x)) by lemma 2(iii) and the strength of identity. 

2 For the ¬ half, suppose E!(x:A(x)). Then x:A(x) = ℩x(Ex Ù A(x)) Ú x:A(x) = x×A(x) by 
the definition of x:A(x). If x:A(x) = ℩x(Ex Ù A(x)), then $1z(Ez Ù A(z)) by lemma 
2(iii). If x:A(x) = x×A(x), then mz(Ez Ù A(z)) by lemma 2(ii). So either way it follows 
that $z(Ez Ù A(z)). 

 
 

LEMMA 3.  What there is  (i) E!a « Ua Ú Ma 
      (ii) Ma « Sa Ú Ca 
      (iii) Ea « mxUx Ù (Ua Ú Sa)   
     
 PROOF OF (i). 
 1  For the ® half, suppose E!a. Either Ma or ¬Ma. If Ma, a fortiori Ua Ú Ma. If ¬Ma 

then by definition Ua, a fortiori Ua Ú Ma. 
 2  For the ¬ half, suppose Ua Ú Ma. By the definition of U, if Ua then E!a. By the 

definition of M, if Ma then mx xÎa, whence by axiom 1(i) E!a. 
 
 PROOF OF (ii). 
 1 For the ® half, suppose Ma. Either Sa or ¬Sa. If Sa, a fortiori Sa Ú Ca. If ¬Sa then 

Ca by the definitions of S and C; a fortiori Sa Ú Ca. 
 2  For the ¬ half, suppose Sa Ú Ca. If Sa then Ma by the definition of S. If Ca then Ma 

by the definition of C. 
 
 PROOF OF (iii). 

1 For the ® half, suppose Ea. Then for some y, aÎy, by the definition of E, whence E!a 
by axiom 1(i). Hence $x xÎy, whence My by axiom 1(iv). Hence mxUx by axiom 
2(ii). Also from Ea and E!a it follows that Ua Ú Sa by lemmas 3(i) and 3(ii) and the 
definition of C. 

 2  For the ¬ half, suppose mxUx Ù (Ua Ú Sa). If Ua, then Ea by axiom 2(i). If Sa, then 
Ea by the definition of S. 

  
  
 LEMMA 4.  Exhaustive description and reduction 
 a=x×A(x) «  Ma Ù "y(yÎa«(Ey Ù A(y))) 
  
 PROOF.  
 1  For the ® half, suppose a=x×A(x). Then a=℩z(Mz Ù "y(yÎz«(Ey Ù A(y)))) by the 

definition of x×A(x), whence Ma Ù "y(yÎa«(Ey Ù A(y))). 
 2  For the ¬ half, suppose Ma Ù "y(yÎa«(Ey Ù A(y))). Then by lemma 3(i) E!a. For a 

reductio suppose Mx Ù "y(yÎx«(Ey Ù A(y))) for some x¹a. Then "y(yÎx«yÎa), 
whence x=a by axiom 1(ii). Contradiction. Hence a = ℩z(Mz Ù "y(yÎz«(Ey Ù 
A(y)))), whence a=x×A(x) by the definition of x×A(x). 
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 LEMMA 5. Membership (i)  aÎb ® Ea Ù Mb   
     (ii) a=x×xÎa«Ma 

(iii) a=x:xÎa«Ma 
 

PROOF OF (i).   Suppose aÎb. Then by axiom 1(i) E!b. Hence $x aÎx, whence Ea by the 
definition of E. Also by axiom 1(i) E!a. Hence $x xÎb, whence Mb by axiom 1(iv). 

 
 PROOF OF (ii).  
 1  For the ® half, suppose a=x×xÎa. Then Ma by lemma 4.  

2 For the ¬ half, suppose Ma. Since "x(xÎa«(Ex Ù xÎa)) by lemma 5(i), it follows 
that a=x×xÎa by lemma 4. 

 
 PROOF OF (iii).  

1 For the ® half, suppose a=x:xÎa. Then E!(x:xÎa) by the strength of identity, whence 
$z zÎa by lemma 2(iv). Hence Ma by axiom 1(iv). 

2 For the ¬ half, suppose Ma. Then mz(Ez Ù zÎa) by the definition of M and lemma 
5(i), whence x:xÎa = x×xÎa by lemma 2(ii). Hence a=x:xÎa by lemma 5(ii).  

  
 
 LEMMA 6.  Submultitude (i) aÍb®Mb 
     (ii) Ma«aÍa 
     (iii) aÌb®$x(xÏa Ù xÎb) 
 

PROOF OF (i).   Suppose aÍb. Then Ma by the definition of Í, whence mx xÎa by the 
definition of M. Also "x(xÎa®xÎb) by the definition of Í. Hence mx xÎb, whence Mb 
by the definition of M. 

 
 PROOF OF (ii).  
 1  For the ® half suppose Ma. Since "x(xÎa®xÎa), it follows by the definition of Í 

that aÍa. 
 2  For the ¬ half suppose aÍa. Then Ma by the definition of Í. 
 

PROOF OF (iii).   Suppose aÌb. Then aÍb and a¹b by the definition of Ì, whence Ma and 
"x(xÎa®xÎb) by the definition of Í. Also by lemma 6(i), Mb. For a reductio suppose 
that "x(xÎb®xÎa). Then by axiom 1(ii), a=b. Contradiction. Hence $x(xÏa Ù xÎb). 

  
 
 LEMMA 7.  Zilch  (i)  ¬E!O 
     (ii) ¬UO Ù ¬MO      
     (iii) ¬SO Ù ¬CO  
     (iv) ¬EO 
     (v) aÏO Ù OÏa 
     (vi) a⊈O Ù O⊈a 

     (vii) ¬VO 
     (viii) HO 
     (ix) ¬E!a « aºO 
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PROOF OF (i).   Since ¬$x x¹x, it follows that ¬E!℩x(x¹x), whence ¬E!O by the definition 
of O. 

 
 PROOF OF (ii).   Immediate by lemmas 3(i) and 7(i). 
 
 PROOF OF (iii).   Immediate by lemmas 3(ii) and 7(ii). 
 
 PROOF OF (iv).   Immediate by lemmas 3(iii), 7(ii) and 7(iii). 
 
 PROOF OF (v).   Immediate by axiom 1(i) and 7(i).  
 

PROOF OF (vi).   a⊈O follows from lemmas 6(i) and 7(ii); O⊈a follows from lemma 7(ii) 
and the definition of Í. 

 
PROOF OF (vii).   Immediate by lemma 7(i), the definition of V, and the strength of identity. 

 
 PROOF OF (viii).   Immediate by lemma 7(v) and the definition of H. 
 
 PROOF OF (ix). 
 1  For the ® half suppose ¬E!a. Then aºO by lemma 7(i) and the definition of º. 
 2  For the ¬ half suppose aºO. By lemma 7(i) and the strength of identity, a¹O, whence 

¬E!a by the definition of º. 
 
  
 LEMMA 8.  Levels     Let Va, then  (i)  Ma 
      (ii) Ea 
      (iii) Sa 
      (iv)  "y(Uy®yÎa). 
 

PROOF OF (i).   From the hypothesis and the definitions of V, V1 and V2, it follows that 
either a=accum(z) or a=acc(z). If a=accum(z), then a=x×(Ux Ú xÎz Ú xÍz) by the 
definition of accum, whence Ma by lemma 4. If a=acc(z), then a=x×(Ux Ú $y(yÎz Ù (xÎy 
Ú xÍy))) by the definition of acc, whence Ma by lemma 4.  

 
PROOF OF (ii).   From the hypothesis it follows that aÎx for some x by axiom 2(v), whence 
Ea by the definition of E. 

 
PROOF OF (iii).   Immediate from the hypothesis by lemmas 8(i) and 8(ii), and the 
definition of S. 

 
PROOF OF (iv).   From the hypothesis and lemma 8(i) it follows that "x(Ux®Ex) by 
lemma 3(i) and axioms 2(i) and 2(ii). From the hypothesis and the definitions of V, V1 and 
V2, either a=accum(z) or a=acc(z). If a=accum(z), then a=x×(Ux Ú xÎz Ú xÍz) by the 
definition of accum, whence "y(Uy®yÎa) by lemma 4. If a=acc(z), then a=x×(Ux Ú 
$y(yÎz Ù (xÎy Ú xÍy))) by the definition of acc, whence "y(Uy®yÎa) by lemma 4.  
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 LEMMA 9.  The first two levels  (i)  V1 º z×Uz º acc(O) º acc(V1) 
      (ii) E!V1 « MV1 Ù "y(yÎV1«Uy)  
      (iii) $xMx « V1 = z×Uz 
      (iv) V2 º z×(Uz Ú zÍV1) 
      (v) E!V2 « MV2 Ù "y(yÎV2«(Uy Ú yÍV1)) 
      (vi) E!V2 « E!V1 

      (vii) E!V2 « V1ÎV2  
      (viii) V1¹V2 
 
 PROOF OF (i).  

1  By definition V1 º accum(O) º z×(Uz Ú zÎO Ú zÍO). By lemmas 7(v) and 7(vi), (Uz 
Ú zÎO Ú zÍO)«Uz, whence V1 º z×Uz by lemma 1(i).  

 2  By the definition of acc, acc(O) º z×(Uz Ú $y(yÎO Ù (zÎy Ú zÍy))). By lemma 7(v), 
(Uz Ú $y(yÎO Ù (zÎy Ú zÍy)))«Uz, whence acc(O) º z×Uz by lemma 1(i).  

 3  By the definition of acc, acc(V1) º z×(Uz Ú $y(yÎV1 Ù (zÎy Ú zÍy))). If yÎV1 then 
E!V1 by axiom 1(i), whence Uy by lemma 4. Hence ¬My by the definition of U, 
whence by lemmas 5(i) and 6(i), (Uz Ú $y(yÎV1 Ù (zÎy Ú zÍy)))«Uz. Hence 
acc(V1) º z×Uz by lemma 1(i). 

 
 PROOF OF (ii).    

1 For the ® half suppose E!V1. Then V1 = z×Uz by lemma 9(i). Hence MV1 Ù 
"y(yÎV1«(Ey Ù Uy)) by lemma 4, whence MV1 Ù "y(yÎV1«Uy)) by lemma 8(iv) 
and the definition of V. 

2 For the ¬ half suppose MV1 Ù "y(yÎV1«Uy). Then E!V1 by lemma 3(i). 
 
 PROOF OF (iii).    

1 For the ® half suppose $xMx. Then mx(Ex Ù Ux) by axioms 2(i) and 2(ii). Hence 
E!(z×Uz) by lemma 2(i), whence V1 = z×Uz by lemma 9(i).  

2 For the ¬ half, suppose V1 = z×Uz. Then E!(z×Uz) by the strength of identity, whence 
$xMx by the definition of z×Uz. 

 
 PROOF OF (iv).   By definition V2 º accum(V1) º  z×(Uz Ú zÎV1 Ú zÍV1). Suppose ¬E!V1 
Then ¬$y yÎV1 by axiom 1(i). Suppose instead E!V1. Then zÎV1«Uz by lemma 9(ii). So 
either way (Uz Ú zÎV1 Ú zÍV1)«(Uz Ú zÍV1). Hence V2 º z×(Uz Ú zÍV1) by lemma 1(i).  

 
 PROOF OF (v).    

1 For the ® half suppose E!V2. Then V2=z×(Uz Ú zÍV1) by lemma 9(iv). Hence MV2 Ù 
"y(yÎV2«(Ey Ù (Uy Ú yÍV1))) by lemma 4, whence "y(yÎV2«(Uy Ú yÍV1)) by 
lemmas 8(iii) and 8(iv), axiom 2(iii), and the definitions of S and V. 

2 For the ¬ half suppose MV2 Ù "y(yÎV2«(Uy Ú yÍV1)). Then E!V2 by lemma 3(i). 
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 PROOF OF (vi).    
1 For the ® half suppose E!V2. Then MV2 by lemma 9(v), whence V1 = z×Uz by lemma 

9(iii), whence E!V1 by the strength of identity. 
2 For the ¬ half suppose E!V1. Then V1 = z×Uz by lemma 9(i), whence mz(Ez Ù Uz) by 

lemma 2(i), a fortiori mz(Ez Ù (Uz Ú zÍV1). Hence E!z×(Uz Ú zÍV1) by lemma 2(i), 
whence E!V2 by lemma 9(iv).  

 
 PROOF OF (vii).    

1 For the ® half suppose E!V2. Then E!V1 by lemma 9(vi), whence MV1 by lemma 9(ii). 
Hence V1ÍV1 by lemma 6(ii), whence V1ÎV2 by lemma 9(v). 

2 For the ¬ half suppose V1ÎV2. Then E!V2 by axiom 1(i). 
 

 PROOF OF (viii).   For a reductio suppose V1=V2. Then E!V1 and E!V2 by the strength of 
identity. Hence V1ÎV2 by lemma 9(vii), whence V1ÎV1. By lemma 9(ii) UV1, whence 
¬MV1 by the definition of U. But MV1 also by lemma 9(ii). Contradiction. Hence V1¹V2.  

 
 
 
  
 
 
 THEOREM 1.  Separation    
 (i)  Sx Ù my(yÎx Ù A(y)) ® S(z×zÎx Ù A(z)) 
 (ii)  Sx « $u xÍu 
 (iii)  S(x×A(x)) « (my(Ey Ù A(y)) Ù $u"z((Ez Ù A(z))®zÎu))   
 

PROOF OF (i).   Suppose Sx Ù my(yÎx Ù A(y)). Then my(Ey Ù yÎx Ù A(y)) by lemma 5(i), 
whence E!(z×zÎx Ù A(z)) by lemma 2(i). Hence M(z×zÎx Ù A(z)) Ù "y(yÎz×(zÎx Ù 
A(z))®yÎx) by the definition of z×(zÎx Ù A(z)), whence z×(zÎx Ù A(z)) Í x by the 
definition of Í. Hence S(z×zÎx Ù A(z)) by axiom 2(iii). 

 
PROOF OF (ii). The ® half is axiom 2(iv). For the ¬ half suppose xÍu for some level u. 
Then Su by lemma 8(iii), whence Sx by axiom 2(iii).  

 
 PROOF OF (iii).  

1 For the ® half suppose S(x×A(x)). Then E!(x×A(x)) by lemmas 3(i) and 3(ii), whence 
M(x×A(x)) Ù "y(yÎx×A(x) « Ey Ù A(y)) by lemma 4. Hence my yÎx×A(x) by the 
definition of M, whence my(Ey Ù A(y)). By axiom 2(iv), $u x×A(x)Íu. Hence 
$u"z(zÎx×A(x) ® zÎu) by the definition of Í, whence $u"z(Ez Ù A(z) ® zÎu). 

2 For the ¬ half suppose my(Ey Ù A(y)) and "z(Ez Ù A(z) ® zÎu) for some level u. 
Then E!(x×A(x)) by lemma 2(i). Hence M(x×A(x)) Ù "z(zÎx×A(x) « Ez Ù A(z)) by 
lemma 4, whence M(x×A(x)) Ù "z(zÎx×A(x) ® zÎu). Hence $u x×A(x)Íu by the 
definition of Í, whence S(x×A(x)) by theorem 1(ii).  
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 THEOREM 2.  Intersection  
(i) $z(zÎx Ù zÎy)«E!(xÇy) 
(ii) Let $1z(zÎx Ù zÎy), then E(xÇy). 
(iii) Let mz(zÎx Ù zÎy), then M(xÇy).  
(iv) Let mz(zÎx Ù zÎy) and (Sx Ú Sy), then S(xÇy). 

 
 PROOF OF (i).   By lemma 5(i), $z(zÎx Ù zÎy)«$z(Ez Ù zÎx Ù zÎy), whence $z(zÎx Ù 
zÎy)«E!z:(zÎx Ù zÎy) by lemma 2(iv). Hence $z(zÎx Ù zÎy)«E!(xÇy) by the 
definition of Ç. 

 
 PROOF OF (ii).   From the hypothesis it follows that $1z(Ez Ù zÎx Ù zÎy) by lemma 5(i), 
whence z:(zÎx Ù zÎy)=℩z(Ez Ù zÎx Ù zÎy) by lemma 2(iii). Hence E(z:zÎx Ù zÎy), 
whence E(xÇy) by the definition of Ç. 

    
PROOF OF (iii).   From the hypothesis it follows that mz(Ez Ù zÎx Ù zÎy) by lemma 5(i), 
whence z:(zÎx Ù zÎy) = z×(zÎx Ù zÎy) by lemma 2(ii). Hence M(z:zÎx Ù zÎy) by lemma 
4, whence M(xÇy) by the definition of Ç. 
 
PROOF OF (iv).   From the hypothesis it follows that mz(Ez Ù zÎx Ù zÎy) by lemma 5(i); a 
fortiori mz(zÎx Ù zÎy). If Sx then S(z×zÎx Ù zÎy) by theorem 1(i). If Sy then S(z×zÎx Ù 
zÎy) by theorem 1(i). So either way S(z×zÎx Ù zÎy). Hence S(xÇy) by lemma 2(ii) and 
the definition of Ç. 

 
 
 THEOREM 3.  Histories I  Let v=acc(h), then (i)  xÎh ® xÎv 
  (ii)  v¹V1 ® Mh Ù h¹V1. 
 

PROOF OF (i).   Suppose xÎh. Then Ex by lemma 5(i). Also by axiom 1(i) it follows that 
E!x, whence Ex Ù (Ux Ú Mx) by lemma 3(i). Suppose Ex Ù Ux. Then a fortiori Ex Ù (Ux 
Ú $y(yÎh Ù (xÎy Ú xÍy))). Suppose instead Ex Ù Mx. Then by lemma 6(ii), xÍx. Since 
xÎh, it follows that Ex Ù (Ux Ú $y(yÎh Ù (xÎy Ú xÍy))). So either way Ex Ù (Ux Ú 
$y(yÎh Ù (xÎy Ú xÍy))). From the hypothesis by the definition of acc, v=x×(Ux Ú 
$y(yÎh Ù (xÎy Ú xÍy))), whence xÎv by lemma 4. 

 
PROOF OF (ii).   Suppose v¹V1. For a reductio suppose hºO. Then from the hypothesis by 
lemma 9(i) v = acc(O) = V1. Contradiction. Hence Sh by the definition of H, whence Mh 
by the definition of S. For a reductio suppose h=V1. Then from the hypothesis by lemma 
9(i) v = acc(V1) = V1. Contradiction. Hence h¹V1. 

 
 
  
 THEOREM 4.  Histories II Let h¹V1 and xÎh, then Mx. 
 

PROOF.   Since by hypothesis h¹V1 and xÎh, it follows that either x=accum(z) or x=acc(z). 
by the definitions of H, whence Mx by lemma 4 and the definitions of accum and acc. 
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 THEOREM 5.  Histories III Let h¹V1, xÎh, x¹V1 and x¹V2. Then  
  (i)  x=acc(hÇx)  
  (ii)  E!(hÇx) 
  (iii)  mz(Ez Ù zÎh Ù zÎx) 
 (iv) S(hÇx). 
 

PROOF OF (i).   Since by hypothesis h¹V1 and xÎh and x¹V1 and x¹V2, it follows by the 
definition of H that x=acc(hÇx). 

 
PROOF OF (ii).   For a reductio suppose that hÇxºO. Then by theorem 5(i) x=acc(O), 
whence x=V1 by lemma 9(i).  Contradiction. Hence E!(hÇx). 

 
 PROOF OF (iii). 
 1 By theorem 5(ii) E!(hÇx) and so by the definition of Ç and lemma 2(iv), either 

$1z(Ez Ù zÎh Ù zÎx) or mz(Ez Ù zÎh Ù zÎx). For a reductio suppose that Ez1 Ù z1Îh 
Ù z1Îx for some unique z1. Then by the definition of Ç and lemma 2(iii), hÇx=z1. 
Hence by theorem 5(i) x=acc(z1).  

 2 For a reductio suppose hÇz1ºO. Since h¹V1 and z1Îh, it follows by the definition of 
H that z1=accum(hÇz1) or z1=acc(hÇz1). Suppose z1=accum(hÇz1). Then z1 = 
accum(O) = V1 by the definition of V1. Suppose z1=acc(hÇz1). Then z1 = acc(O) = V1 
by lemma 9(i). So either way z1=V1. Hence x = acc(z1) = acc(V1), whence by lemma 
9(i), x=V1. Contradiction. Hence E!(hÇz1). 

 3 Returning to the reductio initiated in step 1, since E!(hÇz1) it follows by the definition 
of Ç and lemma 2(iv) that Ez2 Ù z2Îh Ù z2Îz1 for some z2, whence z2¹z1 by axiom 
1(iii). Now by the definition of acc, x = acc(z1) = z×(Uz Ú $y(yÎz1 Ù (zÎy Ú zÍy))). 
Since h¹V1 and z2Îh, it follows by theorem 4 that Mz2. Hence by lemma 6(ii), z2Íz2. 
Since z2Îz1 and z2Íz2 and Ez2, it follows that z2Îx by lemma 4. Hence z1Îh and 
z1Îx and z2Îh and z2Îx and z2¹z1. Contradiction. Hence mz(Ez Ù zÎh Ù zÎx). 

 
 PROOF OF (iv). Since by hypothesis xÎh, it follows by axiom 1(i) that E!h, whence Sh by 
the definition of H. Since mz(zÎh Ù zÎx) by theorem 5(iii), it follows that S(hÇx) by 
theorem 2(iv).   

