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1. Abstract

Quantum mechanics and general relativity require unified theoretical treatment,

07123 in Planck

particularly regarding the cosmological constant’s observed value (= 1
units). This paper presents the Minimal Causal-Informational Model of Emergent
Space-Time (MCIMES), which establishes quantum information as the fundamental
entity underlying emergent space-time geometry. The model adopts quantum structural
realism as its interpretive framework, implemented through rigorous category theory
formalism. MCIMES is mathematically constructed on an abstract interaction graph,
represented as a monoidal category C 4 with functorial mappings to physical observables.
The system’s dynamics are governed by a variational principle of minimal information

loss, expressible through natural transformations between functors.

The framework demonstrates how metric properties, Lorentzian signature, and
causal structure emerge from quantum correlations without presupposing space-time.
Topological invariants, particularly Betti numbers b, of the interaction graph, play
a crucial role in quantifying universal properties of space-time fluctuations and
thermodynamic behavior. From this background-independent formulation, Einstein’s
equations emerge in the continuum limit as the optimal configuration that minimizes
information loss.

Quantitatively, MCIMES predicts a dark energy equation of state parameter w =
—0.97 4 0.01, a cosmological constant value Agpeor = (1.9 £ 0.7) x 107123 and black
hole entropy with logarithmic quantum corrections of the form Sgy = % — %log (%) +
Bpu+0O (%) The coefficient —% in the logarithmic term is topologically protected and
universal for four-dimensional space-time. These predictions are testable through next-
generation cosmological observations by 2030-2035 and analog quantum experiments.
While the current model has limitations in connecting to the Standard Model
and computational implementation, MCIMES provides a comprehensive information-
theoretic framework for quantum gravity with specific, falsifiable consequences.

2. Introduction

Quantum gravity remains one of the most significant unresolved problems in
contemporary theoretical physics.  Several fundamental challenges persist: the
incompatibility of general relativity with quantum mechanics, the problem of time,
the resolution of cosmological singularities, and the extraordinarily small value of the
cosmological constant (approximately 107'#% in Planck units) [26, 122].

This paper presents the Minimal Causal-Informational Model of Emergent Space-Time
(MCIMES), a framework that establishes quantum information as the foundational
entity from which space-time geometry emerges. The approach is mathematically
implemented through category theory, with the interaction graph G = (V) FE)
represented as a monoidal category C,4 where objects correspond to quantum
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subsystems and morphisms represent informational relationships. This categorical
formalism enables rigorous treatment of background independence and provides
natural tools for describing quantum correlations through functorial mappings and
natural transformations. Tensor networks play a central role in this mathematical
description, offering efficient representations of highly entangled quantum states and
their transformations.

MCIMES emerges from a critical assessment of fundamental physical theories and their
limitations. The formulation of this model has been guided by several key observations
from established physics: First, general relativity’s profound reconceptualization of
space-time as inherently relational rather than absolute [40| suggests that geometric
properties themselves might not be fundamental but emergent from more primitive
structures. Second, quantum mechanics has demonstrated unprecedented predictive
accuracy—validated to precision levels of 107!2 or better in experimental settings
[47]—indicating that quantum principles must necessarily underpin any comprehensive
unification framework.

The present model adheres rigorously to parsimony principles in theoretical
construction. It introduces no fundamentally novel elements beyond those already
empirically validated within contemporary physics, instead reconfiguring established
components into a cohesive framework from which falsifiable predictions naturally
emerge. Nevertheless, it must be acknowledged that MCIMES assigns ontological
primacy to the global quantum state as the fundamental entity from which space-
time emerges—a theoretical elegance that potentially functions as a sophisticated form
of reductionism. The philosophical tension regarding the interpretation of "quantum
information" as foundational to observable physical reality remains significant, though
it may be partially mitigated by noting that substituting "quantum interactions"
for "quantum information" preserves the mathematical formalism intact.  The
model’s substantial number of testable predictions necessarily increases its falsifiability,
potentially exposing fundamental inadequacies even during initial empirical assessment.
However, regardless of whether subsequent experimental evidence confirms or refutes
the specific formulation presented here, the systematic examination of a model that
integrates established physical principles with minimal extraneous assumptions should
prove valuable in advancing our understanding of reality’s fundamental structure.