 
 
 THEOREM 6.  Histories IV Let h¹V1 and xÎh, then H(hÇx) and Vx. 
 

PROOF.   By hypothesis xÎh, whence E!x Ù E!h by axiom 1(i), and Mh by lemma 5(i). 
Hence $xMx, whence V1 = z×Uz by lemma 9(iii). Hence E!V1 by the strength of identity, 
whence E!V2 by lemma 9(vi). It also follows from $xMx that "x(Ux®Ex) by axioms 2(i) 
and 2(ii). We consider three cases separately: (i) x=V1, (ii) x=V2, (iii) x¹V1 and x¹V2. 
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 CASE (i) x=V1  
Since x=V1 it follows that Vx by the definition of V, and also that x = z×Uz. Hence 
yÎx®Uy by lemma 4. Also yÎh®¬Uy by theorem 4 and the definition of U, whence 
¬$z(zÎh Ù zÎx). Hence hÇxºO by theorem 2(i) and lemma 7(ix), whence H(hÇx) by 
lemma 7(viii). 

 
 CASE (ii) x=V2 
 1 Since x=V2 it follows that Vx by the definition of V. Since h¹V1 and xÎh, then 

x=accum(hÇx) by the definition of H. 
 2 For a reductio suppose that hÇxºO. Then x = accum(O) = V1 by the definition of V1. 

But by lemma 9(viii), V1¹V2. Contradiction. Hence E!hÇx.  
 3 Since hÇx =df y:(yÎh Ù yÎx), it follows that E!(y:yÎh Ù yÎx), whence by lemma 

2(iv), Ey Ù yÎh Ù yÎx for some y. We shall prove that there is exactly one such y, 
namely V1. 

 4 Since x=V2, it follows by lemma 9(iv) that x = z×(Uz Ú zÍV1) = z×(Uz Ú zÍz1×Uz1). 
Since yÎx, it follows by lemma 4 that Uy Ú yÍz1×Uz1. Since yÎh, it follows by 
theorem 4 and the definition of U that ¬Uy. Hence yÍz1×Uz1.  

 5 For a reductio suppose that yÌz1×Uz1. Then by lemma 6(iii), y1Îz1×Uz1 and y1Ïy for 
some y1, whence by lemma 4, Uy1 and y1Ïy. By lemmas 9(ii) and 9(v), 
"x(Ux®xÎV1) and "x(Ux®xÎV2), whence y¹V1 and y¹V2. Since h¹V1 and yÎh 
and y¹V1 and y¹V2, it follows that y = acc(hÇy) = x×(Ux Ú $y(yÎhÇy Ù (xÎy Ú 
xÍy))) by the definitions of H and acc. Since Uy1 and "x(Ux®Ex), it follows by 
lemma 4 that y1Îy. Contradiction. Hence yËz1×Uz1. Since yÍ z1×Uz1, it follows by the 
definition of Ì that y = z1×Uz1 = V1, whence V1 = ℩y(Ey Ù yÎh Ù yÎx). Hence $1y(Ey 
Ù yÎh Ù yÎx), whence by lemma 2(iii) and the definition of Ç, hÇx = V1. Also SV1 

by the definition of V and lemma 8(iii). Hence H(hÇx) by the definition of H. 
 
 CASE (iii) x¹V1 and x¹V2 
 1 By theorems 5(i), 5(ii), 5(iii) and 5(iv), x=acc(hÇx), E!(hÇx), mz(Ez Ù zÎh Ù zÎx), 
  and S(hÇx). By the definition of Ç and lemma 2(ii), hÇx = z×(zÎh Ù zÎx). Hence by  
  lemmas 4 and 5(i) yÎhÇx « yÎh Ù yÎx, whence mz zÎhÇx. 
 2  Consider an arbitrary z1 such that z1ÎhÇx. Then zÎz1®$y(yÎhÇx Ù zÎy), a fortiori 

zÎz1®(Uz Ú $y(yÎhÇx Ù (zÎy Ú zÍy))), whence by lemma 5(i), zÎz1®(Ez Ù (Uz Ú 
$y(yÎhÇx Ù (zÎy Ú zÍy))). By the definition of acc, x = acc(hÇx) = z×(Uz Ú 

  $y(yÎhÇx Ù (zÎy Ú zÍy))). Hence by lemma 4, zÎz1®zÎx. By the definition of Ç, 
(hÇx)Çz1 º y:(yÎhÇx Ù yÎz1), whence (hÇx)Çz1 º y:(yÎh Ù yÎx Ù yÎz1) by 
lemma 1(ii). Since zÎz1®zÎx, it follows by lemma 1(ii) that (hÇx)Çz1 º y:(yÎh Ù 
yÎz1), whence (hÇx)Çz1 º hÇz1 by the definition of Ç. 

 3 Since z1ÎhÇx, it follows that z1Îh. Suppose z1=V1 Ú z1=V2. Since h¹V1 and z1Îh, 
then z1 = accum(hÇz1) by the definition of H, whence z1 = accum((hÇx)Çz1). 
Suppose instead that z1¹V1 Ù z1¹V2. Then by the definition of H it follows that z1 = 
acc(hÇz1), whence z1 = acc((hÇx)Çz1). Since z1 is arbitrary, we can generalize to get 
"y(yÎhÇx® (y=V1 Ú y=V2 ® y=accum((hÇx)Çy)) Ù (y¹V1 Ù y¹V2 ®  

  y=acc((hÇx)Çy))), which together with S(hÇx) entails H(hÇx) by the definition of 
H.  

 4 Since E!(hÇx), H(hÇx), and x=acc(hÇx), it follows that Vx by the definition of V. 
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THEOREM 7. Î is well-founded on any history     Let xÍh, then $y(yÎx Ù xÇyºO). 
 

PROOF.   The hypothesis xÍh entails Mx by the definition of Í. Hence $yMy by lemma 
3(i), whence mzUz by axiom 2(ii). Also from $yMy it follows that V1 = z×Uz by lemma 
9(iii). Hence E!V1 by the strength of identity, whence E!V2 by lemma 9(vi). We consider 
two cases separately: (i) h=V1 and (ii) h¹V1. 

 
 CASE (i) h=V1 

Since by hypothesis xÍh, it follows that yÎx®yÎh by the definition of Í. Hence 
yÎx®yÎV1, whence yÎx®Uy by lemma 9(ii). Hence yÎx®¬$z zÎy by the definition of 
U and axiom 1(iv). Since Mx, it follows by the definition of M that my yÎx. Hence 
$y(yÎx Ù ¬$z(zÎx Ù zÎy)), whence $y(yÎx Ù xÇyºO) by theorem 2(i) and lemma 7(ix). 

 
 CASE (ii) h¹V1 
 1 Since by hypothesis xÍh, it follows that yÎx®yÎh, by the definition of Í. Since 

h¹V1, it follows by theorem 6 that yÎx®Vy. For a reductio suppose that ¬$y(yÎx Ù 
¬$z(zÎx Ù zÎy), whence "y(yÎx®$z(zÎx Ù zÎy)). Since Mx, it follows by the 
definition of M that my yÎx. Consider an arbitrary level v such that vÎx. Then wÎx Ù 
wÎv for some level w. By the same reasoning applied to w, it follows from wÎx that 
w1Îx Ù w1Îw for some level w1. And similarly w2Îx Ù w2Îw1 for some level w2. 
Also since yÎx®yÎh, it follows that vÎh and wÎh. 

 2 Let b be short for z×"y(yÎx®zÎy). We shall prove (i) E!b, (ii) bÍw,  
  (iii) v=acc(hÇv), (iv) mz(Ez Ù zÎh Ù zÎv), and (v) "y(yÎx®bÎy).  
 3 For (i), since yÎx®Vy (from step 1), and Vy®"z(Uz®zÎy) by lemma 8(iv), it 

follows that "z(Uz®"y(yÎx®zÎy)). Since mzUz, it follows that mz(Ez Ù 
"y(yÎx®zÎy)) by axiom 2(i), whence E!b by lemma 2(i).  

 4 For (ii), since wÎx, it follows that "z("y(yÎx®zÎy)®zÎw). Since E!b, it follows 
that b = z×"y(yÎx®zÎy). Hence by lemma 4 Mb and also zÎb®"y(yÎx®zÎy), 
whence zÎb®zÎw. Hence bÍw by the definition of Í. 

 5 For (iii) and (iv), we shall first prove (iiia) v¹V1 and (iiib) v¹V2. 
 6 For (iiia), for a reductio suppose that v = V1 = z×Uz. Since wÎv, it follows by lemma 

9(ii) that Uw. But by lemma 8(i), Mw, whence by the definition of U, ¬Uw. 
Contradiction. Hence v¹V1. 

 7 For (iiib), for a reductio suppose that v=V2. Since wÎv, it follows by lemma 9(v) that 
Uw Ú wÍV1. Since ¬Uw it follows that wÍV1. Hence w1ÎV1 by the definition of Í, 
whence Uw1 by lemma 9(ii). But by lemma 8(i), Mw1, whence ¬Uw1 by the 
definition of U. Contradiction. Hence v¹V2.  

 8 Since h¹V1 and vÎh and v¹V1 and v¹V2, it follows by theorems 5(i) and 5(iii) that 
v=acc(hÇv) and mz(Ez Ù zÎh Ù zÎv). 

 9 For (vi), since mz(Ez Ù zÎh Ù zÎv), it follows by the definition of Ç and lemma 2(ii) 
that hÇx = z×(zÎh Ù zÎx). Since wÎh Ù wÎv, it follows by lemmas 4 and 5(i) that 
wÎhÇv. By the definition of acc, v = acc(hÇv) = z×(Uz Ú $y(yÎhÇv Ù (zÎy Ú 
zÍy))). Since bÍw, it follows that Eb by theorem 1(ii) and the definition of S. Since 
Eb and bÍw and wÎhÇv, it follows that bÎacc(hÇv) by lemma 4, whence bÎv. 
Since bÎv for arbitrary vÎx, we can generalize to get "y(yÎx®bÎy). 
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 10 We can now proceed to the reductio initiated in step 1. Since by lemma 4 (Ez Ù 
"y(yÎx®zÎy))®zÎb then in particular (Eb Ù "y(yÎx®bÎy)®bÎb. Since (Eb Ù 
"y(yÎx®bÎy), it follows that bÎb, contrary to axiom 1(iii). Hence $y(yÎx Ù 
¬$z(zÎx Ù zÎy)), whence $y(yÎx Ù xÇyºO) by theorem 2(i) and lemma 7(ix). 

 
 
 THEOREM 8.  Levels are transitive sets Let xÎy and yÎv, then xÎv. 
 

PROOF.   From the hypothesis xÎy it follows that Ex Ù My by lemma 5(i), whence by the 
definition of U, ¬Uy. Since My it follows that $z Mz by lemma 3(i), whence V1 = z×Uz by 
lemma 9(iii). Hence E!V1 by the strength of identity, whence E!V2 by lemma 9(vi). From 
the hypothesis yÎv it follows that E!v by axiom 1(i). We tackle three cases separately: (i) 
v=V1, (ii) v=V2 and (iii) v¹V1 and v¹V2. 

 
 CASE (i) v=V1 

From the hypothesis yÎv it follows by lemma 9(ii) that Uy. But also ¬Uy. Hence xÎv by 
the tautology AÙ¬A®B. 

 
 CASE (ii) v=V2 

From the hypothesis yÎv it follows by lemma 9(v) that Uy Ú yÍV1. Since ¬Uy, it follows 
that yÍV1. Since xÎy, it follows that xÎV1 by the definition of Í. Hence Ux by lemma 
9(ii). Hence xÎV2 by lemma 9(v), whence xÎv. 

 
 CASE (iii) v¹V1 and v¹V2 
 1 By the definition of V, v=acc(h) for some history h. For a reductio suppose that h=V1. 

Then v = acc(V1) = V1 by lemma 9(i). Contradiction. Hence h¹V1, whence by the 
definition of acc, theorem 6 and lemma 1(i), v = z×(Uz Ú $u(uÎh Ù (zÎu Ú zÍu))). 
Since yÎv, it follows by lemma 4 that Uy Ú $u(uÎh Ù (yÎu Ú yÍu)). Since ¬Uy, it 
follows that yÎw Ú yÍw for some wÎh. We tackle three cases separately: (a) w=V1, 
(b) w=V2, and (c) w¹V1 and w¹V2.  

 2 For case (a), for a reductio suppose yÎw. Then yÎV1, whence by lemma 9(ii), Uy. 
Contradiction. Hence yÍw. Since xÎy, it follows by the definition of Í that xÎw. 
Since v = z×(Uz Ú $u(uÎh Ù (zÎu Ú zÍu))), it follows by lemma 4 that xÎv.  

 3 For case (b) suppose yÎw. Then yÎV2, whence Uy Ú yÍV1 by lemma 9(v). Since 
¬Uy, it follows that yÍV1. Since xÎy, it follows by the definition of Í that xÎV1, 
whence Ux by lemma 9(ii). Hence by lemma 4 xÎv. Suppose instead that yÍw. Since 
xÎy, it follows by the definition of Í that xÎw, whence xÎv by lemma 4. 

 4 For case (c) we deal with two subcases separately: (ci) $1u(uÎh Ù (yÎu Ú yÍu)), and 
(cii) mu(uÎh Ù (yÎu Ú yÍu)). 

 5 For case (ci), uÎh Ù (yÎu Ú yÍu) for some unique level u, namely w. Since h¹V1, 
wÎh, w¹V1 and w¹V2, it follows that w=acc(hÇw) and mz(Ez Ù zÎh Ù zÎw) by 
theorems 5(i) and 5(iii). Hence by the definition of acc, w = z×(Uz Ú $z1(z1ÎhÇw Ù 
(zÎz1 Ú zÍz1))). For a reductio suppose yÎw. Then by lemma 4, Uy Ú $z1(z1ÎhÇw Ù 
(yÎz1 Ú yÍz1)). Since ¬Uy, it follows that $z1(z1ÎhÇw Ù (yÎz1 Ú yÍz1)). Since 
mz(Ez Ù zÎh Ù zÎw), it follows by the definition of Ç and lemma 2(ii) that hÇw = 
z×(zÎh Ù zÎw), whence by lemma 4 for some z1, z1Îh Ù z1Îw Ù (yÎz1 Ú yÍz1). 
Since z1Îh and h¹V1, it follows by theorem 6 that Vz1. Since z1Îw, it follows by 
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axiom 1(iii) that z1¹w. But z1Îh Ù (yÎz1 Ú yÍz1) and Vz1 and z1¹w are together 
contrary to $1u(uÎh Ù (yÎu Ú yÍu)). Hence yÍw. Since xÎy, it follows by the 
definition of Í that xÎw, and so by lemma 4 xÎv. 

 6 For case (cii) let b be short for u×(uÎh Ù (yÎu Ú yÍu)). Since mu(uÎh Ù (yÎu Ú 
yÍu)), it follows that E!b by lemmas 2(i) and 8(ii), whence b = u×(uÎh Ù (yÎu Ú 
yÍu)). Hence by lemma 4, Mb and also zÎb®zÎh, whence by the definition of Í, 
bÍh. Hence by lemma 7(ix) and theorems 2(i) and 7, ¬$z2(z2Îb Ù z2Îz1) for some 
z1Îb. Hence by lemma 4, Vz1 Ù z1Îh Ù (yÎz1 Ú yÍz1). We deal with three subcases 
separately: (ciia) z1=V1, (ciib) z1=V2, and (ciig) z1¹V1 Ù z1¹V2.  

 7 In case (ciia), it follows that xÎv by the reasoning in step 2. 
 8 In case (ciib), it follows that xÎv by the reasoning in step 3. 
 9 In case (ciig), since h¹V1, z1Îh, z1¹V1 and z1¹V2, it follows that z1=acc(hÇz1) and 

mz(Ez Ù zÎh Ù zÎz1) by theorems 5(i) and 5(iii). For a reductio suppose yÎz1. Then 
yÎacc(hÇz1), whence by the definition of acc, yÎz×(Uz Ú $z3(z3ÎhÇz1 Ù (zÎz3 Ú 
zÍz3))). Since ¬Uy, it follows by lemma 4 that yÎz3 Ú yÍz3 for some z3ÎhÇz1. Since 
mz(Ez Ù zÎh Ù zÎz1), it follows by the definition of Ç and lemma 2(ii) that 
hÇz1=z×(zÎh Ù zÎz1), whence by lemma 4 z3Îh Ù z3Îz1. Since h¹V1 and z3Îh, it 
follows by theorem 6 that Vz3. Since Vz3 and z3Îh Ù (yÎz3 Ú yÍz3), it follows by 
lemmas 4 and 5(i) that z3Îb. But z3Îb and z3Îz1 are together contrary to ¬$z2(z2Îb 
Ù z2Îz1). Hence yÏz1, whence yÍz1. Since xÎy, it follows by the definition of Í that 
xÎz1, whence xÎv by lemma 4.  

 
  
 COROLLARY.  Let My and yÎv, then yÍv. 
 

PROOF.   Since yÎv, it follows that xÎy®xÎv by theorem 8, which together with My 
entails yÍv by the definition of Í. 

 
 
 THEOREM 9.   Levels are hereditary sets Let xÍy and yÎv, then xÎv. 
 

PROOF.   From the hypothesis xÍy it follows that My by lemma 6(i), whence by the 
definition of U, ¬Uy. Since My it follows that $z Mz by lemma 3(i), whence V1 = z×Uz by 
lemma 9(iii). Hence E!V1 by the strength of identity, whence E!V2 by lemma 9(vi). From 
the hypothesis yÎv it follows that Ey by lemma 5(i), whence Sy by the definition of S. 
Hence Sx by axiom 2(iii), whence Ex by the definition of S. Also from yÎv it follows that 
E!v by axiom 1(i). We tackle three cases separately: (i) v=V1, (ii) v=V2 and (iii) v¹V1 and 
v¹V2. 

 
 CASE (i) v=V1 

From the hypothesis yÎv it follows by lemma 9(ii) that Uy. But also ¬Uy. Hence xÎv by 
the tautology AÙ¬A®B. 

 
 CASE (ii) v=V2 

From the hypothesis yÎv it follows by lemma 9(v) that Uy Ú yÍV1. Since ¬Uy, it follows 
that yÍV1. Since xÍy, it follows that xÍV1 by the definition of Í. Hence xÎV2 by lemma 
9(v), whence xÎv. 
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 CASE (iii) v¹V1 and v¹V2. 
 1 By the definition of V, v=acc(h) for some history h. For a reductio suppose that h=V1. 

Then v = acc(V1) = V1 by lemma 9(i). Contradiction. Hence h¹V1, whence by the 
definition of acc, theorem 6 and lemma 1(i), v = z×(Uz Ú $u(uÎh Ù (zÎu Ú zÍu))). 
Since yÎv, it follows by lemma 4 that Uy Ú $u(uÎh Ù (yÎu Ú yÍu)). Since ¬Uy, it 
follows that yÎw Ú yÍw for some wÎh. We tackle three cases separately: (a) w=V1, 
(b) w=V2, and (c) w¹V1 and w¹V2.  

 2 For case (a), for a reductio suppose yÎw. Then yÎV1, whence by lemma 9(ii), Uy. 
Contradiction. Hence yÍw. Since xÍy, it follows by the definition of Í that xÍw. 
Since v = z×(Uz Ú $u(uÎh Ù (zÎu Ú zÍu))), it follows by lemma 4 that xÎv.  

 3 For case (b) suppose yÎw. Then yÎV2, whence Uy Ú yÍV1 by lemma 9(v). Since 
¬Uy, it follows that yÍV1. Since xÍy, it follows by the definition of Í that xÍV1. 
Hence by lemma 9(v), xÎV2, whence xÎw. So by lemma 4 xÎv. Suppose instead that 
yÍw. Since xÍy, it follows by the definition of Í that xÍw, whence xÎv by lemma 4. 

 4 For case (c) we deal with two subcases separately: (ci) $1u(uÎh Ù (yÎu Ú yÍu)), and 
(cii) mu(uÎh Ù (yÎu Ú yÍu)). 

 5 For case (ci), uÎh Ù (yÎu Ú yÍu) for some unique level u, namely w. Since h¹V1, 
wÎh, w¹V1 and w¹V2, it follows that w=acc(hÇw) and mz(Ez Ù zÎh Ù zÎw) by 
theorems 5(i) and 5(iii). Hence by the definition of acc, w = z×(Uz Ú $z1(z1ÎhÇw Ù 
(zÎz1 Ú zÍz1))). For a reductio suppose yÎw. Then by lemma 4, Uy Ú $z1(z1ÎhÇw Ù 
(yÎz1 Ú yÍz1)). Since ¬Uy, it follows that $z1(z1ÎhÇw Ù (yÎz1 Ú yÍz1)). Since 
mz(Ez Ù zÎh Ù zÎw), it follows by the definition of Ç and lemma 2(ii) that 
hÇw=z×(zÎh Ù zÎw), whence by lemma 4 for some z1, z1Îh Ù z1Îw Ù (yÎz1 Ú 
yÍz1). Since z1Îh and h¹V1, it follows by theorem 6 that Vz1. Since z1Îw, it follows 
by axiom 1(iii) that z1¹w. But z1Îh Ù (yÎz1 Ú yÍz1) and Vz1 and z1¹w are together 
contrary to $1u(uÎh Ù (yÎu Ú yÍu)). Hence yÍw. Since xÍy, it follows by the 
definition of Í that xÍw, and so by lemma 4 xÎv. 

 6 For case (cii) let b be short for u×(uÎh Ù (yÎu Ú yÍu)). Since mu(uÎh Ù (yÎu Ú 
yÍu)), it follows that E!b by lemmas 2(i) and 8(ii), whence b = u×(uÎh Ù (yÎu Ú 
yÍu)). Hence by lemma 4, Mb and also zÎb®zÎh, whence by the definition of Í, 
bÍh. Hence by lemma 7(ix), and theorems 2(i) and 7, ¬$z2(z2Îb Ù z2Îz1) for some 
z1Îb. Hence by lemma 4, Vz1 Ù z1Îh Ù (yÎz1 Ú yÍz1). We deal with three subcases 
separately: (ciia) z1=V1, (ciib) z1=V2, and (ciig) z1¹V1 Ù z1¹V2.  

 7 In case (ciia), it follows that xÎv by the reasoning in step 2. 
 8 In case (ciib), it follows that xÎv by the reasoning in step 3. 
 9 In case (ciig), since h¹V1, z1Îh, z1¹V1 and z1¹V2, it follows that z1=acc(hÇz1) and 

mz(Ez Ù zÎh Ù zÎz1) by theorems 5(i) and 5(iii). For a reductio suppose yÎz1. Then 
yÎacc(hÇz1), whence by the definition of acc, yÎz×(Uz Ú $z3(z3ÎhÇz1 Ù (zÎz3 Ú 
zÍz3))). Since ¬Uy, it follows by lemma 4 that yÎz3 Ú yÍz3 for some z3ÎhÇz1. Since 
mz(Ez Ù zÎh Ù zÎz1), it follows by the definition of Ç and lemma 2(ii) that 
hÇz1=z×(zÎh Ù zÎz1), whence by lemma 4 z3Îh Ù z3Îz1. Since h¹V1 and z3Îh, it 
follows by theorem 6 that Vz3. Since Vz3 and z3Îh Ù (yÎz3 Ú yÍz3), it follows by 
lemmas 4 and 5(i) that z3Îb. But z3Îb and z3Îz1 are together contrary to ¬$z2(z2Îb 
Ù z2Îz1). Hence yÏz1, whence yÍz1. Since xÍy, it follows by the definition of Í that 
xÍz1, whence xÎv by lemma 4.  
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 THEOREM 10.   Lower levels I 
 (i)  ¬$w wÎV1 and w:wÎV1 º O 
 (ii)  Let E!V2, then $1w wÎV2 and w:wÎV2 =	℩w(wÎV2) = V1. 
 (iii)  Let E!v and v¹V1 and v¹V2, then mw wÎv and w:wÎv = w×wÎv. 
 

PROOF OF (i).   For a reductio suppose that wÎV1 for some level w. Then by lemma 8(i), 
Mw, and by axiom 1(i), E!V1. Hence by lemma 9(ii), Uw, whence ¬Mw by the definition 
of U. Contradiction. Hence ¬$w wÎV1, whence by lemmas 2(iv) and 7(ix), w:wÎV1 º O.   

 
 PROOF OF (ii). 
 1 It follows from the hypothesis that V2 = z×(Uz Ú zÍV1) by lemma 9(iv), and that E!V1 

by lemma 9(vi). Hence by lemma 9(i), V1 = z×Uz. By lemma 9(vii), V1ÎV2, and by the 
definition of V, V(V1). 

 2 For a reductio suppose w¹V1 Ù wÎV2 for some level w. Then by axiom 1(iii), w¹V2. 
Also by lemma 9(v), Uw Ú wÍV1. By lemma 8(i) Mw, whence by the definition of U, 
¬Uw. Hence wÍV1. Since w¹V1, it follows by the definition of Ì that wÌV1, whence 
wÌz×Uz. Hence by lemma 6(iii), xÏw Ù xÎz×Uz for some x, whence by lemma 4, 
xÏw Ù Ux, contrary to lemma 8(iv). Hence ¬$w(w¹V1 Ù wÎV2). 

 3 Since V(V1) and V1ÎV2 and ¬$w(w¹V1 Ù wÎV2), it follows that $1w wÎV2 and 
℩w(wÎV2) = V1. Since by lemma 8(ii), Vx®Ex, it follows that $1w(Ew Ù wÎV2) and 
℩w(wÎV2) =	℩w(Ew Ù wÎV2), whence w:wÎV2 = ℩w(wÎV2) = V1 by lemma 2(iii). 

 
 PROOF OF (iii).  
 1 It follows from the hypothesis and the definition of V that v=acc(h) for some history 

h. Hence by theorem 3(ii), Mh Ù h¹V1, whence my yÎh by the definition of M. Hence 
mw wÎh by theorem 6. 

 2 Consider an arbitrary level uÎh. Then uÍu by lemmas 6(ii) and 8(i). By the 
definition of acc, v = acc(h) = z×(Uz Ú $y(yÎh Ù (zÎy Ú zÍy))), whence uÎv by 
lemmas 4 and 8(ii).  Hence mw wÎv, whence by lemma 8(ii) mw(Ew Ù wÎv). Hence 
by lemma 2(ii), w:wÎv = w×wÎv.  

 
 
 THEOREM 11.  Lower levels II 
 (i) Let v=V1 or v=V2, then v=accum(w:wÎv). 
 (ii) Let E!v and v¹V1 and v¹V2, then v=acc(w:wÎv). 
 

PROOF OF (i).   Suppose v=V1. Then by theorem 10(i) w:wÎv º O, whence v =  
accum(w:wÎv) by the definition of V1. Suppose instead that v=V2. Then E!V2 by the 
strength of identity, whence by theorem 10(ii) w:wÎv = V1. Hence v=accum(w:wÎv) by 
the definition of V2. 

 
 PROOF OF (ii).    

1 Since by hypothesis E!v and v¹V1 and v¹V2, it follows that w:wÎv = w×wÎv by 
theorem 10(iii), whence by lemma 4 yÎw×wÎv«(Ey Ù yÎv Ù Vy). It also follows 
from the hypothesis by the definition of V that v=acc(h) for some history h. By the 
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definition of acc, v = acc(h) = z×(Uz Ú $y(yÎh Ù (zÎy Ú zÍy))). Hence by lemma 4 
Mv and also zÎv«(Ez Ù (Uz Ú $y(yÎh Ù (zÎy Ú zÍy)))). 

 2 Since E!v and Mv, it follows that mz(Ez Ù Uz) by axioms 2(i) and 2(ii), a fortiori 
mz(Ez Ù (Uz Ú $y(yÎw×wÎv Ù (zÎy Ú zÍy)))). Hence E!z×(Uz Ú $y(yÎw×wÎv Ù 
(zÎy Ú zÍy))) by lemma 2(i), whence acc(w×wÎv) = z×(Uz Ú $y(yÎw×wÎv Ù (zÎy Ú 
zÍy))) by the definition of acc. Hence by lemma 4, M(acc(w×wÎv)) and also  

  zÎacc(w×wÎv)«(Ez Ù (Uz Ú $y(yÎw×wÎv Ù (zÎy Ú  zÍy)))). We shall prove 
zÎv«zÎacc(w×wÎv). 

 3 For the ® half, suppose zÎv. Then Ez Ù (Uz Ú $y(yÎh Ù (zÎy Ú zÍy))). By lemma 
5(i), and theorems 3(i), 3(ii) and 6, yÎh®(Ey Ù yÎv Ù Vy). Hence yÎh®yÎw×wÎv, 
whence Ez Ù (Uz Ú $y(yÎw×wÎv Ù (zÎy Ú zÍy))). Hence zÎacc(w×wÎv). 

 4 For the ¬ half, suppose zÎacc(w×wÎv). Then Ez Ù (Uz Ú $y(yÎw×wÎv Ù (zÎy Ú 
zÍy))). We consider the three possibilities for z and deduce zÎv in each case. First, 
suppose Uz. Then by lemma 8(iv) zÎv. Second, suppose zÎy for some yÎw×wÎv. 
Then yÎv, whence zÎv by theorem 8. Third, suppose zÍy for some yÎw×wÎv. Then 
yÎv, whence zÎv by theorem 9.  

 5 Since Mv and M(acc(w×wÎv)) and zÎv«zÎacc(w×wÎv), then by axiom 1(ii), v =  
  acc(w×wÎv), whence v=acc(w:wÎv). 
  
 
 THEOREM 12. Lower levels III H(w:wÎv) 
 

PROOF.   By lemma 8(i), Mv, whence E!v by lemma 3(i). Hence V1 = z×Uz by lemma 9(iii), 
whence E!V1. Also SV1 by lemma 8(iii) and the definition of V. We tackle three cases 
separately: (i) v=V1, (ii) v=V2, and (iii) v¹V1 and v¹V2.  

  
 CASE (i) v=V1 
 By theorem 10(i), w:wÎv º O, whence H(w:wÎv) by lemma 7(viii). 
 
 CASE (ii) v=V2 

By theorem 10(ii), w:wÎv = V1, which together with SV1 entails H(w:wÎv) by the 
definition of H. 

 
 CASE (iii) v¹V1 and v¹V2 
 1 By theorem 10(iii), mw wÎv. Since "w(wÎv®wÎv), it follows that S(w×wÎv) by 

theorem 1(iii) and lemma 8(ii). It also follows by theorem 10(iii) that w:wÎv = 
w×wÎv, whence by lemmas 4 and 8(ii) mw1 w1Îw:wÎv.  Consider an arbitrary level 
uÎw:wÎv. We shall prove that (a) u=V1 Ú u=V2 ® u=accum((w:wÎv)Çu), and  

  (b) u¹V1 Ù u¹V2 ®  u=acc((w:wÎv)Çu). 
 2 For (a) we prove: (ai) u=V1 ® u=accum((w:wÎv)Çu), and (aii) u=V2 ®  
  u=accum((w:wÎv)Çu). 
 3 For (ai) suppose u=V1. Then u=accum(O) by the definition of V1. By lemmas 4 and 

8(i), and the definition of U, xÎw:wÎv® ¬Ux. Also by lemma 9(ii), xÎu®Ux. 
Hence ¬$x(xÎw:wÎv Ù xÎu), whence (x: xÎw:wÎv Ù xÎu)ºO by lemmas 2(iv) and 
7(ix). Hence (w:wÎv)ÇuºO by the definition of Ç, whence u=accum((w:wÎv)Çu). 
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 4 For (aii) suppose u=V2. Then u=accum(V1) by the definition of V2. Since v¹V1 and 
v¹V2, it follows by the definition of V that v=acc(h) for some history h. By theorem 
3(ii) Mh Ù h¹V1, whence my yÎh by the definition of M. Hence w1Îh for some level 
w1 by theorem 6. By lemma 8(iv), Uz®zÎw1, whence by lemma 9(ii), zÎV1®zÎw1. 
Since SV1, it follows that MV1 Ù EV1 by the definition of S. Hence V1Íw1 by the 
definition of Í. By the definition of acc and lemma 4, zÎv«(Ez Ù (Uz Ú $y(yÎh Ù 
(zÎy Ú zÍy)))). Hence V1Îv, whence V1Îw:wÎv by lemma 4 and the definition of V. 
Since by hypothesis u=V2, it follows that V1 =	℩w1(w1Îu) by theorem 10(ii). Since 
V1Îw:wÎv, it follows that V1 =	℩w1(w1Îw:wÎv Ù w1Îu). Hence $1x(xÎw:wÎv Ù 
xÎu) by lemma 4, whence (w:wÎv)Çu = V1 by lemmas 2(iii) and 8(ii), and the 
definition of Ç. Hence u=accum((w:wÎv)Çu). 

 5  From (ai) and (aii) it follows that u=V1 Ú u=V2 ® u=accum((w:wÎv)Çu). 
 6 For (b), suppose u¹V1 Ù u¹V2. Since uÎw:wÎv, it follows by lemma 4 that uÎv. 

Hence by theorem 8, w1Îu®w1Îv, whence (w1Îv Ù w1Îu)«w1Îu. Hence by 
lemmas 4 and 8(ii), (w1Îw:wÎv Ù w1Îu)«w1Îu. Hence by lemma 1(ii), 
w1:(w1Îw:wÎv Ù w1Îu) º w1:w1Îu, whence x:(xÎw:wÎv Ù xÎu) º w1:w1Îu by 
lemmas 1(ii) and 4.  Since u¹V1 and u¹V2, it follows by theorem 10(iii) that w1:w1Îu 
= w1×w1Îu, whence E!(w1:w1Îu) by the strength of identity. Hence (x:xÎw:wÎv Ù 
xÎu) = w1:w1Îu, whence (w:wÎv)Çu = w1:w1Îu by the definition of Ç. By theorem 
11(ii), u=acc(w1:w1Îu), whence u=acc((w:wÎv)Çu).  

 7 (a) and (b) hold for arbitrary uÎw:wÎv. By lemma 4 we can generalize to get 
"y(yÎw:wÎv ® (y=V1 Ú y=V2 ® y=accum((w:wÎv)Çy)) Ù (y¹V1 Ù y¹V2 ®  

  y=acc((w:wÎv)Çy))), which together with S(w:wÎv) entails H(w:wÎv) by the 
definition of H. 

 
 
 THEOREM 13.  Foundation for levels  
 (i)  Let $u uÎx, then $v(vÎx Ù ¬$w(wÎv Ù wÎx)). 
 (ii) Let $u A(u), then $v(A(v) Ù ¬$w(wÎv Ù A(w))). 
 

PROOF OF (i).   By hypothesis uÎx for some level u. We tackle three cases separately: (i) 
¬$w(wÎu Ù wÎx), (ii) $1w(wÎu Ù wÎx), and (iii) mw(wÎu Ù wÎx). 

 
 CASE (i) ¬$w(wÎu Ù wÎx) 
 It follows immediately that $v(vÎx Ù ¬$w(wÎv Ù wÎx)). 
 
 CASE (ii) $1w(wÎu Ù wÎx) 

By hypothesis w1Îu Ù w1Îx for some unique level w1. For a reductio suppose that w2Îw1 
and w2Îx for some level w2. Since w2Îw1 and w1Îu, it follows by theorem 8 that w2Îu. 
Since w2Îw1, it follows by axiom 1(iii) that w2¹w1. But w1Îu, w1Îx, w2Îu, w2Îx, and 
w2¹w1 are together contrary to $1w(wÎu Ù wÎx). Hence w1Îx Ù ¬$w(wÎw1 Ù wÎx), 
whence $v(vÎx Ù ¬$w(wÎv Ù wÎx)). 

 
 CASE (iii) mw(wÎu Ù wÎx) 
 1 Since mw(wÎu Ù wÎx), it follows by lemmas 2(i) and 8(ii) that E!(w×wÎu Ù wÎx). 

Hence by lemmas 4 and 8(ii), w1Îw×(wÎu Ù wÎx) « (w1Îu Ù w1Îx), and also 
M(w×wÎu Ù wÎx). 
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 2  Since mw(wÎu Ù wÎx), it follows that mw wÎu. Hence by lemmas 2(i) and 8(ii) 
E!(w×wÎu). Hence by lemmas 4 and 8(ii), w1Îw×wÎu « w1Îu. 

 3  Since Mw×(wÎu Ù wÎx) and (w1Îu Ù w1Îx)®w1Îu, it follows that w×(wÎu Ù 
wÎx))Íw×wÎu by the definition of Í.  

 4  Since mw wÎu, it follows by theorems 10(i) and 10(ii) that u¹V1 and u¹V2, whence 
by theorem 10(iii), w:wÎu = w×wÎu. Hence by theorem 12, H(w×wÎu). 

 5  Since w×(wÎu Ù wÎx)Íw×wÎu and H(w×wÎu), it follows by lemmas 2(iv) and 8(ii), 
theorem 7 and the definition of Ç that for some level w2, w2Îw×(wÎu Ù wÎx) Ù 
¬$z(zÎ w×(wÎu Ù wÎx) Ù zÎw2), whence w2Îu Ù w2Îx. 

 6 For a reductio suppose that w3Îw2 and w3Îx for some level w3. Since w3Îw2 and 
w2Îu, it follows by theorem 8 that w3Îu. Since w3Îu and w3Îx, it follows that 
w3Îw×(wÎu Ù wÎx). But w3Îw×(wÎu Ù wÎx) and w3Îw2 are together contrary to 
¬$z(zÎw×(wÎu Ù wÎx) Ù zÎw2). Hence w2Îx Ù ¬$w(wÎw2 Ù wÎx), whence 
$v(vÎx Ù ¬$w(wÎv Ù wÎx)). 

 
PROOF OF (ii).   By hypothesis A(u) for some level u. We tackle two cases separately: (i) 
$1w A(w), and (ii) mw A(w).  

 
 CASE (i) $1w A(w) 

Suppose for a reductio that w1Îu Ù A(w1) for some level w1. Then by axiom 1(iii), w1¹u. 
But A(u) and A(w1) and w1¹u are together contrary to $1w A(w). Hence ¬$w(wÎu Ù 
A(w)), whence $v(A(v) Ù ¬$w(wÎv Ù A(w))).  

  
 CASE (ii) mw A(w)  

It follows by lemma 8(ii) that mw(Ew Ù A(w)),whence E!(w1×A(w1)) by lemma 2(i). Hence 
w2Îw1×A(w1)«A(w2) by lemmas 4 and 8(ii). Hence uÎw1×A(w1), whence by theorem 
13(i), $v(vÎw1×A(w1) Ù ¬$w(wÎv Ù wÎw1×A(w1))). Hence $v(A(v) Ù ¬$w(wÎv Ù 
A(w))). 

 
 
 THEOREM 14. Comparability of levels vÎw Ú v=w Ú wÎv 
 
 PROOF.  

1 For a reductio suppose for some v, $w(vÏw Ù v¹w Ù wÏv). Then for some v1,  
$w(v1Ïw Ù v1¹w Ù wÏv1) Ù ¬$v2(v2Îv1 Ù $w(v2Ïw Ù v2¹w Ù wÏv2)) by theorem 
13(ii). Hence "v2(v2Îv1®"w(v2Îw Ú v2=w Ú wÎv2)). 

 2  Since for some w, (v1Ïw Ù v1¹w Ù wÏv1), it follows by theorem 13(ii) that for some 
w1, (v1Ïw1 Ù v1¹w1 Ù w1Ïv1) Ù ¬$w2(w2Îw1 Ù (v1Ïw2 Ù v1¹w2 Ù w2Ïv1)). Hence 
"w2(w2Îw1®(v1Îw2 Ú v1=w2 Ú w2Îv1)). We shall prove "w3(w3Îv1«w3Îw1). 

 3  For the ® half, suppose w3Îv1. Since w1Ïv1, then w3¹w1. For a reductio suppose 
w1Îw3. Then from w3Îv1 it follows that w1Îv1 by theorem 8. Contradiction. Hence 
w1Ïw3. Since "v2(v2Îv1®"w(v2Îw Ú v2=w Ú wÎv2)) and w3Îv1 and w3¹w1 and 
w1Ïw3, it follows that w3Îw1. 

 4 For the ¬ half, suppose w3Îw1. Since v1Ïw1, then w3¹v1. For a reductio suppose 
v1Îw3. Then from w3Îw1 it follows that v1Îw1 by theorem 8. Contradiction. Hence 
v1Ïw3. Since "w2(w2Îw1®(v1Îw2 Ú v1=w2 Ú w2Îv1)) and w3Îw1 and w3¹v1 and 
v1Ïw3, it follows that w3Îv1. 
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 5 Since "w3(w3Îv1«w3Îw1), it follows by lemma 1(ii) that w:wÎv1 º w:wÎw1. We 
shall prove (a) v1¹V1 Ù w1¹V1, and (b) v1¹V2 Ù w1¹V2. 

 6 For (a), for a reductio suppose v1=V1. By theorem 10(i), w:wÎv1 º O, whence 
w:wÎw1 º O. By theorems 11(i) and 11(ii), w1=accum(w:wÎw1) or 
w1=acc(w:wÎw1), whence w1=accum(O) or w1=acc(O). For a subordinate reductio 
suppose w1=accum(O). Then w1=v1 by the definition of V1. Contradiction. Hence 
w1=acc(O), whence w1=v1 by lemma 9(i). Contradiction. Hence v1¹V1. By similar 
reasoning, w1¹V1. 

 7 For (b), for a reductio suppose v1=V2. Then by lemma 9(vii), V1Îv1, and also w:wÎv1 

=	℩w(wÎv1) =V1 by theorem 10(ii). Since "w3(w3Îv1«w3Îw1), it follows that 
V1Îw1. By theorems 11(i) and 11(ii), w1=accum(w:wÎw1) or w1=acc(w:wÎw1). 
Since w:wÎv1 º w:wÎw1, it follows that w1=accum(V1) or w1=acc(V1). For a 
subordinate reductio suppose w1=accum(V1). Then w1=v1 by the definition of V2. 
Contradiction. Hence w1=acc(V1). Then w1=V1 by lemma 9(i). But V1Îw1 and w1=V1 
are together contrary to axiom 1(iii). Hence v1¹V2. By similar reasoning, w1¹V2. 

 8 We can now proceed to the reductio initiated in step 1. From (a) and (b) it follows that 
v1=acc(w:wÎv1) and w1=acc(w:wÎw1) by theorem 11(ii). Since w:wÎv1 º w:wÎw1 , 
it follows that v1 = acc(w:wÎv1) = acc(w:wÎw1) = w1. Contradiction. Hence vÎw Ú 
v=w Ú wÎv. 