A crucial mathematical component of MCIMES is the role of topological invariants,
particularly the Betti numbers b, of the interaction graph. These invariants characterize
the "connectivity patterns" of quantum correlations and directly influence the behavior
of quantum metric fluctuations [60]. The spectral density of these fluctuations follows
a universal 1/f form with specific corrections determined by the Betti numbers:
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where 3 = {415 = 018 40.03 for d = 3 and v = 67 ~ 2.

The proposed model adheres to the principle of parsimony, seeking minimal assumptions
while addressing key issues in quantum gravity. The framework relies primarily on
experimentally verified elements of physics while introducing the specific hypothesis
that quantum-informational relations are ontologically prior to space-time geometry.
This approach acknowledges certain limitations, including the challenge of deriving the
complete Standard Model from informational principles and computational difficulties
in simulating systems with sufficient degrees of freedom.

MCIMES differs from other approaches to quantum gravity in several significant aspects:

1. **Complete background independence®™*: Unlike string theory, which typically
assumes a background space-time, MCIMES constructs the theory without presupposing
any space-time structure |8, 106]. The framework shares this feature with loop quantum
gravity but employs different mathematical structures.

2. **Emergence mechanism™*: While loop quantum gravity quantizes existing geometric
structures [99] and causal set theory discretizes space-time [36], MCIMES examines
whether all geometric properties, including dimensionality, metric structure, and causal
relations, could derive from more fundamental quantum-informational structures [112].

3. **Dimensional emergence**: The model provides a specific mechanism for the
three-dimensionality of space as the optimal configuration that minimizes information
loss under physical constraints [111]|, distinguishing it from approaches that assume
dimensionality a priori.

4. **Cosmological constant**: MCIMES offers a natural approach to the small value
of the cosmological constant that does not require fine-tuning [84], predicting a specific
value of Agpeor = (1.9 £ 0.7) x 107'%% in Planck units.

5. **Experimental testability**: The theory yields quantitatively testable predictions,
including a dark energy equation of state parameter w = —0.97 £ 0.01, which could be
verified by next-generation cosmological observations by 2030-2035 [7].

The paper is organized as follows. Section 3 discusses the philosophical foundations,
positioning MCIMES within the context of information-theoretic approaches to physics.
Section 4 formulates the axiomatic foundations through eight postulates that establish
the mathematical framework. Section 5 introduces the formal mathematical apparatus,
including abstract algebraic structures, categorical representations, and information
measures. Section 6 presents the Variational Principle of Minimal Information Loss,
which drives the system’s dynamics. Section 7 describes how space-time and gravity
emerge from quantum-informational relations. Section 8 examines physical consequences
and predictions, including specific values for the cosmological constant and dark energy
equation of state. Section 9 compares MCIMES with other approaches to quantum
gravity. Section 10 contains conclusions and directions for further development.
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3. Philosophical Foundations

MCIMES establishes quantum-informational structural realism as its philosophical
foundation—the view that physical reality is fundamentally constituted of informational
structures and relations rather than material substances or intrinsic properties of
independently existing entities [61, 42]. This position represents a significant ontological
shift: instead of treating space-time and matter as primary elements of reality, MCIMES
identifies quantum information as the fundamental entity from which physical structures
emerge [21].

Under this framework, space-time emerges from quantum-informational relations
between fundamental subsystems, similar to how temperature emerges from molecular
kinetics in statistical mechanics. The model implements this philosophical stance
through rigorous category theory, where the interaction graph is represented as a
category C 4 with objects corresponding to quantum subsystems and morphisms
representing informational relationships [28]. This categorical approach naturally
embodies structural realism by focusing on the mathematical patterns of relationships
rather than intrinsic properties of objects.

The categorical formalism offers several advantages in implementing quantum-
informational structural realism:

1. **Background independence**: Category theory provides structure-preserving maps
(functors) that ensure all physical quantities remain invariant under transformations
that preserve the relational structure [35]. Specifically, for any automorphism o of the
graph, physical predictions remain invariant: F(f) ~ F(g) for any physically equivalent
morphisms f and g.

2. **Relational ontology**: The 2-categorical structure, where 2-morphisms
connect different evolutionary paths, formalizes the notion that physically equivalent
configurations may have different representations but identical observable consequences
[10].

3. * Information measures™*: Functorial mappings from C 4 to categories of information
measures provide a rigorous framework for defining entropy, mutual information, and
other quantities that drive the emergence of space-time [29].