 
 
 THEOREM 15. The lowest level principle  
 (i)  Let $u uÎx, then $1v(vÎx Ù ¬$w(wÎv Ù wÎx)). 
 (ii) Let $u A(u), then $1v(A(v) Ù ¬$w(wÎv Ù A(w))). 
 

PROOF OF (i).   Since by hypothesis $u uÎx, it follows by theorem 13(i) that vÎx Ù 
¬$w(wÎv Ù wÎx) for some level v. For a reductio suppose that v1Îx Ù ¬$w(wÎv1 Ù 
wÎx) for some level v1¹v. Then by theorem 14 it follows that vÎv1 Ú v1Îv. But if vÎv1 
then vÎv1 Ù vÎx, contrary to ¬$w(wÎv1 Ù wÎx)). Similarly, if v1Îv then v1Îv Ù v1Îx, 
contrary to ¬$w(wÎv Ù wÎx). Contradiction. Hence $1v(vÎx Ù ¬$w(wÎv Ù wÎx)). 

  
PROOF OF (ii).   The proof runs parallel to the proof of theorem 15(i), but uses theorem 
13(ii) instead of theorem 13(i). 

 
 

THEOREM 16. Uniqueness of histories 
 (i) Let V1=accum(h), then h º w:wÎV1. 
 (ii) Let V2=accum(h), then h = w:wÎV2. 
 (iii) Let v¹V1 and v¹V2 and v=acc(h), then h = w:wÎv. 
 
 PROOF OF (i). 
 1  It follows from the hypothesis that E!V1 by the strength of identity, whence zÎV1®Uz 

by lemma 9(ii).  
 2 For a reductio suppose h≢w:wÎV1. Then h≢O by theorem 10(i), whence Sh by the 

definition of H, and Mh Ù Eh by the definition of S. Hence hÍh by lemma 6(ii). By 
the definition of accum, V1 = accum(h) = z×(Uz Ú zÎh Ú zÍh), whence hÎV1 by 
lemma 4. Hence Uh, whence ¬Mh by the definition of U. Contradiction. Hence h º 
w:wÎV1. 
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 PROOF OF (ii). 
 1 It follows from the hypothesis that E!V2 by the strength of identity. By theorem 10(ii), 

w:wÎV2 = V1, whence E!V1 by the strength of identity. Hence MV1 by lemma 9(ii).   
 2 For a reductio suppose hºO. Then by the definition of V1, V2 = accum(h) = accum(O) 

= V1, contrary to lemma 9(viii). Hence h≢O, whence Sh by the definition of H, and 
Mh Ù Eh by the definition of S. Hence hÍh by lemma 6(ii). By the definition of 
accum, V2 = accum(h) = z×(Uz Ú zÎh Ú zÍh), whence hÎV2 by lemma 4. Hence by 
lemma 9(v), Uh Ú hÍV1. Since Mh, it follows that ¬Uh by the definition of U, 
whence hÍV1. Hence zÎh®Uz by the definition of Í and lemma 9(ii). 

 3 For a reductio suppose h¹w:wÎV2. Then h¹V1, whence hÌV1 by the definition of Ì. 
Hence for some z1, z1Ïh Ù z1ÎV1 by lemma 6(iii). By lemma 9(vii) V1ÎV2, whence 
UV1 Ú V1Îh Ú V1Íh by lemma 4. Since MV1, it follows that ¬UV1 by the definition 
of U. Hence V1Îh Ú V1Íh. For a subordinate reductio suppose V1Îh. Then UV1, 
whence ¬MV1 by the definition of U. Contradiction. Hence V1Íh, whence 
zÎV1®zÎh by the definition of Í. Contradiction. Hence h = w:wÎV2. 

 
 PROOF OF (iii). 
 1 It follows from the hypothesis and theorem 3(ii) that Mh Ù h¹V1, whence E!h by 

lemma 3(i). 
 2 For a reductio suppose h¹w×wÎv. Then by the hypothesis and theorem 15(ii), there is 

a unique level v1 such that for some history h1, v1¹V1 Ù v1¹V2 Ù v1=acc(h1) Ù 
h1¹w×wÎv1, and ¬$w1(w1Îv1 Ù $x(Hx Ù w1¹V1 Ù w1¹V2 Ù w1=acc(x) Ù x¹w×wÎw1). 
Hence Mh1 Ù h1¹V1 by theorem 3(ii). By the definition of acc, v1 = acc(h1) = z×(Uz Ú 
$y(yÎh1 Ù (zÎy Ú zÍy))), whence by lemma 4, zÎv1«(Ez Ù (Uz Ú $y(yÎh1 Ù (zÎy 
Ú zÍy)))). We shall prove that w2Îh1«w2Îv1. 

 3 The ® half is immediate by theorem 3(i). 
 4 For the ¬ half, suppose w2Îv1. Then E!w2 by axiom 1(i). For a reductio suppose 

w3Îh1®w3Îw2. We tackle three cases separately, deriving a contradiction for each: 
(i) w2=V1, (ii) w2=V2, and (iii) w2¹V1 and w2¹V2. 

 5 For case (i), since Mh1, it follows by the definition of M that xÎh1 for some x. Since 
h1¹V1, it follows by theorem 6 that Vx. By supposition w3Îh1®w3Îw2, whence 
xÎV1. But by theorem 10(i) ¬$w wÎV1. Contradiction.  

 6 For case (ii), since Mh1, it follows by the definition of M that xÎh1 and yÎh1, for 
some x, y where x¹y. Since h1¹V1, it follows by theorem 6 that Vx and Vy. By 
supposition w3Îh1®w3Îw2, and so xÎV2 and yÎV2. But by theorem 10(ii), $1w 
wÎV2. Contradiction. 

 7 For case (iii), by theorem 10(iii) it follows that w4:w4Îw2 = w4×w4Îw2, whence 
yÎw4×w4Îw2«(Vy Ù yÎw2) by lemmas 4 and 8(ii). By theorem 11(ii), w2 = 

  acc(w4×w4Îw2), whence w2 = z×(Uz Ú $y(yÎw4×w4Îw2 Ù (zÎy Ú zÍy))) by the 
definition of acc. Hence zÎw2«(Ez Ù (Uz Ú $w(wÎw2 Ù (zÎw Ú zÍw)))) by lemma 
4. Since h1¹V1, it follows by theorem 6 that yÎh1®Vy. Since (from step 2) 
zÎv1®(Ez Ù (Uz Ú $y(yÎh1 Ù (zÎy Ú zÍy)))) and (by supposition) w3Îh1®w3Îw2, 
it follows that zÎv1®(Ez Ù (Uz Ú $w(wÎw2 Ù (zÎw Ú zÍw)))), whence 
zÎv1®zÎw2. But w2Îv1, so w2Îw2, contrary to axiom 1(iii).  
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 8 Since each case leads to a contradiction, it follows that w5Îh1 Ù w5Ïw2 for some w5, 
whence by theorem 14 w2=w5 Ú w2Îw5. Suppose w2=w5. Since w5Îh1, it follows that 
w2Îh1.  

 9 Taking the other alternative, suppose w2Îw5. We tackle three cases separately:  
   (a) w5=V1, (b) w5=V2 and (c) w5¹V1 and w5¹V2, showing in each case that w2Îh1. 
 10 For case (a), by theorem 10(i) ¬$w wÎV1, whence w2Ïw5. But also w2Îw5. By the 

tautology AÙ¬A®B it follows that w2Îh1. 
 11 For case (b), since w2Îw5, it follows that w2ÎV2. Hence by theorem 10(ii), w2=V1. 

Since w5Îh1, it follows that V2Îh1. Since h1¹V1, it follows by the reasoning in steps 
1–5 of case (ii) of theorem 6 that V1Îh1, whence w2Îh1. 

 12 For case (c), since h1¹V1 and w5Îh1 and w5¹V1 and w5¹V2, it follows by theorems 
5(i), 5(ii) and 5(iii), and 6 that w5=acc(h1Çw5) and E!(h1Çw5) and mz(Ez Ù zÎh1 Ù 
zÎw5) and H(h1Çw5). Since w5Îh1 and v1=acc(h1), it follows by theorem 3(i) that 
w5Îv1. Hence ¬$x(Hx Ù w5¹V1 Ù w5¹V2 Ù w5=acc(x) Ù x¹w×wÎw5) by step 2. Since 
E!(h1Çw5) and H(h1Çw5) and w5¹V1 and w5¹V2 and w5=acc(h1Çw5), it follows that 
h1Çw5 = w×wÎw5. Since w2Îw5, it follows by lemmas 4 and 8(ii) that w2Î(h1Çw5). 
Since mz(Ez Ù zÎh1 Ù zÎw5) it follows by the definition of Ç and lemma 2(ii) that  
h1Çw5 = z×(zÎh1 Ù zÎw5). Hence w2Îz×(zÎh1 Ù zÎw5), whence by lemma 4 w2Îh1. 

 13 We can now proceed to the reductio initiated in step 2. Since E!v1 and v1¹V1 and 
v1¹V2, it follows by theorem 10(iii) that w:wÎv1 = w×wÎv1. Hence M(w×wÎv1). by 
lemma 4. Since w2Îh1«w2Îv1, it follows that w2Îh1«w2Îw×wÎv1 by lemmas 4 
and 8(ii). Since h1¹V1, it follows by theorem 6 that xÎh1®Vx. Also xÎw×wÎv1®Vx 
by lemma 4. Hence xÎh1«xÎw×wÎv1. Since Mh1 and M(w×wÎv1) and 
xÎh1«xÎw×wÎv1, it follows by axiom 1(ii) that h1 = w×wÎv1. Contradiction. Hence 
h = w×wÎv, whence E!(w×wÎv). It follows by lemmas 2(i) and 2(ii) that h = w:wÎv. 

 
 
 THEOREM 17.  Sets and levels I  

(i) Sx«E!V*(x) 
(ii) xÏV*(x) 

 (iii) V*(u)=u 
(iv) Let Sx Ù Sy Ù xÎy, then V*(x)ÎV*(y). 
(v) Let Sx Ù Sy Ù xÍy, then V*(x)ÍV*(y). 
(vi) Sx«(Mx Ù $u"y((Sy Ù yÎx)®V*(y)Îu)) 

 
 PROOF OF (i).    

1 For the ® half, suppose Sx. Then by axiom 2(iv) $u xÍu. Hence by theorem 15(ii), 
$1v(xÍv Ù ¬$w(wÎv Ù xÍw)), whence E!℩v(xÍv Ù ¬$w(wÎv Ù xÍw)). Hence 
E!V*(x) by the definition of V*(x). 

 2 For the ¬ half, suppose E!V*(x). Then by the definition of V*(x) it follows that 
V(V*(x)) Ù xÍV*(x), whence Sx by axiom 2(iii) and lemma 8(iii).  
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PROOF OF (ii).    
1 Suppose ¬Sx. Then ¬E!V*(x) by theorem 17(i), whence xÏV*(x) by axiom 1(i). 

 2 Suppose instead Sx. Then E!V*(x) by theorem 17(i), whence V(V*(x)) by the 
definition of V*(x). For a reductio suppose xÎV*(x). We tackle three cases 
separately—(i) V*(x)=V1, (ii) V*(x)=V2 and (iii) V*(x)¹V1 and V*(x)¹V2—deriving a 
contradiction in each case. 

 3 In case (i), V*(x)=V1. Then Ux by lemma 9(ii). Hence by the definitions of U and S, 
¬Sx. Contradiction.  

 4 In case (ii), V*(x)=V2. Hence E!V1 by lemma 9(vi). Since xÎV*(x), it follows by 
lemma 9(v) that Ux Ú xÍV1. Since Sx, it follows by the definitions of U and S that 
xÍV1. By lemma 9(vii) and the definition of V, V1ÎV*(x) Ù V(V1). But by the 
definition of V*(x), ¬$u(uÎV*(x) Ù xÍu). Contradiction. 

 5 In case (iii), V*(x)¹V1 and V*(x)¹V2. It follows that w:wÎV*(x) = w×wÎV*(x) by 
theorem 10(iii). Since xÎV*(x), it follows that xÎacc(w×wÎV*(x)) by theorem 11(ii). 
By the definition of acc, acc(w×wÎV*(x)) = z×(Uz Ú $y(yÎw×wÎV*(x) Ù (zÎy Ú 
zÍy))), whence Ux Ú $y(yÎw×wÎV*(x) Ù (xÎy Ú xÍy)) by lemma 4. Since Sx, it 
follows that ¬Ux by the definitions of U and S. Hence by lemma 4, xÎv Ú xÍv for 
some level vÎV*(x), whence xÍv by the corollary of theorem 8 and the definition of 
S. But by the definition of V*(x), ¬$u(uÎV*(x) Ù xÍu). Contradiction. 

 6 Since a contradiction is derivable in each case, it follows that xÏV*(x). 
 
PROOF OF (iii).   By lemma 8(iii), Su, whence E!V*(u) Ù V(V*(u)) by theorem 17(i) and the 
definition of V*(u). By theorem 17(ii), uÏV*(u). For a reductio suppose V*(u)Îu. By the 
definition of V*(u), uÍV*(u), whence by theorem 9, uÎu, contrary to axiom 1(iii). Hence 
V*(u)Ïu, whence V*(u)=u by theorem 14.  
 
PROOF OF (iv).   By the hypothesis and theorem 17(i), E!V*(x) Ù E!V*(y), whence by the 
definitions of V*(x) and V*(y), V(V*(x)) Ù  V(V*(y)). Also by the definition of V*(y), 
yÍV*(y), whence by the hypothesis and the definition of Í, xÎV*(y). For a reductio 
suppose V*(x)=V*(y). Hence xÎV*(x), contrary to theorem 17(ii). Hence V*(x)¹V*(y). 
For a reductio suppose V*(y)ÎV*(x). Then by theorem 8 xÎV*(x), contrary to theorem 
17(ii). Hence V*(y)ÏV*(x), whence by theorem 14 V*(x)ÎV*(y).  

 
PROOF OF (v).   By the hypothesis and theorem 17(i), E!V*(x) Ù E!V*(y), whence by the 
definitions of V*(x) and V*(y), V(V*(x)) Ù  V(V*(y)). Also by the definition of V*(y), 
yÍV*(y), whence by the hypothesis and the definition of Í, xÍV*(y). For a reductio 
suppose V*(y)ÎV*(x). By the definition of V*(x), ¬$w(wÎV*(x) Ù xÍw). Contradiction. 
Hence V*(y)ÏV*(x). Hence by theorem 14 V*(x)ÎV*(y) Ú V*(x)=V*(y). Suppose 
V*(x)ÎV*(y). Then V*(x)ÍV*(y) by lemma 8(i) and the corollary of theorem 8. Suppose 
V*(x)=V*(y). Then V*(x)ÍV*(y) by lemmas 6(ii) and 8(i).  

 
PROOF OF (vi). 
1 For the ® half, suppose Sx. Then Mx Ù E!x by the definition of S and lemma 3(i), 

whence $xVx by lemma 9(iii), the strength of identity, and the definition of V. 
Suppose ¬$z(Sz Ù zÎx). Then $u"y((Sy Ù yÎx)®V*(y)Îu).  
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2 Suppose instead $z(Sz Ù zÎx). Consider an arbitrary z1 such that Sz1 Ù z1Îx. By 
axiom 2(iv) xÍv for some level v. Then z1Îv by the definition of Í, whence by 
theorems 17(iii) and 17(iv), and lemma 8(iii), V*(z1)Îv. Since z1 is arbitrary, we can 
generalize to get "y((Sy Ù yÎx)®V*(y)Îv), whence $u"y((Sy Ù yÎx)®V*(y)Îu). 

 3 For the ¬ half, suppose Mx and "y((Sy Ù yÎx)®V*(y)Îv) for some level v. Then 
E!x by lemma 3(i), whence E!V1 by lemma 9(iii) and the strength of identity. Suppose 
¬$z(Sz Ù zÎx). Then "z(zÎx®Uz) by lemmas 3(iii) and 5(i), whence 
"z(zÎx®zÎV1) by lemma 9(ii). Hence xÍV1 by the definition of Í, whence Sx by 
the definition of V, and theorem 1(ii).  

 4 Suppose instead $z(Sz Ù zÎx). Consider an arbitrary z1 such that Sz1 Ù z1Îx. Then 
V*(z1)Îv, whence E!V*(z1) by axiom 1(i). Since by the definition of V*(z1), 
z1ÍV*(z1), it follows that z1Îv by theorem 9. Since z1 is arbitrary, we can generalize 
to get "z((Sz Ù zÎx)®zÎv), whence "z(zÎx®zÎv) by lemmas 3(iii), 5(i) and 8(iv). 
Hence xÍv by the definition of Í, whence Sx by theorem 1(ii). 

 
 
 THEOREM 18.  Foundation for multitudes Let Mx, then $y(yÎx Ù xÇyºO). 
 
 PROOF. 
 1  Suppose Uy Ù yÎx for some y. Then ¬My by the definition of U. So by axiom 1(iv) 

¬$z zÎy. Hence ¬$z(zÎx Ù zÎy), whence xÇyºO by lemma 7(ix) and theorem 2(i). 
Hence $y(yÎx Ù xÇyºO). 

 2  Suppose instead that zÎx®¬Uz. It follows by the definition of U and axiom 1(i) that 
zÎx®Mz. Hence by lemma 5(i) and the definition of S, zÎx®Sz. It follows from the 
hypothesis Mx that my yÎx by the definition of M, whence $y(Sy Ù yÎx). Hence by 
theorem 17(i), $y(E!V*(y) Ù yÎx), whence $u$y(u=V*(y) Ù yÎx) by the definition of 
V*(y). Hence by theorem 15(ii), there is a unique level v1 such that for some y, 
v1=V*(y) Ù yÎx, and ¬$w(wÎv1 Ù $z(w=V*(z) Ù zÎx)). 

 3 For a reductio suppose that z1Îx Ù z1Îy for some z1. Since zÎx®Sz, it follows that 
Sz1, whence E!V*(z1) by theorem 17(i). Since yÍV*(y) by the definition of V*(y), it 
follows by the definition of Í that z1ÎV*(y). Hence V*(z1)ÎV*(y) by the definition of  
V*(y), lemma 8(iii), theorems 17(iii) and 17(iv), whence V*(z1)Îv1. But V*(z1)Îv1 
and z1Îx are together contrary to ¬$w(wÎv1 Ù $z(w=V*(z) Ù zÎx)) by the definition 
of V*(z). Hence ¬$z(zÎx Ù zÎy), whence xÇyºO by lemma 7(ix) and theorem 2(i). 
Hence $y(yÎx Ù xÇyºO). 

 
 
 THEOREM 19.  Generalized Intersection 

(i) $x("y(A(y)®xÎy) Ù $zA(z)) « E!(ÇxA(x)) 
(ii) Let $1x("y(A(y)®xÎy) Ù $zA(z)), then E(ÇxA(x)). 
(iii) Let mx("y(A(y)®xÎy) Ù $zA(z)), then M(ÇxA(x)). 
(iv) Let mx("y(A(y)®xÎy) Ù $z(A(z) Ù Sz)), then S(ÇxA(x)). 
  
 PROOF OF (i).   By lemma 5(i) $x("y(A(y)®xÎy) Ù $zA(z)) « $x(Ex Ù "y(A(y)®xÎy) Ù 
$zA(z)), whence $x("y(A(y)®xÎy) Ù $zA(z)) « E!(x:"y(A(y)®xÎy) Ù $zA(z)) by 
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lemma 2(iv). Hence $x("y(A(y)®xÎy) Ù $zA(z)) « E!(ÇxA(x)) by the definition of 
ÇxA(x).  

 
PROOF OF (ii).   From the hypothesis it follows that $1x(Ex Ù "y(A(y)®xÎy) Ù $zA(z)) by 
lemma 5(i), whence x:("y(A(y)®xÎy) Ù $zA(z)) = ℩z(Ez Ù "y(A(y)®xÎy) Ù $zA(z)) by 
lemma 2(iii). Hence E(x:"y(A(y)®xÎy) Ù $zA(z)), whence E(ÇxA(x)) by the definition 
of ÇxA(x). 

    
PROOF OF (iii).   From the hypothesis it follows that mx(Ex Ù "y(A(y)®xÎy) Ù $zA(z)) by 
lemma 5(i), whence x:("y(A(y)®xÎy) Ù $zA(z)) = x×("y(A(y)®xÎy) Ù $zA(z)) by 
lemma 2(ii). Hence M(x:"y(A(y)®xÎy) Ù $zA(z)) by lemma 4, whence M(ÇxA(x)) by 
the definition of ÇxA(x). 
 

 PROOF OF (iv). 
1 By hypothesis Sz1 Ù A(z1) for some z1, whence "y(A(y)®xÎy)®xÎz1. Since by 

hypothesis mx("y(A(y)®xÎy) Ù $z(A(z) Ù Sz)), it follows that mx(xÎz1 Ù 
"y(A(y)®xÎy) Ù $z(A(z) Ù Sz)), whence S(x×xÎz1 Ù "y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) 
by theorem 1(i). Since (xÎz1 Ù "y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) « ("y(A(y)®xÎy) Ù 
$z(A(z) Ù Sz)), it follows that S(x×"y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) by lemma 1(i).  

2 Since ("y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) « (Ex Ù "y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) by 
lemma 5(i), it follows that mx(Ex Ù "y(A(y)®xÎy) Ù $z(A(z) Ù Sz)), whence 
S(z:"y(A(y)®xÎy) Ù $z(A(z) Ù Sz)) by lemma 2(ii). Hence S(ÇxA(x)) by the 
definition of ÇxA(x).  

  
 COROLLARY.  Let mz"y(yÎx®zÎy) Ù $z zÎx, then SÇx. 

 
PROOF.   From the hypothesis it follows that "y(yÎx®My) Ù E!x by the definition of M 
and axiom 1(i), whence"y(yÎx®Sy) by the definitions of S and E. Hence $z(zÎx Ù Sz), 
whence SÇx  by theorem 19(iv) and the definition of Çx. 

 
 
 THEOREM 20.  Union  

(i) Mx Ù My « M(xÈy) 
(ii) Sx Ù Sy « S(xÈy) 

 
 PROOF OF (i).   

1 For the ® half, suppose Mx Ù My. Then mz zÎx by the definition of M; a fortiori 
mz(zÎx Ú zÎy). Hence mz(Ez Ù Mx Ù My Ù (zÎx Ú zÎy)) by lemma 5(i), whence 
E!(z×Mx Ù My Ù (zÎx Ú zÎy)) by lemma 2(i). Hence M(z×Mx Ù My Ù (zÎx Ú zÎy)) 
by the definition of z×(Mx Ù My Ù (zÎx Ú zÎy)), whence M(xÈy) by the definition of 
È. 

2 For the ¬ half, suppose M(xÈy). Then E!(xÈy) by lemma 3(i). Hence mz(Ez Ù Mx Ù 
My Ù (zÎx Ú zÎy)) by lemma 2(i) and the definition of xÈy,  whence Mx Ù My. 
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 PROOF OF (ii).    
 1  For the ® half, suppose Sx Ù Sy. With a view to using theorem 1(iii) we shall prove 

(i) mz(Ez Ù Mx Ù My Ù (zÎx Ú zÎy)) and (ii) $u"z((Ez Ù Mx Ù My Ù (zÎx Ú 
zÎy))®zÎu). 

 2  For (i), since Sx, it follows that mz zÎx by the definitions of S and M; a fortiori 
mz(zÎx Ú zÎy). Since Sx and Sy, it follows that Mx and My by the definition of M.  
Hence mz(Ez Ù Mx Ù My Ù (zÎx Ú zÎy)) by lemma 5(i). 

 3 For (ii), since Sx and Sy, it follows by axiom 2(iv) that xÍv and yÍw for some levels 
v and w. By theorem 14, vÎw Ú v=w Ú wÎv. Suppose vÎw, then from xÍv it follows 
that xÎw by theorem 9, whence xÍw by the corollary of theorem 8. Since yÍw too, it 
follows that "z((zÎx Ú zÎy)®zÎw) by the definition of Í, whence $u"z((zÎx Ú 
zÎy)®zÎu). Suppose wÎv, then by similar reasoning xÍv and yÍv, whence 
$u"z((zÎx Ú zÎy)®zÎu). Suppose v=w, then again both xÍv and yÍv, whence 
$u"z((zÎx Ú zÎy)®zÎu). In each case, then, $u"z((zÎx Ú zÎy)®zÎu), whence 
$u"z((Ez Ù Mx Ù My Ù (zÎx Ú zÎy))®zÎu) by lemma 5(i).  

 4  From (i) and (ii), it follows that S(z×Mx Ù My Ù (zÎx Ú zÎy)) by theorem 1(iii), 
whence S(xÈy) by the definition of È. 

 5 For the ¬ half, suppose S(xÈy). Then M(xÈy) by the definition of S, whence Mx Ù 
My by theorem 20(i), and also xÈy=xÈy by lemma 3(i). Hence "z(zÎx®zÎxÈy) 
and "z(zÎy®zÎxÈy) by lemmas 4 and 5(i), and the definition of È, whence xÍxÈy 
and yÍxÈy by the definition of Í. Hence Sx and Sy by axiom 2(iii). 

 
 
 THEOREM 21. Generalized union  

(i) ("y(A(y)®My) Ù $zA(z)) « M(ÈxA(x)) 
(ii) ("y(A(y)®Sy) Ù S(z:A(z))) « S(ÈxA(x)) 
 
 PROOF OF (i).   
1 For the ® half, suppose "y(A(y)®My) Ù $zA(z). Then $z(A(z) Ù Mz), whence 

$z(A(z) Ù mz1 z1Îz) by the definition of M. Hence mz1(Ez1 Ù "y(A(y)®My) Ù 
$z(A(z) Ù z1Îz)) by lemma 5(i), whence E!(x×"y(A(y)®My) Ù $z(A(z) Ù xÎz)) by 
lemma 2(i). Hence M(x×"y(A(y)®My) Ù $z(A(z) Ù xÎz)) by the definition of 
x×("y(A(y)®My) Ù $z(A(z) Ù xÎz)), whence M(ÈxA(x)) by the definition of ÈxA(x). 

2 For the ¬ half, suppose M(ÈxA(x)). Then E!(ÈxA(x)) by lemma 3(i). Hence mz1(Ez1 
Ù "y(A(y)®My) Ù $z(A(z) Ù z1Îz)) by lemma 2(i) and the definition of ÈxA(x), 
whence "y(A(y)®My) Ù $zA(z).  

 
 PROOF OF (ii).   

1 For the ® half, suppose "y(A(y)®Sy) Ù S(z:A(z)). Then M(z:A(z)) by the definition 
of S. Hence E!(z:A(z)) by lemma 3(i), whence $1z(Ez Ù A(z)) Ú mz(Ez Ù A(z)) by 
lemma 2(iv).  

2 Suppose $1z(Ez Ù A(z)). Then z:A(z) = ℩z(Ez Ù A(z)) by lemma 2(iii), whence 
xÎz:A(z) « xÎ℩z(Ez Ù A(z)). Hence x:(xÎz:A(z)) º x:(xÎ℩z(Ez Ù A(z))) by lemma 
1(ii). Since M(z:A(z)), it follows by lemma 5(iii) that z:A(z) = x:(xÎ℩z(Ez Ù A(z))). 
From the hypothesis "y(A(y)®Sy) and the definition of S, it follows that xÎ℩z(Ez Ù 
A(z)) « ("y(A(y)®My) Ù $z(A(z) Ù xÎz)), whence z:A(z) = x:("y(A(y)®My) Ù 
$z(A(z) Ù xÎz)) by lemma 1(ii). Hence S(x:"y(A(y)®My) Ù $z(A(z) Ù xÎz)). By the 
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definition of M and lemma 5(i), mx(Ex Ù "y(A(y)®My) Ù $z(A(z) Ù xÎz)), whence 
S(x×"y(A(y)®My) Ù $z(A(z) Ù xÎz)) by lemma 2(ii). Hence S(ÈxA(x)) by the 
definition of ÈxA(x). 

3 Suppose instead mz(Ez Ù A(z)). With a view to using theorem 1(iii) we shall prove (i) 
mz1(Ez1 Ù "y(A(y)®My) Ù $z(A(z) Ù z1Îz)) and (ii) $u"z1((Ez1 Ù "y(A(y)®My) Ù 
$z(A(z) Ù z1Îz)) ® z1Îu). 

4 For (i), since mz(Ez Ù A(z)) it follows that A(z2) for some z2. From the hypothesis 
"y(A(y)®Sy) it follows that "y(A(y)®My) Ù Mz2 by the definition of S, whence 
mz1("y(A(y)®My) Ù z1Îz2) by the definition of M. Since "y(yÎz2®$z(A(z) Ù 
yÎz)), it follows that mz1(Ez1 Ù "y(A(y)®My)  Ù $z(A(z) Ù z1Îz)) by lemma 5(i). 

5 For (ii), since mz(Ez Ù A(z)), it follows that z:A(z) = z×A(z) by lemma 2(ii), whence 
S(z×A(z)). Hence "y((Ey Ù A(y)) ® yÎv) for some level v by theorem 1(iii). From the 
hypothesis "y(A(y)®Sy) it follows that "y(A(y)®(My Ù Ey)) by the definition of S, 
whence "x($y(A(y) Ù xÎy) ® $y(yÎv Ù xÎy)). Hence "x($y(A(y) Ù xÎy) ® xÎv) 
by theorem 8. Hence $u"x((Ex Ù "y(A(y)®My) Ù $y(A(y) Ù xÎy)) ® xÎu) by 
lemma 5(i). 

6 From (i) and (ii) it follows that S(x×"y(A(y)®My) Ù $z(A(z) Ù xÎz)) by theorem 
1(iii), whence S(ÈxA(x)) by the definition of ÈxA(x).  

7 For the ¬ half, suppose S(ÈxA(x)). Then M(ÈxA(x)) by the definition of S, whence 
"y(A(y)®My) Ù $zA(z) by theorem 21(i). Consider an arbitrary z1 such that A(z1).  
Then Mz1. Also "z2(z2Îz1®z2ÎÈxA(x)) by lemmas 3(i), 4 and 5(i), and the 
definition of È. By axiom 2(iv), "z2(z2ÎÈxA(x)®z2Îv) for some level v, whence 
"z2(z2Îz1®z2Îv). Hence z1Ív by the definition of Í, whence Sz1 by theorem 1(ii). 
Since z1 is arbitrary, we can generalize to get "y(A(y)®Sy). 

8 Since $zA(z) and "y(A(y)®Sy), it follows that $z(Ez Ù A(z)) by the definition of S, 
whence z:A(z) = ℩z(Ez Ù A(z)) or z:A(z) = z×A(z) by lemmas 2(iii) and 2(iv). Suppose 
z:A(z) = ℩z(Ez Ù A(z)). Then A(z:A(z)), whence S(z:A(z)). Suppose instead z:A(z) = 
z×A(z). Then M(z:A(z)) and z1Îz:A(z)®A(z1) by lemma 4, whence by the reasoning in 
step 7 z1Îz:A(z)®z1Ív. By axiom 2(v), vÎu for some level u, whence 
z1Îz:A(z)®z1Îu by theorem 9. Hence z:A(z)Íu by the definition of Í, whence 
S(z:A(z)) by theorem 1(ii). 

 
 COROLLARIES.  (i)  ("y(yÎx®Sy) Ù Mx) « MÈx 

  (ii) ("y(yÎx®Sy) Ù Sx) « SÈx 
  

 PROOF OF (i).   By the definitions of S and M, lemma 5(i) and axiom 1(iv), ("y(yÎx®Sy) 
Ù Mx) « ("y(yÎx®My) Ù $z zÎx), whence ("y(yÎx®Sy) Ù Mx) « MÈx by theorem 
21(i) and the definition of Èx. 

 
 PROOF OF (ii).   By the definition of S, lemmas 2(iv), 3(i) and 5(iii), and axiom 1(iv), 
("y(yÎx®Sy) Ù Sx) « (("y(yÎx®Sy) Ù S(z:zÎx)), whence ("y(yÎx®Sy) Ù Sx) « 
SÈx by theorem 21(ii) and the definition of Èx. 
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THEOREM 22.  Sets and levels II  
 (i) Sx«(Mx Ù $u xÎu) 
 (ii) Sx«(Mx Ù E!V†(x)) 
 
 PROOF OF (i).    

1 For the ® half, suppose Sx. Then Mx by the definition of S. Also by axiom 2(iv) 
xÍu1 for some level u1, whence by axiom 2(v) u1Îu2 for some level u2. Since xÍu1 
and u1Îu2, it follows that xÎu2 by theorem 9, whence $u xÎu.  

2 For the ¬ half, suppose Mx Ù $u xÎu. Then Sx by the definitions of E and S. 
 

 PROOF OF (ii).    
 1 For the ® half, suppose Sx. Then Mx Ù $u xÎu by theorem 22(i). Hence $1v(xÎv Ù  
  ¬$w(wÎv Ù xÎw)) by theorem 15(ii), whence E!V†(x) by the definition of V†(x).  
 2 For the ¬ half, suppose Mx Ù E!V†(x). Then by the definition of V†(x) it follows that 

xÎV†(x), whence Sx by the definitions of E and S. 
  
 
 THEOREM 23.  Pairing   

(i) (Ex Ù Ey Ù x¹y)«E!|x, y| 
(ii) E!|x, y|«S|x, y| 
 
 PROOF OF (i).   By lemma 2(i) and the definition of |x, y|, mz(Ez Ù (z=x Ú z=y)) « E!|x, y|. 
Hence Ex Ù Ey Ù x¹y  «  E!|x, y| by lemmas 3(i), 3(ii) and 3(iii). 

 
 PROOF OF (ii). 
 1  For the ® half, suppose E!|x, y|. Then mz(Ez Ù (z=x Ú z=y)) by lemma 2(i) and the 

definition of |x, y|, whence Ex Ù Ey Ù x¹y. Hence by lemma 3(iii) it follows that 
either (i) Ux Ù Uy or (ii) Sx Ù Sy or (iii) Sx Ù Uy or (iv) Ux Ù Sy. With a view to 
using theorem 1(iii) we prove $u"z((Ez Ù (z=x Ú z=y))®zÎu) for each case. 

 2  For case (i), from Ux Ù Uy Ù x¹y it follows that mz1(Ez1 Ù Uz1). Hence by lemma 2(i) 
E!(z1×Uz1), whence V1 = z1×Uz1 by lemma 9(i). Since (z=x Ú z=y)®Uz, it follows that 
(z=x Ú z=y)®zÎV1 by lemma 9(ii). So $u"z((Ez Ù (z=x Ú z=y))®zÎu) by the 
definition of V. 

 3  For case (ii), from Sx Ù Sy it follows by theorem 22(i) that xÎv and yÎw for some 
levels v, w.  By theorem 14, vÎw Ú v=w Ú wÎv. Suppose vÎw, then by theorem 8 
xÎw. Also yÎw, so $u"z((Ez Ù (z=x Ú z=y))®zÎu). Suppose v=w, then xÎv and 
yÎv, whence $u"z((Ez Ù (z=x Ú z=y))®zÎu). Suppose wÎv, then by theorem 8, 
yÎv. Also xÎv, so $u"z((Ez Ù (z=x Ú z=y))®zÎu). From vÎw Ú v=w Ú wÎv, then, 
it follows that $u"z((Ez Ù (z=x Ú z=y))®zÎu).  

 4  For case (iii), from Sx, it follows by theorem 22(i) that xÎv for some level v. By 
lemma 8(iv) it follows from Uy that yÎv. Hence $u"z((Ez Ù (z=x Ú z=y))®zÎu). 

 5  For case (iv), $u"z((Ez Ù (z=x Ú z=y))®zÎu) is proved by the reasoning in step 4. 
 6  Since mz(Ez Ù (z=x Ú z=y)) and $u"z((Ez Ù (z=x Ú z=y))®zÎu), it follows by 

theorem 1(iii) that S(z×z=x Ú z=y), whence S|x, y| by the definition of |x, y|. 
 7 For the ¬ half, suppose S|x, y|. Then E!|x, y| by lemmas 3(i) and 3(ii). 
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 THEOREM 24. Adjunction 
 (i) Mx Ù Ey « M(x⨁y) 
 (ii) Sx Ù Ey « S(x⨁y) 
 

 PROOF OF (i).   
1 For the ® half, suppose Mx Ù Ey. Then mz zÎx by the definition of M; a fortiori 

mz(zÎx Ú z=y). Hence mz(Ez Ù Mx Ù Ey Ù (zÎx Ú z=y)) by lemma 5(i), whence 
E!(z×Mx Ù Ey Ù (zÎx Ú z=y)) by lemma 2(i). Hence M(z×Mx Ù Ey Ù (zÎx Ú z=y)) by 
the definition of z×(Mx Ù Ey Ù (zÎx Ú z=y)), whence M(x⨁y) by the definition of ⨁. 

2 For the ¬ half, suppose M(x⨁y). Then E!x⨁y by lemma 3(i). Hence mz(Ez Ù Mx Ù 
Ey Ù (zÎx Ú z=y)) by lemma 2(i) and the definition of x⨁y,  whence Mx Ù Ey. 

 
 PROOF OF (ii).    
 1  For the ® half, suppose Sx Ù Ey. With a view to using theorem 1(iii) we shall prove 

(i) mz(Ez Ù Mx Ù Ey Ù (zÎx Ú z=y)) and (ii) $u"z((Ez Ù Mx Ù Ey Ù (zÎx Ú 
z=y))®zÎu). 

 2  For (i), since Sx, it follows that Mx and mz zÎx by the definitions of S and M; a 
fortiori mz(zÎx Ú z=y). Hence mz(Ez Ù Mx Ù Ey Ù (zÎx Ú z=y)) by lemma 5(i). 

 3 For (ii), since Sx Ù Ey, it follows by lemma 3(iii) that Sx Ù (Uy Ú Sy). Then by 
theorem 22(i), xÎv for some level v. Suppose instead Uy, then by lemma 8(iv), yÎw 
for some level w. Suppose Sy, then by theorem 22(i), yÎw for some level w. So either 
way yÎw for some level w. By theorem 14, vÎw Ú v=w Ú wÎv. Suppose vÎw, then 
by theorem 8, xÎw, whence xÍw by the corollary of theorem 8. Also yÎw, so 
$u"z((zÎx Ú z=y)®zÎu) by the definition of Í. Suppose v=w, then xÎv and yÎv, 
whence xÍv by the corollary of theorem 8. Hence $u"z((zÎx Ú z=y)®zÎu) by the 
definition of Í. Suppose wÎv, then by theorem 8, yÎv. Also xÎv, whence xÍv by the 
corollary of theorem 8. So $u"z((zÎx Ú z=y)®zÎu) by the definition of Í. From 
vÎw Ú v=w Ú wÎv, then, it follows that $u"z((zÎx Ú z=y)®zÎu), whence 
$u"z((Ez Ù Mx Ù Ey Ù (zÎx Ú z=y))®zÎu) by lemma 5(i).  

 4 Since mz(Ez Ù Mx Ù Ey Ù (zÎx Ú z=y)) and $u"z((Ez Ù Mx Ù Ey Ù (zÎx Ú 
z=y))®zÎu),  it follows by theorem 1(iii) that S(z×Mx Ù Ey Ù (zÎx Ú z=y)), whence 
S(x⨁y) by the definition of x⨁y. 

 5 For the ¬ half, suppose S(x⨁y). Then M(x⨁y) by the definition of S, whence Mx Ù 
Ey by theorem 24(i), and also x⨁y=x⨁y by lemma 3(i). Hence "z(zÎx®zÎx⨁y) by 
lemmas 4 and 5(i) and the definition of ⨁, whence xÍx⨁y by the definition of Í. 
Hence Sx by axiom 2(iii). 

  
 
 THEOREM 25.  Power multitude 
 (i) Let $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú y3=y2))), then ℩z(Ez Ù 

zÍx)=x Ù P(x)=x. 
 (ii) Let $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù y2¹y3), then mz(Ez Ù zÍx) Ù 

P(x)=y×yÍx. 
 (iii) Mx « M(P(x)) 
 (iv) Sx « S(P(x)) 
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PROOF OF (i).    
1 By the hypothesis z1Îx Ù z2Îx Ù z1¹z2 for some z1 and z2, whence E!|z1, z2| Ù  
  E|z1, z2| Ù M|z1, z2| by lemma 5(i), theorems 23(i) and 23(ii), and the definition of S. 

Since z3Î|z1, z2|®z3Îx by lemma 4 and the definition of |z1, z2|, it follows that  
  |z1, z2|Íx by the definition of Í.  
2 By the hypothesis and lemmas 3(i) and 5(i), Mx Ù E!x, whence by lemma 6(ii) xÍx. 

For a reductio suppose that x1Íx for some x1¹x. Then for some z, zÏx1 Ù zÎx by the 
definition of Ì and lemma 6(iii). Also zÎx1®zÎx and mz3 z3Îx1 by the definitions of 
Í and M. Since by the hypothesis zÎx«(z=z1 Ú z=z2), it follows that zÎx1®(z=z1 Ú 
z=z2) whence z1Ïx1 Ú z2Ïx1. Suppose z1Ïx1. Then zÎx1®z=z2, whence ¬mz3 z3Îx1. 
Contradiction. Suppose instead z2Ïx1. Then zÎx1®z=z1, whence ¬mz3 z3Îx1. 
Contradiction. So either way there is a contradiction, whence $1z zÍx. Hence  

  x=|z1, z2|, whence $1z(Ez Ù zÍx). Hence ℩z(Ez Ù zÍx)=x, whence P(x)=x by lemma 
2(iii) and the definition of P(x). 

 
PROOF OF (ii).   By the hypothesis z1Îx Ù z2Îx Ù z3Îx Ù z1¹z2 Ù z1¹z3 Ù z2¹z3 for some z1, 
z2, z3, whence Ez1 Ù Ez2 Ù Ez3 by lemma 5(i). Hence E!|z1, z2| Ù E!|z2, z3| by theorem 23(i), 
whence M|z1, z2| Ù M|z2, z3| Ù zÎ|z1, z2|«(z=z1 Ú z=z2) Ù zÎ|z2, z3|«(z=z2 Ú z=z3) by 
lemma 4 and the definitions of |z1, z2| and |z2, z3|. Hence z1Î|z1, z2| Ù z1Ï|z2, z3| Ù  
zÎ|z1, z2|®zÎx Ù zÎ|z2, z3|®zÎx, whence |z1, z2|¹|z2, z3| and also |z1, z2|Íx Ù |z2, z3|Íx by 
the definition of Í. Since E|z1, z2| Ù E|z2, z3| by theorem 23(ii) and the definition of S, it 
follows that mz(Ez Ù zÍx). Hence P(x)=y×yÍx by lemma 2(ii) and the definition of P(x). 

 
 PROOF OF (iii).    
 1 For the ® half, suppose Mx. Then by the definition of M, either $y1$y2(y1Îx Ù y2Îx 

Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú y3=y2)) or $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù 
y1¹y3 Ù y2¹y3). Suppose $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú 
y3=y2))). Then P(x)=x by theorem 25(i), whence M(P(x)). Suppose instead 
$y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù y2¹y3). Then P(x)=y×yÍx by 
theorem 25(ii), whence M(P(x)) by lemma 4. 

 2 For the ¬ half, suppose M(P(x)). Then E!(y:yÍx) by lemma 3(i) and the definition of 
P(x), whence $z zÍx by lemma 2(iv). Hence Mx by lemma 6(i).  

 
 PROOF OF (iv).  
 1 For the ® half, suppose Sx. Then by the definitions of S and M, either $y1$y2(y1Îx Ù 

y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú y3=y2))) or $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù 
y1¹y2 Ù y1¹y3 Ù y2¹y3). Suppose $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú 
y3=y2))). Then P(x)=x by theorem 25(i), whence S(P(x)). Suppose instead 
$y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù y2¹y3). Then mz(Ez Ù zÍx) Ù 
P(x)=y×yÍx by theorem 25(ii). Since Sx, it follows by theorem 22(i) that xÎv for 
some level v, whence yÍx®yÎv by theorem 9. Hence $u"y((Ey Ù yÍx)®yÎu), 
whence S(P(x)) by theorem 1(iii). 

 2 For the ¬ half, suppose S(P(x)). Then M(P(x)) by the definition of S, whence Mx by 
theorem 25(iii). By the definition of M, either $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù 
"y3(y3Îx® (y3=y1 Ú y3=y2))) or $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù 
y2¹y3). Suppose $y1$y2(y1Îx Ù y2Îx Ù y1¹y2 Ù "y3(y3Îx® (y3=y1 Ú y3=y2))). Then 
P(x)=x by theorem 25(i), whence Sx.  



PhilSci-Archive version: 15 June 2024 
 

69 

 3 Suppose instead $y1$y2$y3(y1Îx Ù y2Îx Ù y3Îx Ù y1¹y2 Ù y1¹y3 Ù y2¹y3). Then 
mz(Ez Ù zÍx) Ù P(x)=y×yÍx by theorem 25(ii). Hence by lemma 4 yÎP(x)«(Ey Ù 
yÍx), whence y×yÎP(x) º y×(Ey Ù yÍx) by lemma 1(i). Hence P(x) = y×(Ey Ù yÍx) by 
lemma 5(ii), whence S(y:Ey Ù yÍx) by lemma 2(ii).  

 4 By the definitions of Í and S, "y((Ey Ù yÍx)®Sy), whence S(Èy(Ey Ù yÍx)) and 
M(Èy(Ey Ù yÍx)) by theorem 21(ii) and the definition of S. Hence Èy(Ey Ù yÍx) = 
Èy(Ey Ù yÍx)) by lemma 3(i), whence z1ÎÈy(Ey Ù yÍx) « $z(Ez Ù zÍx Ù z1Îz) by 
the definition of Èy(Ey Ù yÍx), lemmas 4 and 5(i), and the definition of Í.  

 5 We next prove that $z(Ez Ù zÍx Ù z1Îz) « z1Îx. The ® half follows immediately 
from the definition of Í. For the ¬ half, suppose z1Îx. Then z2Îx for some z2¹z1 by 
the definition of M, and also Ez1 Ù Ez2 by lemma 5(i). Hence E!|z1, z2| Ù E|z1, z2| Ù 
M|z1, z2| by theorems 23(i) and 23(ii), and the definition of S. By lemma 4 and the 
definition of |z1, z2| it follows that z1Î|z1, z2| and z3Î|z1, z2|®z3Îx, whence $z(Ez Ù 
zÍx Ù z1Îz) by the definition of Í.  

 6 Since z1ÎÈy(Ey Ù yÍx) « $z(Ez Ù zÍx Ù z1Îz) and $z(Ez Ù zÍx Ù z1Îz) « z1Îx, 
it follows that z1ÎÈy(Ey Ù yÍx) « z1Îx. Hence Èy(Ey Ù yÍx) = x by axiom 1(ii), 
whence Sx. 

 
 
 THEOREM 26. Power-plus multitude  

(i) Mx « M(P+(x)) 
(ii) Sx « S(P+(x)) 

 
 PROOF OF (i).    

1 For the ® half, suppose Mx. Then my(Ey Ù yÎx) by the definition of M and lemma 
5(i); a fortiori my(Ey Ù (yÎx Ú yÍx)). Hence M(y×yÎx Ú yÍx) by lemma 2(i) and the 
definition of y×(yÎx Ú yÍx), whence M(P+(x)) by the definition of P+(x). 

2 For the ¬ half, suppose M(P+(x)). Then my(yÎx Ú yÍx)) by lemmas 2(i) and 3(i) and 
the definition of P+(x), whence $y yÎx Ú $y yÍx. Suppose $y yÎx. Then Mx by 
axiom 1(iv). Suppose $y yÍx. Then Mx by lemma 6(i). 

 
PROOF OF (ii).    
1 For the ® half, suppose Sx. Then Mx by the definition of S, whence M(P+(x)) by 

theorem 26(i). Hence my(Ey Ù (yÎx Ú yÍx)) by lemmas 2(i) and 3(i) and the 
definition of P+(x). Also from Mx it follows that xÎv for some level v by theorem 
22(i). So yÎx®yÎv by theorem 8, and yÍx®yÎv by theorem 9. Hence $u("y((Ey Ù 
(yÎx Ú yÍx))®yÎu)). From my(Ey Ù (yÎx Ú yÍx)) and $u("y((Ey Ù (yÎx Ú 
yÍx))®yÎu)) it follows that S(y×yÎx Ú yÍx) by theorem 1(iii), whence S(P+(x)) by 
the definition of P+(x). 

2 For the ¬ half, suppose S(P+(x)). Then M(P+(x)) by the definition of S, whence Mx 
by theorem 26(i). Also from M(P+(x)) it follows that "y(yÎx®yÎP+(x)) by lemmas 
3(i), 4 and 5(i), and the definition of P+(x). Hence xÍP+(x) by the definition of Í, 
whence Sx by axiom 2(iii).   
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 THEOREM 27.  Membership and proper submultitude among levels vÎw«vÌw 
 
 PROOF. 
 1 For the ® half, suppose vÎw. By lemma 8(i) Mv, whence vÍw by the corollary of 

theorem 8. By axiom 1(iii) v¹w. So vÌw by the definition of Ì.  
 2  For the ¬ half, suppose vÌw, then vÍw and v¹w by the definition of Ì, whence by 

theorem 14 vÎw Ú wÎv. For a reductio suppose wÎv. Since vÍw, it follows by the 
definition of Í that wÎw, contrary to axiom 1(iii). Hence wÏv, whence vÎw. 

  
 
 THEOREM 28. Numbers of individuals   

(i) mxUx«$xMx 
(ii) mxUx«$xVx 
(iii) mxUx«$xSx 
(iv) mxUx«mx x=x 
(v) $1xUx«$1x x=x 
(vi) ¬$xUx«¬$x x=x 

 
 PROOF OF (i).   For the ® half, suppose mxUx. Then mx(Ex Ù Ux) by axiom 2(i), whence 
E!(x×Ux) by lemma 2(i). Hence $xMx by the definition of x×Ux. The ¬ half is axiom 2(ii). 
 PROOF OF (ii).   For the ® half, suppose mxUx. Then $xMx by theorem 28(i), whence 
$xVx by lemma 9(iii), the strength of identity and the definition of V. For the ¬ half, 
suppose $xVx. Then $xMx by lemma 8(i), whence mxUx by theorem 28(i). 
PROOF OF (iii).   For the ® half, suppose mxUx. Then $xVx by theorem 28(ii), whence 
$xSx by lemma 8(iii). For the ¬ half, suppose $xSx. Then $xMx by the definition of S, 
whence mxUx by theorem 28(i). 
 
 PROOF OF (iv).   The ® half is immediate. For the ¬ half, suppose mx x=x. If ¬$xMx then 
"xUx by lemma 3(i), whence mxUx. If $xMx then mxUx by theorem 28(i).  

  
 PROOF OF (v).   For the ® half, suppose $1xUx. Then ¬mx x=x by theorem 28(iv), whence  
$1x x=x. For the ¬ half, suppose y=y for some unique y. By lemma 3(i), Uy Ú My. For a 
reductio suppose My. Then mx x=x by theorems 28(i) and 28(iv). Contradiction. Hence 
Uy, whence $1xUx. 

 
PROOF OF (vi).   For the ® half, suppose ¬$xUx. Then neither mxUx nor $1xUx, whence 
neither mx x=x nor $1x x=x by theorems 28(iv) and 28(v). Hence ¬$x x=x. The ¬ half is 
immediate. 

 
 
 THEOREM 29. The lowest level  
 (i)  mxUx«E!V1 
 (ii)  $xVx«E!V1 
 (iii)  V1 º ℩v(¬$w wÎv) 
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 PROOF OF (i). 
 1 For the ® half, suppose mzUz. Then V1 = z×Uz by theorem 28(i) and lemma 9(iii), 

whence E!V1 by the strength of identity.  
 2  For the ¬ half, suppose E!V1. Then $xMx by lemma 9(ii), whence mzUz by theorem 

28(i).  
 
 PROOF OF (ii).   Immediate from theorems 28(ii) and 29(i).  
 
 PROOF OF (iii).   Suppose ¬ E!V1. Then ¬$xVx by theorem 29(ii), whence  
¬E!℩v(¬$w wÎv). Hence V1 º ℩v(¬$w wÎv). Suppose instead E!V1. Then V(V1) by the 
definition of V, whence $u u=u. Hence $1v(v=v Ù ¬$w(wÎv Ù w=w)) by theorem 15(ii). 
Hence E!℩v(¬$w wÎv). By theorem 10(i), ¬$w wÎV1. Hence V1 º ℩v (¬$w wÎv). 

 
 
 THEOREM 30. Levels next above I  E!u « E!u¢ 
  
 PROOF. 
 1  For the ® half, suppose E!u. Then E!V†(u) by lemma 8(iii) and theorem 22(ii). Hence 

E!℩x(Vu Ù x=V†(u)), whence E!u¢ by the definition of u¢. 
 2  For the ¬ half , suppose E!u¢, then uÎu¢ by the definitions of u¢ and V†(u). Hence 

E!u by axiom 1(i).  
 
 
 THEOREM 31.  Levels next above II     
 (i)  u¢ = x×(Ux Ú xÍu)  
 (ii)  u¢ = P+(u) 
 

PROOF OF (i).   By lemma 8(i), Mu. Hence E!u by lemma 3(i), whence E!u¢ by theorem 30. 
By the definitions of u¢ and V†(u), uÎu¢ and Vu¢. So Mu¢ by lemma 8(i). We tackle three 
cases separately: (i) u¢=V1, (ii) u¢=V2 and (ii) u¢¹V1 and u¢¹V2.  

 
 Case (i) u¢=V1 

Since uÎu¢, it follows that uÎV1. But uÏV1 by theorem 10(i). Hence u¢ = x×(Ux Ú xÍu) by 
the tautology AÙ¬A®B. 

 
 Case (ii) u¢=V2 

Since E!V2 it follows that ℩w(wÎV2) = V1 by theorem 10(ii). Since uÎV2, it follows that 
u=V1, whence (Ux Ú xÍV1)«(Ux Ú xÍu). By lemma 9(iv) u¢ = V2 = x×(Ux Ú xÍV1), 
whence by lemma 1(i) u¢ = x×(Ux Ú xÍu). 

 
 Case (iii) u¢¹V1 and u¢¹V2 
 1 We first prove wÍu«wÎu¢. For the ® half, suppose wÍu. From wÍu and uÎu¢ it 

follows by theorem 9 that wÎu¢. For the ¬ half, suppose wÎu¢, then uÏw by the 
definitions of u¢ and V†(u). Hence wÎu Ú w=u by theorem 14. By lemma 8(i), Mw. 
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Suppose wÎu, then wÍu by the corollary of theorem 8. Suppose w=u, then wÍu by 
lemma 6(ii). 

 2 Since E!u¢and u¢¹V1 and u¢¹V2, it follows by theorem 10(iii) that w:wÎu¢ = w×wÎu¢ 
and by theorem 11(ii) that u¢=acc(w:wÎu¢), whence u¢=acc(w×wÎu¢). By the 
definition of acc, acc(w×wÎu¢) = x×(Ux Ú $y(yÎw×wÎu¢Ù (xÎy Ú xÍy))). Hence 
xÎu¢«(Ex Ù (Ux Ú $w1(w1Îu¢ Ù (xÎw1 Ú xÍw1)))) by lemmas 4 and 5(i). We next 
prove xÎu¢«(Ux Ú xÍu). 

 3 For the ® half, suppose xÎu¢, then E!x by axiom 1(i), whence Ux Ú Mx by lemma 
3(i). Suppose Ux, a fortiori Ux Ú $w1(w1Îu¢ Ù xÍw1). Suppose instead that Mx. 
Since xÎu¢, it follows that Ux Ú $w1(w1Îu¢ Ù (xÎw1 Ú xÍw1)), whence Ux Ú 
$w1(w1Îu¢ Ù xÍw1) by the corollary of theorem 8. Since wÍu«wÎu¢, it follows that 
Ux Ú $w1(w1Íu Ù xÍw1). So Ux Ú xÍu by the definition of Í. 

 4 For the ¬ half, suppose Ux. Since Mu and E!u, it follows that Ex by axioms 2(i) and 
2(ii), whence xÎu¢. Suppose instead that xÍu, then Sx by axiom 2(iii) and lemma 
8(iii), whence Ex by the definition of S. Since uÍu by lemma 6(ii), it follows that Ex 
Ù $w1(w1Íu Ù xÍw1). Since wÍu«wÎu¢, it follows that Ex Ù $w1(w1Îu¢ Ù xÍw1), 
whence xÎu¢. 

 5 Since xÎu¢«(Ux Ú xÍu), it follows by lemma 1(i) that x×xÎu¢ º x×(Ux Ú xÍu). Since 
Mu¢, it follows by lemma 5(ii) that u¢ = x×(Ux Ú xÍu). 

 
 PROOF OF (ii). 
 1  By lemma 8(i), Mu. Hence by theorem 26(i) M(P+(u)), whence E!P+(u) by lemma 

3(i). So P+(u) = x×(xÎu Ú xÍu) by the definition of P+(u), whence xÎP+(u)«(Ex Ù 
(xÎu Ú xÍu)) by lemma 4. We shall prove xÎP+(u)«(Ux Ú xÍu).  

 2  For the ® half, suppose xÎP+(u), then xÎu Ú xÍu. Suppose xÎu, then by axiom 1(i) 
E!x, whence by lemma 3(i) Ux Ú Mx. Suppose Ux; a fortiori Ux Ú xÍu. Suppose Mx, 
then by the corollary of theorem 8 xÍu; a fortiori Ux Ú xÍu. Suppose instead that 
xÍu, then again Ux Ú xÍu. 

3 For the ¬ half, suppose Ux. Since Mu, it follows that E!u by lemma 3(i). Hence Ex 
by axioms 2(i) and 2(ii). Also by lemma 8(iv) xÎu, whence xÎP+(u). Suppose 
instead that xÍu, then Sx by axiom 2(iii) and lemma 8(iii). Hence Ex by the definition 
of S, whence xÎP+(u). 

 4  Since xÎP+(u)«(Ux Ú xÍu), it follows by lemma 1(i) that x×xÎP+(u) º x×(Ux Ú 
xÍu). Since M(P+(u)), it follows by lemma 5(ii) that P+(u) = x×(Ux Ú xÍu), and so u¢ 
= P+(u) by theorem 31(i).  

 
 
 THEOREM 32.  Sets and levels III    Let Sx, then (V*(x))¢ = V†(x). 
 
 PROOF. 

1 From the hypothesis it follows that E!V*(x) by theorem 17(i), whence V(V*(x)) Ù 
xÍV*(x)  by the definition of V*(x). Hence by theorem 30 E!(V*(x))¢, whence 
V(V*(x))¢ Ù V*(x)Î(V*(x))¢ by the definitions of (V*(x))¢ and V†(V*(x)). Hence 
xÎ(V*(x))¢ by theorem 9. 
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 2  For a reductio suppose that xÎw for some wÎ(V*(x))¢. By the definitions of (V*(x))¢ 
and V†(V*(x)) it follows that ¬$w1(w1Î(V*(x))¢ Ù V*(x)Îw1). Hence V*(x)Ïw, 
whence by theorem 14 V*(x)=w Ú wÎV*(x). Suppose V*(x)=w, then xÎV*(x). 
Suppose instead that wÎV*(x), then xÎV*(x) by theorem 8. So either way xÎV*(x), 
contrary to theorem 17(ii). Hence ¬$w(wÎ(V*(x))¢ Ù xÎw). By theorem 22(ii) 
E!V†(x). Since V(V*(x))¢ and xÎ(V*(x))¢ and ¬$w(wÎ(V*(x))¢ Ù xÎw), it follows that 
(V*(x))¢ = V†(x) by the definition of V†(x). 

  
 
 THEOREM 33.  Levels next above III  
 (i) Let $y1$y2(Uy1 Ù Uy2 Ù y1¹y2 Ù "y3(Uy3® (y3=y1 Ú y3=y2))), then ℩z(Ez Ù zÍV1)=V1 

Ù P(V1)=V1 Ù "u(u¹V1®(mz zÍu Ù P(u)=y×yÍu)). 
 (ii) Let $y1$y2$y3(Uy1 Ù Uy2 Ù Uy3 Ù y1¹y2 Ù y1¹y3 Ù y2¹y3), then "u(mz zÍu Ù 

P(u)=y×yÍu). 
 (iii) $1z zÍu « u¢=V1⨁P(u) 
 (iv) mz zÍu « u¢=V1ÈP(u) 
  
 PROOF OF (i).    

1 By the hypothesis and theorem 29(i), E!V1. Hence $x1$x2(x1ÎV1 Ù x2ÎV1 Ù x1¹x2 Ù 
"x3(x3ÎV1® (x3=x1 Ú x3=x2)) by the hypothesis and lemma 9(ii), whence ℩z(Ez Ù 
zÍV1)=V1 Ù P(V1)=V1 by theorem 25(i).  

2 From E!V1 it follows that $u u¹V1 by lemmas 9(vi) and 9(viii) and the definition of V. 
Consider an arbitrary level v¹V1. Then by the definition of V and theorems 10(i) and 
14, V1Îv. By the hypothesis and lemma 8(iv), mz(Uz Ù zÎv). Since ¬U(V1) by 
lemma 9(ii) and the definition of U, it follows that $y1$y2$y3(y1Îv Ù y2Îv Ù y3Îv Ù 
y1¹x2 Ù y1¹y3 Ù y2¹y3), whence by theorem 25(ii) mz zÍv Ù P(v)=y×yÍv. Since v is 
arbitrary, we can generalize to get "u(u¹V1®(mz zÍu Ù P(u)=y×yÍu)). 

 
PROOF OF (ii).   By the hypothesis and theorem 28(ii), $xVx. Consider an arbitrary level v. 
Then by lemma 8(iv), Uy®yÎv, whence by the hypothesis $y1$y2$y3(y1Îv Ù y2Îv Ù 
y3Îv Ù y1¹y2 Ù y1¹y3 Ù y2¹y3). Hence by theorem 25(ii) mz zÍv Ù P(v)=y×yÍv. Since v is 
arbitrary, we can generalize to get "u(mz zÍu Ù P(u)=y×yÍu). 

 
PROOF OF (iii).    

 1 For the ® half, suppose zÍu for some unique z. Then mxUx by the definition of Í 
and theorem 28(i), whence $y1$y2(Uy1 Ù Uy2 Ù y1¹y2 Ù "y3(Uy3®(y3=y1 Ú y3=y2)) 
by theorem 33(ii). Hence u=V1 Ù ℩z(Ez Ù zÍV1)=V1 Ù P(V1)=V1 by theorem 33(i). 
Hence E!V1 by the strength of identity, whence V1 = z×Uz by lemma 9(i). Hence MV1 
and zÎV1«(Ez Ù Uz) by lemma 4, whence E(P(u)) by the definitions of V and S, 
lemma 8(iii) and theorem 25(iv).  

 2 By theorems 30 and 31(i), and lemma 4, Mu¢ and zÎu¢«(Ez Ù (Uz Ú zÍu)), whence 
zÎu¢«(MV1 Ù E(P(u)) Ù (zÎV1 Ú z=P(u))), and also u¢=x×xÎu¢ by lemma 5(ii). 
Hence u¢=x×(MV1 Ù E(P(u)) Ù (zÎV1 Ú z=P(u))) by lemma 1(i), whence u¢=V1⨁P(u) 
by the definition of V1⨁P(u). 

3 For the ¬ half, suppose u¢=V1⨁P(u). Then E!u by the strength of identity and 
theorem 30, whence zÎV1«Uz by theorems 28(ii) and 29(ii), and lemma 9(ii). Also 
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x×(Ux Ú xÍu) = x×(MV1 Ù E(P(u)) Ù (xÎV1 Ú x=P(u))) by theorem 31(i) and the 
definition of V1⨁P(u). By axiom 2(iii), lemma 8(iii) and the definitions of S and U, it 
follows that zÍu®Ez Ù ¬Uz. Hence by lemma 4 zÍu®z=P(u), whence ¬mz zÍu. 
Since uÍu by lemmas 6(ii) and 8(i), it follows that $1z zÍu.  

 
 PROOF OF (iv).  
 1  For the ® half, suppose mz zÍu. Then mz(Ez Ù zÍu) by axiom 2(iii), lemma 8(iii) 

and the definition of S. Hence P(u)=y×yÍu by lemma 2(ii) and the definition of P(u), 
whence M(P(u)) and zÎP(u)«(Ez Ù zÍu) by lemma 4. Since mz zÍu, it follows by 
lemmas 3(i) and 6(i) that E!u Ù Mu, whence $xMx. Hence by lemma 9(iii) V1 = z×Uz, 
whence MV1 and zÎV1«(Ez Ù Uz) by lemma 4. By theorems 30 and 31(i), and 
lemma 4, Mu¢ and zÎu¢«(Ez Ù (Uz Ú zÍu)), whence zÎu¢«(zÎV1 Ú zÎP(u)).  

 2  Since MV1 and M(P(u)), it follows by theorem 20 that M(V1ÈP(u)), whence 
E!(V1ÈP(u)) by lemma 3(i). By the definition of È, V1ÈP(u)) = z×(MV1 Ù M(P(u)) Ù 
(zÎV1 Ú zÎP(u))). Hence zÎ(V1ÈP(u))«(zÎV1 Ú zÎP(u)) by lemmas 4 and 5(i). 
Since zÎu¢«(zÎV1 Ú zÎP(u)), it follows that zÎu¢«zÎ(V1ÈP(u)).   

 3  Since Mu¢ and M(V1ÈP(u)) and zÎu¢«zÎ(V1ÈP(u)), it follows by axiom 1(ii) that 
u¢=V1ÈP(u). 

4 For the ¬ half, suppose u¢=V1ÈP(u). Then E!u by the strength of identity and 
theorem 30, whence mxUx and zÎV1«Uz by theorems 28(ii) and 29(ii), and lemma 
9(ii). Also x×(Ux Ú xÍu) = x×(MV1 Ù M(P(u)) Ù (xÎV1 Ú xÎP(u))) by theorem 31(i) 
and the definition of V1ÈP(u). By axiom 2(iii), lemma 8(iii) and the definitions of S 
and U, it follows that zÍu®Ez Ù ¬Uz. Hence by lemma 4 zÍu®zÎP(u). For a 
reductio suppose z1Íu for some unique z1. Then by theorems 33(i) and 33(ii), 
P(u)=V1, whence Uz1. Contradiction. Since uÍu by lemmas 6(ii) and 8(i), it follows 
that mz zÍu.  

 
 
 THEOREM 34.  Limit levels   

(i) mxUx « $xLx 
(ii) Lu « u = Èv vÎu 

 
PROOF OF (i). By axiom 2(vi) and the definition of L, $xVx « $xLx. Hence by theorem 
28(ii) mxUx « $xLx. 

 
 PROOF OF (ii).  
 1   For the ® half, suppose Lu. Then Mu by lemma 8(i), whence E!u by lemma 3(i). 

Also by the definition of L, u¹V1. For a reductio suppose u=V2. Then E!V2 by the 
strength of identity, whence V2 = z×(Uz Ú zÍV1) and E!V1 by lemmas 9(iv) and 9(vi). 
By theorem 31(i) and the definition of V, V1¢= z×(Uz Ú zÍV1). Hence V2=V1¢, whence 
¬LV2 by the definition of L. Contradiction. Hence u¹V2.  

 2  Since E!u and u¹V1 and u¹V2, it follows by theorem 10(iii) that mw wÎu. We shall 
prove zÎu«$w(wÎu Ù zÎw). For the ® half, suppose zÎu. By axiom 1(i) and 
lemma 3(i) Uz Ú Mz. Suppose Uz. Then "v zÎv by lemma 8(iv). Since $w wÎu, it 
follows that $w(wÎu Ù zÎw). Suppose instead that Mz. Then Sz by the definition of S 
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and lemma 5(i). By theorem 17(i) E!V*(z), whence V(V*(z)) by the definition of 
V*(z). Hence E!(V*(z))¢ by theorem 30, whence u¹(V*(z))¢ by the definition of L. By 
theorem 32 and the definition of V†(z) it follows that (V*(z))¢ = ℩v(zÎv Ù ¬$w(wÎv Ù 
zÎw)). Hence uÎ(V*(z))¢ Ú (V*(z))¢Îu by theorem 14. For a reductio suppose 
uÎ(V*(z))¢. Since zÎu, it follows that $w(wÎ(V*(z))¢ Ù zÎw)). Contradiction. Hence 
(V*(z))¢Îu, whence $w(wÎu Ù zÎw). For the ¬ half, suppose $w(wÎu Ù zÎw). 
Then zÎu by theorem 8. 

 3  By lemma 8(i) "w(wÎu®Mw). Since $w wÎu it follows that M(Èv vÎu) by 
theorem 21(i), whence E!(Èv vÎu) by lemma 3(i). Hence zÎ(Èv vÎu)«$w(wÎu Ù 
zÎw) by lemmas 4 and 5(i), and the definition of Èv vÎu. Since zÎu«$w(wÎu Ù 
zÎw), it follows that zÎu«zÎ(Èv vÎu), whence by axiom 1(ii) u = Èv vÎu. 

 4  For the ® half, suppose u = Èv vÎu. Then E!(Èv vÎu) by the strength of identity. 
For a reductio suppose u=V1. Then by theorem 10(i) ¬$w wÎu, whence ¬E!(Èv 
vÎu) by lemma 2(i) and the definition of Èv vÎu. Contradiction. Hence u¹V1. For a 
reductio suppose u=y¢ for some y. Then yÎu Ù ¬$w(wÎu Ù yÎw)) by the definitions 
of y¢ and V†(y). But zÎ(Èv vÎu)®$w(wÎu Ù zÎw) by lemma 4 and the definition of 
Èv vÎu. Contradiction. Hence ¬$y u=y¢, whence Lu by the definition of L.  

 
 
 THEOREM 35. The lowest limit level E!Vw « $xLx 
 

PROOF.   The ® half follows immediately from the definition of Vw. For the ¬ half, 
suppose $xLx. Then $1x(Lx Ù ¬$y(yÎx Ù Ly)) by the definition of L and theorem 15(ii), 
whence E!Vw by the definition of Vw. 
 
 
THEOREM 36.   Vw is inductive  Let E!Vw, then I(Vw). 
 

 PROOF. 
 1 It follows from the hypothesis that V(Vw) by the definitions of Vw and L, whence MVw 

by lemma 8(i). Hence V(V1) by lemma 9(iii) and the definition of V. By theorem 14, 
V1ÎVw Ú V1=Vw Ú VwÎV1. But V1¹Vw by the definitions of L and Vw, and VwÏV1 by 
theorem 10(i). Hence V1ÎVw. 

 2  For a reductio suppose uÎVw Ù u¢ÏVw for some u. Then E!u¢ by theorem 30, whence 
Vu¢ and VwÏu¢ by the definitions of u¢ and V†(u). Hence u¢=Vw by theorem 14. But since 
$x u¢=x¢ it follows that u¢¹Vw by the definitions of L and Vw. Contradiction. Hence "x((Vx 
Ù xÎVw)®x¢ÎVw), whence I(Vw) by the definition of I. 

 
 
 THEOREM 37.  N*  Let mxUx, then S(N*) Ù I(N*). 
 
 PROOF.  
 1  From the hypothesis it follows that E!Vw by theorems 34(i) and 35, whence S(Vw) by 

lemma 8(iii) and the definitions of Vw and L, and also I(Vw) by theorem 36. By the 
definitions of I and V it follows that Iy®(V1Îy Ù V1¢Îy), whence V1ÎVw Ù V1¢ÎVw. 
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Hence E!V1 and E!V1¢ by axiom 1(i). By the definitions of V1¢ and V†(V1) it follows that 
V1ÎV1¢. Hence V1¹V1¢ by axiom 1(iii), whence mx(xÎVw Ù "y(Iy®xÎy)).  

3 Since S(Vw) and mx(xÎVw Ù "y(Iy®xÎy)), it follows that S(x× xÎVw Ù "y(Iy®xÎy)) 
by theorem 1(i). Since I(Vw) it follows that (xÎVw Ù "y(Iy®xÎy))«("y(Iy®xÎy) Ù 
$zIz), whence S(x× "y(Iy®xÎy) Ù $zIz) by lemma 1(i). Hence by lemmas 2(i), 3(i) 
and 3(ii), mx(Ex Ù "y(Iy®xÎy) Ù $zIz), Hence by lemma 2(ii) x×("y(Iy®xÎy) Ù 
$zIz) = x:("y(Iy®xÎy) Ù $zIz), whence S(x: "y(Iy®xÎy) Ù $zIz). Hence S(ÇxIx) 
by the definition of ÇxIx, whence S(N*) by the definition of N*.  

4 By lemmas 3(i) and 3(ii) E!N*, whence N* = x×("y(Iy®xÎy) Ù $zIz). By the 
definition of V and lemma 8(ii), EV1, whence V1ÎN* by lemma 4.  

5 For a reductio suppose uÎN* Ù u¢ÏN* for some level u. Then "y(Iy®uÎy) by 
lemma 4. By the definition of I it follows that "y(Iy®"v(vÎy®v¢Îy)), whence 
"y(Iy®u¢Îy). By lemma 8(ii), theorem 30, and the definitions of u¢ and V†(u), it 
follows that Eu¢, whence u¢ÎN* by lemma 4. Contradiction. Hence 
"v(vÎN*®v¢ÎN*), whence I(N*) by the definition of I. 

 
 
 THEOREM 38.   Ordered pairs 
 Let mzUz Ù ¬Cx1 Ù ¬Cx2 Ù ¬Cy1 Ù ¬Cy2. Then (i) E!<x1, x2> and (ii) <x1, x2> =   
 <y1, y2> « (x1ºy1 Ù x2ºy2). 
 
We supply sketches for the interested reader to develop into full-dress proofs. The proof of (i) 
is by repeated application of pairing (theorem 23(i)), having established on each occasion that 
the members of the next putative pair are distinct elements. At the start it is shown that  
E[x1, V1] and E[x1, V2] and [x1, V1]¹[x1, V2], and similarly for x2. Four cases for each of x1 and 
x2 need to be tackled here, which between them exhaust the possibilities: zilch, V1, V2, any 
other element. 
 
By definition an ordered pair <a, b> is of the form |a*, b*|, where a* codes coordinate a, and 
b* codes b. The markers V1 and V2 serve to distinguish the two. The proof of the ® half of 
(ii) proceeds by showing that different coordinates have different codes, i.e. a*=b*®aºb. 
Four cases for a*=b* need to be tackled here, which correspond to the four possibilities for a 
and b: zilch, V1, V2, any other element. Supposing <x1, x2> = <y1, y2> it follows that x1*¹x2* 
and y1*¹y2* which in turn entail x1*=y1* and x2*=y2*. Since a*=b*®aºb, it follows that 
x1ºy1 Ù x2ºy2.The proof of the ¬ half proceeds by showing that different items code 
different coordinates, i.e. aºb®a*=b*. Supposing x1ºy1 Ù x2ºy2, it follows that |x1*, x2*| º 
|y1*, y2*|, i.e. <x1, x2> º <y1, y2>, whence <x1, x2> = <y1, y2> by (i).  
 
 
  THEOREM 39.   Existence of classes 
  (i)  Let mxUx, then E!(x×xÏx).   
  (ii) Let E!(x×xÏx), then C(x×xÏx). 
  (iii) mxUx « $xCx 
 

PROOF OF (i).   By the hypothesis and axiom 2(i) it follows that mx(Ex Ù Ux), whence 
mx(Ex Ù xÏx) by axiom 1(iv) and the definition of U. Hence E!(x×xÏx) by lemma 2(i).
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 PROOF OF (ii).   By the hypothesis it follows that M(x×xÏx) Ù "y(yÎx×xÏx « (Ey Ù yÏy)) 
by lemma 4, whence S(x×xÏx) Ú C(x×xÏx) by lemma 3(ii). For a reductio suppose 
S(x×xÏx). Then E(x×xÏx) by the definition of S, whence (x×xÏx Î x×xÏx)«(x×xÏx Ï 
x×xÏx). Contradiction. Hence C(x×xÏx). 
 
PROOF OF (iii). 

 1 For the ® half, suppose mxUx. Then $xCx by theorems 39(i) and 39(ii).  
2 For the ¬ half, suppose $xCx. Then mxUx by the definition of C and axiom 2(ii).  

 
 
  THEOREM 40.   Classes and non-self-membership     
  Let E!(x×A(x)) Ù S(x×A(x))®A(x×A(x)), then C(x×A(x)). 
 

PROOF.   By the hypothesis and lemma 4 it follows that M(x×A(x)) Ù "y(yÎx×A(x)«(Ey Ù 
A(y))), whence S(x×A(x)) Ú C(x×A(x)) by lemma 3(ii). For a reductio suppose S(x×A(x)). 
Then by the hypothesis and the definition of S, x×A(x)Îx×A(x) contrary to axiom 1(iii). 
Hence ¬S(x×A(x)), whence C(x×A(x)). 

 
 
  THEOREM 41.   Classes and levels   
  (i)  Cx«(Mx Ù ¬$u xÍu)    
  (ii) Cx«(Mx Ù "u$y(yÎx Ù uÎV*(y))  
  (iii) Cx«(Mx Ù ¬$u xÎu)  
  (iv) Let Mx Ù "u$y(yÎx Ù (uÎy Ú uÍy)), then Cx. 
  

PROOF OF (i).   By the definitions of C and S, Cx«(Mx Ù ¬Sx), whence by theorem 1(ii), 
Cx«(Mx Ù ¬$u xÍu). 
 

 PROOF OF (ii). 
1 For the ® half, suppose Cx. Then Mx by the definition of C. Hence by lemma 3(i) 

E!x, whence by theorems 28(i) and 28(ii), $zVz. Consider an arbitrary level v. Then 
E!v¢ by theorem 30, whence Vv¢ Ù vÎv¢ by the definitions of v¢ and V†(v). 

2 For a reductio suppose ¬$y(yÎx Ù vÎV*(y)). Since Mx, it follows that mz zÎx by the 
definition of M. Consider an arbitrary y1Îx. Then by lemmas 3(iii) and 5(i) Uy1 Ú 
Sy1. Suppose Uy1. Then y1Îv¢ by lemma 8(iv). Suppose instead Sy1. Then V*(y1)Îv Ú 
v=V*(y1) by theorems 14 and 17(i), and the definition of V*(y1). Suppose V*(y1)Îv. 
Then y1Îv by the definition of V*(y1) and theorem 9, whence y1Îv¢ by theorem 8. 
Suppose instead v=V*(y1). Then v¢=(V*(y1))¢, whence y1Îv¢ by theorem 32 and the 
definition of V†(y1). So either way y1Îv¢. Since y1 is arbitrary, we can generalize to 
get "y(yÎx®yÎv¢), whence $u xÍu by the definitions of Í. But by theorem 41(i) 
¬$u xÍu. Contradiction. Hence $y(yÎx Ù vÎV*(y)). Since v is arbitrary, we can 
generalize to get "u$y(yÎx Ù uÎV*(y)). 

3 For the ¬ half, suppose Mx Ù "u$y(yÎx Ù uÎV*(y)). Then by lemma 3(i) and 
theorems 28(i) and 28(ii), $zVz. Consider an arbitrary level v. Then for some y, Sy Ù 
yÎx Ù vÎV*(y) by axiom 1(i) and theorem 17(i). 

4 For a reductio suppose V*(y)Îv. Then by theorem 8, vÎv, contrary to axiom 1(iii), 
whence $y(Sy Ù yÎx Ù V*(y)Ïv). Since v is arbitrary, we can generalize to get 
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"u$y(Sy Ù yÎx Ù V*(y)Ïu), whence ¬$u"y((Sy Ù yÎx)®V*(y)Îu). Hence by 
theorem 17(vi), ¬Sx, whence Cx by lemma 3(ii).  

 
PROOF OF (iii).    
1 For the ® half, suppose Cx. Then Mx Ù ¬$u xÎu by the definitions of C and E.  
2 For the ¬ half, suppose Mx Ù ¬$u xÎu. Then Sx Ú Cx by lemma 3(ii). But ¬Sx by 

theorem 22(i), whence Cx.  
 
PROOF OF (iv).   For a reductio suppose xÎv for some level v. Then by the hypothesis, for 
some y, yÎx Ù (vÎy Ú vÍy)), whence yÎv by theorem 8. Suppose vÎy. Then by theorem 
8, vÎv. Suppose vÍy. Then by theorem 9, vÎv. So either way vÎv, contrary to axiom 
1(iii). Hence ¬$u xÎu, whence Cx by the hypothesis and theorem 41(iii). 

 
 
  THEOREM 42.   Classes: an illustrative sample    
  (i)  Let E!(x×yÎx), then C(x×yÎx). 

(ii) Let E!(x×yÏx), then C(x×yÏx). 
(iii) Let E!(x×xÏy) and ¬Cy, then C(x×xÏy). 
(iv) Let E!(x×x¹y), then C(x×x¹y). 

 (v) Let E!(x×yÍx), then C(x×yÍx). 
 (vi) Let E!(x×$y x=P(y)), then C(x×$y x=P(y)). 
 (vii)  Let E!(x×$y$z x=|y, z|), then C(x×$y$z x=|y, z|). 
 (viii) Let E!(x×$y x=Èy), then C(x×$y x=Èy). 
 (ix) Let E!(x×Hx), then C(x×Hx). 
 (x) Let E!(x×Vx), then C(x×Vx). 

 
PROOF OF (i).    
1 By the hypothesis and lemma 4, it follows that M(x×yÎx) Ù "z(zÎx×yÎx«(Ez Ù 

yÎz), whence $xVx by theorems 28(i) and 28(ii). By the hypothesis and lemma 2(i), 
Ex1 Ù yÎx1 for some x1, whence Mx1 Ù Sx1 by lemma 5(i) and the definition of S, and 
also Ey by the definition of E.  

2 Consider an arbitrary level v. Then Ev by lemma 8(ii), whence S(x1⨁v) Ù E!(x1⨁v) Ù 
E(x1⨁v) by theorem 24(ii), lemmas 3(i) and 3(ii), and the definition of S. Hence 
yÎx1⨁v Ù vÎx1⨁v by lemma 4 and the definition of x1⨁v, whence $z(zÎx×yÎx Ù 
vÎz). Since v is arbitrary, we can generalize to get "u$z(zÎx×yÎx Ù (uÎz Ú uÍz)), 
whence C(x×yÎx) by theorem 41(iv). 

 
PROOF OF (ii).  

 1 By the hypothesis and lemma 4, it follows that M(x×yÏx) Ù "z(zÎx×yÏx«(Ez Ù 
yÏz), whence mxUx Ù $xVx by theorems 28(i) and 28(ii). Consider an arbitrary level 
v. Then Ev by lemma 8(ii), and vÍv by lemmas 6(ii) and 8(i).  

 2 Suppose y=v. Then yÏv by axiom 1(iii). Hence vÎx×yÏx, whence $z(zÎx×yÏx Ù 
(vÎz Ú vÍz)). Suppose instead y¹v. Since mxUx, it follows that for some z1, Uz1 Ù 
y¹z1, whence Ez1 Ù v¹z1 by lemmas 3(iii) and 8(i), and the definition of U. Hence 
E!|z1, v| Ù E|z1, v| by theorems 23(i) and 23(ii), and the definition of S. Hence by 
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lemma 4 and the definition of |z1, v|, yÏ|z1, v| Ù vÎ|z1, v|, whence $z(zÎx×yÏx Ù (vÎz 
Ú vÍz)). So either way, $z(zÎx×yÏx Ù (vÎz Ú vÍz)). Since v is arbitrary, we can 
generalize to get "u$z(zÎx×yÏx Ù (uÎz Ú uÍz)), whence C(x×yÏx) by theorem 
41(iv). 

  
 PROOF OF (iii).  
 1 By the hypothesis and lemma 4, it follows that M(x×xÏy) Ù "z(zÎx×xÏy «(Ez Ù 

zÏy), whence $xVx by theorems 28(i) and 28(ii). Consider an arbitrary level v. Then 
Ev by lemma 8(ii), and vÍv by lemmas 6(ii) and 8(i). 

 2 Suppose vÏy. Then vÎx×xÏy, whence $z(zÎx×xÏy Ù (vÎz Ú vÍz)). Suppose instead 
vÎy. Then E!y Ù Ey Ù yÏy by axioms 1(i), 1(iii) and 1(iv), the hypothesis and the 
definition of C. Hence yÎx×xÏy, whence $z(zÎx×xÏy Ù (vÎz Ú vÍz)). So either way, 
$z(zÎx×xÏy Ù (vÎz Ú vÍz)). Since v is arbitrary, we can generalize to get 
"u$z(zÎx×xÏy Ù (uÎz Ú uÍz)), whence C(x×xÏy) by theorem 41(iv). 

 
 PROOF OF (iv).  
 1 By the hypothesis and lemma 4, it follows that M(x×x¹y) Ù "z(zÎx×x¹y «(Ez Ù 

z¹y), whence $xVx by theorems 28(i) and 28(ii). Consider an arbitrary level v. Then 
Ev by lemma 8(ii), and vÍv by lemmas 6(ii) and 8(i). 

 2 Suppose v¹y. Then vÎx×x¹y, whence $z(zÎx×x¹y Ù (vÎz Ú vÍz)). Suppose instead 
v=y. Then by theorem 30, the definitions of v¢ and V†(v), axiom 1(iii) and lemma 
8(ii), E!v¢ Ù Ev¢ Ù v¢¹y Ù vÎv¢. Hence v¢Îx×x¹y, whence $z(zÎx×x¹y Ù (vÎz Ú 
vÍz)). So either way, $z(zÎx×x¹y Ù (vÎz Ú vÍz)). Since v is arbitrary, we can 
generalize to get "u$z(zÎx×x¹y Ù (uÎz Ú uÍz)), whence C(x×x¹y) by theorem 
41(iv). 

 
 PROOF OF (v).  
 1 By the hypothesis and lemma 4, it follows that M(x×yÍx) Ù "z(zÎx×yÍx«(Ez Ù 

yÍz), whence $xVx by theorems 28(i) and 28(ii). By the hypothesis and lemma 2(i), 
Ex1 Ù yÍx1 for some x1, whence My Ù Sy by lemma 6(i), the definition of S, and 
axiom 2(iii).  

 2 Consider an arbitrary level v. Then Mv Ù Sv by lemmas 8(i) and 8(iii), whence 
S(yÈv) Ù E(yÈv) Ù E!(yÈv) by lemmas 3(i) and 3(ii), theorem 20(ii) and the 
definition of S. Hence yÍyÈv Ù vÍyÈv by lemmas 4 and 5(i), and the definitions of 
yÈv and Í. Hence yÈv Î x×yÍx, whence $z(zÎx×yÍx Ù (vÎz Ú vÍz)). Since v is 
arbitrary, we can generalize to get "u$z(zÎx×yÍx Ù (uÎz Ú uÍz)), whence C(x×yÍx) 
by theorem 41(iv). 

 
 PROOF OF (vi).  
 1 By the hypothesis and lemma 4, it follows that M(x×$y x=P(y)) Ù "z(zÎx×$y x=P(y) 
  «(Ez Ù $y z=P(y))), whence mxUx Ù $xVx by theorems 28(i) and 28(ii). Consider 

an arbitrary level v. Then vÍv by lemmas 6(ii) and 8(i), and also E!P(v) Ù  E(P(v)) by 
lemmas 3(i), 3(ii) and 8(iii), theorem 25(iv), and the definition of S, whence P(v)Î 

  x×$y x=P(y). 
 2 Suppose $y1$y2$y3(Uy1 Ù Uy2 Ù Uy3 Ù y1¹y2 Ù y1¹y3 Ù y2¹y3) Ú ($y1$y2(Uy1 Ù Uy2 

Ù y1¹y2 Ù "y3(Uy3® (y3=y1 Ú y3=y2)))  Ù v¹V1). Then P(v)=y×yÍv by theorems 33(i) 
and 33(ii), whence vÎP(v) by lemmas 4 and 8(ii). Hence $z(zÎx×$y x=P(y) Ù (vÎz Ú 
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vÍz)). Suppose instead $y1$y2(Uy1 Ù Uy2 Ù y1¹y2 Ù "y3(Uy3® (y3=y1 Ú y3=y2)))  Ù 
v=V1). Then P(v)=v by theorem 33(i), whence $z(zÎx×$y x=P(y) Ù (vÎz Ú vÍz)). So 
either way $z(zÎx×$y x=P(y) Ù (vÎz Ú vÍz)). Since v is arbitrary, we can generalize 
to get "u$z(zÎx×$y x=P(y) Ù (uÎz Ú uÍz)), whence C(x×$y x=P(y)) by theorem 
41(iv). 

  
 PROOF OF (vii).     
 1 By the hypothesis and lemma 4, it follows that M(x×$y$z x= |y, z|) Ù "z1(z1Îx×$y$z 

x= |y, z|«(Ez1 Ù $y$z z1=|y, z|)), whence $xVx by theorems 28(i) and 28(ii). Consider 
an arbitrary level v. Then Ev Ù E!v¢ Ù Ev¢ by theorem 30, the definitions of v¢ and 
V†(v), and lemma 8(ii). Also v¹v¢ by the definitions of v¢ and V†(v), and axiom 1(iii). 
Hence E!|v, v¢| Ù  E|v, v¢| by theorems 23(i) and 23(ii), and the definition of S, whence 
|v, v¢| Î x×$y$z x=|y, z|). 

 2 By lemma 4 and the definition of |v, v¢|, it follows that vÎ|v, v¢|, whence $z(zÎx×$y$z 
x=|y, z| Ù (vÎz Ú vÍz)). Since v is arbitrary, we can generalize to get "u$z(zÎx×$y$z 
x=|y, z| Ù (uÎz Ú uÍz)), whence C(x×$y$z x=|y, z|) by theorem 41(iv). 

 
 PROOF OF (viii).  
 1 By the hypothesis and lemma 4, it follows that M(x×$y x=Èy) Ù "z(zÎx×$y x=Èy 

«(Ez Ù $y z=Èy)), whence $xVx by theorems 28(i) and 28(ii). Consider an arbitrary 
level v. Then Mv Ù Mv¢ Ù Sv Ù Sv¢ Ù Ev Ù Ev¢ by theorem 30, the definitions of v¢ 
and V†(v), and lemmas 8(i), 8(ii) and 8(iii). Also v¹v¢ by the definition of v¢ and 
V†(v), and axiom 1(iii), whence E!|v, v¢| Ù  S|v, v¢| by theorems 23(i) and 23(ii).  

 2 By lemma 4 and the definition of |v, v¢|, it follows that vÎ|v, v¢| Ù "z(zÎ|v, v¢|®Mz) Ù 
"z(zÎ|v, v¢|®Sz). Hence E!È|v, v¢| Ù EÈ|v, v¢| by corollary (ii) of theorem 21, 
lemmas 3(i) and 3(ii), and the definition of S, whence È|v, v¢| Î x×$y x=Èy. Also 
"z(zÎv®zÎÈ|v, v¢|) by lemmas 4 and 5(i), and the definition of È|v, v¢|. Hence 
vÍÈ|v, v¢| by the definition of Í, whence $z(zÎx×$y x=Èy Ù (vÎz Ú vÍz)). Since v is 
arbitrary, we can generalize to get "u$z(zÎx×$y x=Èy Ù (uÎz Ú uÍz)), whence 
C(x×$y x=Èy) by theorem 41(iv). 

 
 PROOF OF (ix).    
 1 By the hypothesis and lemma 4, it follows that M(x×Hx) Ù "y(yÎx×Hx«(Ey Ù Hy)),  

whence $xVx by theorems 28(i) and 28(ii). Consider an arbitrary level v. Then V(v¢¢) 
Ù vÎv¢ Ù v¢Îv¢¢ Ù vÎv¢¢ by theorems 8 and 30, and the definitions of v¢, v¢¢, V†(v) and 
V†(v¢), whence E!w:wÎv¢¢ by lemmas 2(iv) and 8(ii). Hence H(w:wÎv¢¢) Ù 
E(w:wÎv¢¢) by lemma 7(ix), theorem 12, and the definitions of H and S, whence 
w:wÎv¢¢Î x×Hx.  

 2 Since vÎv¢ Ù v¢Îv¢¢ Ù vÎv¢¢, it follows by axioms 1(i) and 1(iii) that mw wÎv¢¢, 
whence by lemmas 2(ii) and 8(ii), w:wÎv¢¢ = w×wÎv¢¢. Hence by lemmas 4 and 8(ii), 
$z(zÎx×Hx Ù (vÎz Ú vÍz)). Since v is arbitrary, we can generalize to get 
"u$z(zÎx×Hx Ù (uÎz Ú uÍz)), whence Cx×Hx by theorem 41(iv). 

  
PROOF OF (x).   By the hypothesis and lemma 4 it follows that M(x×Vx) Ù "y(yÎx×Vx « 
(Ey Ù Vy)), whence $xVx by theorems 28(i) and 28(ii). Consider an arbitrary level v. Then 
Ev by lemma 8(ii), and vÍv by lemmas 6(ii) and 8(i). Hence vÎx×Vx, whence $z(zÎx×Vx 
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Ù (vÎz Ú vÍz)). Since v is arbitrary, we can generalize to get "u$z(zÎx×Vx Ù (uÎz Ú 
uÍz)), whence C(x×Vx) by theorem 41(iv). 

 
 
 THEOREM 43.  Classes and separation 

(i) Let Cx Ù xÍy, then Cy. 
(ii) Let C(z×zÎx Ù A(z)), then Cx. 
 
PROOF OF (i).   By the hypothesis and the definitions of C and S, it follows that ¬Sx, 
whence ¬Sy by axiom 2(iii). Since My by the hypothesis and lemma 6(i), it follows that 
Cy by lemma 3(ii). 

 
PROOF OF (ii).   By the hypothesis and the definitions of C and S, it follows that ¬S(z×zÎx 
Ù A(z)), and also that E!(z×zÎx Ù A(z)) by lemmas 3(i) and 3(ii). Hence my(yÎx Ù A(y)) 
by lemma 2(i), whence ¬Sx by theorem 1(i). Since Mx by the definition of M, it follows 
that Cx by the definitions of S and C. 

  
 
 THEOREM 44. Classes and intersection 

(i) Let C(xÇy), then Cx Ù Cy. 
(ii) Let C(ÇxA(x)), then "z(A(z)®Cz). 

  
PROOF OF (i).   By the hypothesis, lemma 3(i) and the definitions of C and S, it follows that 
E!(xÇy) and ¬E(xÇy) and ¬S(xÇy), whence mz(zÎx Ù zÎy) by theorems 2(i) and 2(ii). 
Hence Mx Ù My by the definition of M, whence Cx Ù Cy by theorem 2(iv) and the 
definitions of C and S. 

 
PROOF OF (ii).   By the hypothesis, lemma 3(i) and the definitions of C and S, it follows 
that E!ÇxA(x) and ¬E(ÇxA(x)) and ¬S(ÇxA(x)), whence mx"y(A(y)®xÎy) by theorems 
19(i) and 19(ii). Hence "y(A(y)®My) by the definition of M, whence "z(A(z)®Cz) by 
theorem 19(iv) and the definitions of C and S. 

  
 
 THEOREM 45. Classes and union 
 (i) (Mx Ù My Ù (Cx Ú Cy))«C(xÈy)  
 (ii) ("y(A(y)®My) Ù ($z(A(z) Ù Cz) Ú C(z:A(z))))«C(ÈxA(x)) 
 
  
 PROOF OF (i).  
 1 For the ® half, suppose Mx Ù My Ù (Cx Ú Cy). Then M(xÈy) by theorem 20(i) and 

¬Sx Ú ¬Sy by the definitions of C and S, whence C(xÈy) by the definitions of C and 
S, and theorem 20(ii). 

 2 For the ¬ half, suppose C(xÈy). Then M(xÈy) and ¬S(xÈy) by the definitions of C 
and S, whence Mx Ù My by theorem 20(i). Hence Cx Ú Cy by the definitions of C and 
S, and theorem 20(ii).  
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 PROOF OF (ii).  
 1 For the ® half, suppose "y(A(y)®My) Ù ($z(A(z) Ù Cz) Ú C(z:A(z))). Then  
  ("y(A(y)®My) Ù $zA(z)) Ú ("y(A(y)®My) Ù C(z:A(z))), whence  

("y(A(y)®My) Ù $zA(z)) by lemmas 2(iv), 3(i) and 3(ii). Hence M(ÈxA(x)) by 
theorem 21(i). Suppose $z(A(z) Ù Cz). Then ¬"y(A(y)®Sy) by the definitions of C 
and S, whence ¬S(ÈxA(x)) by theorem 21(ii). Suppose instead C(z:A(z)). Then 
¬S(z:A(z)) by the definitions of C and S, whence ¬S(ÈxA(x)) by theorem 21(ii). So 
either way ¬S(ÈxA(x)), whence C(ÈxA(x)) by the definitions of C and S. 

 2 For the ¬ half, suppose C(ÈxA(x)). Then M(ÈxA(x)) and ¬S(ÈxA(x)) by the 
definitions of C and S, whence "y(A(y)®My) Ù $zA(z) by theorem 21(i), and 
¬"y(A(y)®Sy) Ú ¬Sz:A(z) by theorem 21(ii).  

 2 Suppose ¬"y(A(y)®Sy). Then $z(A(z) Ù ¬Sz), whence $z(A(z) Ù Cz) by the 
definitions of C and S; a fortiori $z(A(z) Ù Cz) Ú Cz:A(z).  

 3 Suppose instead ¬S(z:A(z)). If ¬E!(z:A(z)) then "z(A(z)®¬Ez) by lemma 2(iv), 
whence "z(A(z)®Cz) by the definition of C. Hence $z(A(z) Ù Cz); a fortiori $z(A(z) 
Ù Cz) Ú C(z:A(z)). If E!(z:A(z)) then z:A(z)=℩z(Ez Ù A(z)) Ú z:A(z)=z×A(z) by lemmas 
2(ii), 2(iii) and 2(iv). For a reductio suppose z:A(z)=℩z(Ez Ù A(z)). Then E(z:A(z)), 
whence U(z:A(z)) Ú S(z:A(z)) by lemma 3(iii). But also A(z:A(z)), whence M(z:A(z)). 
Hence ¬U(z:A(z)) by the definition of U, whence S(z:A(z)). Contradiction. Hence 
z:A(z)=z×A(z), whence M(z:A(z)) by lemma 4. Hence C(z:A(z)) by the definitions of C 
and S; a fortiori $z(A(z) Ù Cz) Ú C(z:A(z)).  

 4 So either way $z(A(z) Ù Cz) Ú C(z:A(z)). Since "y(A(y)®My) (from step 1), it 
follows that "y(A(y)®My) Ù ($z(A(z) Ù Cz) Ú C(z:A(z))) 

 
 
 THEOREM 46. Classes and pairing 
 (i) Let E!x Ù E!y Ù x¹y, then ¬E!|x, y| « Cx Ú Cy. 
 (ii) ¬$x$yC|x, y| 
 
 PROOF OF (i).  
 1 For the ® half, suppose ¬E!|x, y|. Then ¬Ex Ú ¬Ey and mxUx and Ux Ú Mx and Uy 

Ú My by the hypothesis, theorems 23(i) and 28(iv) and lemma 3(i). Suppose ¬Ex. 
Then ¬Ux Ù ¬Sx by lemma 3(iii), whence Mx. Hence Cx by the definitions of C and 
S; a fortiori Cx Ú Cy. Suppose instead ¬Ey. Then Cx Ú Cy follows by similar 
reasoning.  

 2 For the ¬ half, suppose Cx Ú Cy. By theorem 23(i) and the definition of C, if Cx then 
¬E!|x, y|, and if Cy then ¬E!|x, y|.  

 
PROOF OF (ii).   For a reductio suppose C|x, y| for some x, y. Then E!|x, y| by lemmas 3(i) 
and 3(ii). Hence S|x, y| by theorem 23(ii), whence ¬C|x, y| by the definitions of C and S. 
Contradiction. Hence ¬$x$yC|x, y|. 
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 THEOREM 47. Classes and adjunction  Cx Ù Ey « C(x⨁y) 
 
PROOF.   By the definitions of C and S it follows that Cx Ù Ey « Mx Ù ¬Sx Ù Ey, whence 
Cx Ù Ey « M(x⨁y) Ù ¬S(x⨁y) by theorems 24(i) and 24(ii). Hence Cx Ù Ey « C(x⨁y) 
by the definitions of C and S.  

 
  
 THEOREM 48.  Classes, power and power-plus 
 (i)  Cx«C(P(x)) 

(ii) Cx«C(P+(x)) 
 

PROOF OF (i).   By the definitions of C and S it follows that Cx « Mx Ù ¬Sx, whence  
Cx « M(P(x)) Ù ¬S(P(x)) by theorems 25(iii) and 25(iv). Hence Cx«C(P(x)) by the 
definitions of C and S. 

   
PROOF OF (ii).   By the definitions of C and S it follows that Cx « Mx Ù ¬Sx, whence  
Cx « M(P+(x)) Ù ¬S(P+(x)) by theorems 26(i) and 26(ii). Hence Cx«C(P+(x)) by the 
definitions of C and S. 

  
 
 THEOREM 49. Classes and reproductivity 
 (i) Cx«$y(Cy Ù yÌx) 

(ii) Cx«(Mx Ù "y((Sy Ù yÍx)®$z(Sz Ù yÌz Ù zÌx))) 
 
 PROOF OF (i). 
 1 For the ® half, suppose Cx. Then Mx Ù ¬Sx Ù mz zÎx by the definitions of C, S and 

M. For a reductio suppose z1¹z2 Ù z1Îx Ù z2Îx Ù "z3(z3Îx®z3=z1 Ú z3=z2), for some 
z1, z2. Then zÎx«(z=z1 Ú z=z2). Also by lemma 5(i), Ez1 Ù Ez2. Hence by theorems 
23(i) and 23(ii), and the definition of S, it follows that E!|z1, z2| Ù S|z1, z2| Ù M|z1, z2|, 
whence zÎ|z1, z2|«(z=z1 Ú z=z2) by lemma 4 and the definition of |z1, z2|. Hence 
x=|z1, z2| by axiom 1(ii), whence Sx. Contradiction. Hence z1¹z2 Ù z1¹z3 Ù z2¹z3 Ù 
z1Îx Ù z2Îx Ù z3Îx, for some z1, z2, z3. Hence mz(Ez Ù zÎx Ù z¹z3) by lemma 5(i), 
whence E!(z×zÎx Ù z¹z3) by lemma 2(i), and M(z×zÎx Ù z¹z3) Ù "y(yÎ(z×zÎx Ù 
z¹z3)«(yÎx Ù y¹z3)) by lemmas 4 and 5(i). Hence (z×zÎx Ù z¹z3)Íx by the 
definition of Í. Since z3Ï(z×zÎx Ù z¹z3) and z3Îx, it follows that (z×zÎx Ù z¹z3)Ìx 
by the definition of Ì. 

 2 For a reductio suppose S(z×zÎx Ù z¹z3). Then S((z×zÎx Ù z¹z3)⨁z3) Ù M((z×zÎx Ù 
z¹z3)⨁z3) Ù E!((z×zÎx Ù z¹z3)⨁z3) by theorem 24(ii), lemmas 3(i) and 5(i), and the 
definition of S. Hence "y(yÎ((z×zÎx Ù z¹z3)⨁z3)«yÎx) by lemmas 4 and 5(i) and 
the definition of ⨁, whence ((z×zÎx Ù z¹z3)⨁z3)=x by axiom 1(ii). Hence Sx. 
Contradiction. Hence C(z×zÎx Ù z¹z3) by the definition of C and S, whence $y(yÌx Ù 
Cy). 

 3 For the ¬ half, suppose Cy Ù yÌx for some y. Then Cx by the definition of Ì and 
theorem 43(i). 
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PROOF OF (ii). 
 1 For the ® half, suppose Cx. Then Mx Ù ¬Sx Ù E!x by the definitions of C and S, and 

lemma 3(i). For a reductio suppose for some y1, Sy1 Ù y1Íx Ù ¬$z(Sz Ù y1Ìz Ù zÌx). 
Then My1 by the definition of S. Since ¬Sx Ù Sy1, it follows that y1¹x, whence y1Ìx 
by the definition of Ì. Hence for some z1, z1Îx Ù z1Ïy1 Ù Ez1 by lemmas 5(i) and 
6(iii), whence S(y1⨁z1) Ù M(y1⨁z1) Ù E!(y1⨁z1) by theorem 24(ii), lemma 3(i), and 
the definition of S. Hence (z2Îy1 Ú z2=z1)«z2Îy1⨁z1 by lemmas 4 and 5(i), and the 
definition of ⨁, whence y1Íy1⨁z1 by the definition of Í. Since z1Ïy1 Ù z1Îy1⨁z1, it 
follows that y1¹y1⨁z1, whence y1Ìy1⨁z1 by the definition of Ì.  

 2 Since y1Íx Ù z1Îx, it follows that z2Îy1⨁z1®z2Îx by the definition of Í, whence 
y1⨁z1Íx by the definition of Í. Since S(y1⨁z1) Ù ¬Sx, it follows that y1⨁z1¹x, 
whence y1⨁z1Ìx by the definition of Ì. Hence $z(Sz Ù y1Ìz Ù zÌx). Contradiction. 
Hence "y((Sy Ù yÍx)®$z(Sz Ù yÌz Ù zÌx)).  

 3 For the ¬ half, suppose Mx Ù "y((Sy Ù yÍx)®$z(Sz Ù yÌz Ù zÌx)). For a reductio 
suppose ¬Cx. Then Sx Ù xÍx by the definitions of C and S, and lemma 6(ii), whence 
for some z, Sz Ù xÌz Ù zÌx. Hence for some z1, z1Îz Ù z1Ïx by lemma 6(iii). But 
since z1Îz Ù zÌx, it follows that z1Îx by the definitions of Ì and Í. Contradiction. 
Hence Cx. 
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