Quantum-informational structural realism addresses key ontological questions raised
by quantum non-locality and contextuality. Instead of trying to reconcile these
phenomena with a pre-existing space-time, MCIMES proposes that informational
relations constitute the fundamental level of reality, with space-time locality emerging as
an approximate, large-scale property [107]. This approach is compatible with relational
interpretations of quantum mechanics, which emphasize information and correlations as
primary rather than absolute states [43, 97].

Unlike previous philosophical proposals advocating informational approaches, MCIMES
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provides a specific mathematical mechanism through which geometric properties emerge
from quantum correlations. The variational principle of minimal information loss
serves as the bridge connecting the abstract relational structure to familiar physical
properties, including metric distances, causal ordering, and gravitational dynamics [55].
This principle is expressed categorically as a natural transformation between functors,
establishing a deep connection between information theory and physical law.

The philosophical stance of MCIMES directly shapes its mathematical structure. By
treating quantum-informational relations as ontologically prior to space-time, the theory
builds its formalism from elements that do not presuppose any background geometry
[77]. The abstract algebraic structure, with its associated Hilbert spaces and operator
algebras, exists independently of any spatial embedding, with geometric properties
emerging only in the appropriate limits [22].

This philosophical foundation distinguishes MCIMES from approaches that modify
existing space-time structures, offering instead a framework where the familiar concepts
of physics—space, time, causality, and gravity—emerge as manifestations of a more
fundamental quantum-informational reality. The following sections develop this
conceptual foundation into a rigorous mathematical framework with specific physical
consequences and testable predictions.

4. Axiomatic Foundations

MCIMES is based on the following interconnected postulates, which provide the minimal
set of assumptions necessary for developing the theory:
4.1. Postulate 1 (Primacy of Quantum Information over Geometry)

Quantum information serves as the fundamental entity from which physical structures
emerge. Unlike approaches that quantize existing space-time structures, MCIMES treats
quantum-informational relations as ontologically primary.

Mathematical formulation:

(i) The foundational structure is an abstract interaction graph G' = (V, E) representing
quantum systems and their informational relationships.  This graph exists
independently of any physical space embedding [105]:

e 1 —set of vertices (quantum subsystems)
e £ CV xV —set of edges (informational interactions)
(ii) Each vertex i € V is associated with a local Hilbert space H; [34]

(iii) The global Hilbert space is defined as the tensor product of the local spaces [81]:

Ha = ®H1 (1)

2%
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(iv) The global quantum state |¥) € H or density operator p completely describes the
state of the entire system [118]
4.2. Postulate 2 (Background Independence)

Physical laws and observables must be formulated without relying on a pre-given space-
time structure. This ensures that space-time properties emerge from the theory rather
than being assumed in its foundation [8, 106].

An element of the model X is considered background-independent if and only if:
(i) The definition of X contains no references to space-time concepts
(ii) X is invariant with respect to all automorphisms of the algebraic structure

(iii) The physical interpretation of X does not depend on the specific representation of
the structure

(iv) The properties of X can be expressed through informational functionals [104]

In categorical terms, background independence means that the theory is invariant under
isomorphisms of the underlying category structure. For any automorphism o of the
graph G, there exists a corresponding automorphism of the algebraic structure that
preserves all physical predictions. This categorical formulation allows for rigorous proofs
of invariance |72, 10].

4.3. Postulate 8 (Emergence of Space-Time)

Space-time and its metric structure are not assumed a priori, but arise from the dynamics
of information-causal relations between quantum subsystems [112, 22].

Mathematical formulation:

(i) Emergent metric: The metric structure of potentially emergent space-time is
defined through informational distances between subsystems [115, 129]:

T
dD=\ ( S(ﬁz)S(ﬁj)> "

where (i : j) is the mutual information between subsystems, and S(p;) is the

von Neumann entropy. This distance increases as mutual information decreases,
consistent with the notion that subsystems are farther apart’ if they share less
correlation. The formula satisfies metric axioms in the thermodynamic limit.

(ii) Entropic time: The direction and 'pace’ of time are defined through changes in
entanglement entropy [85, 30:
2

t dS®(t')
Lentr = / F <Z Wp———" dt’ (3)
o \&"
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where S (#') represents the entanglement entropy of patterns of degree p, with wy,
representing weighting factors. The function F' ensures monotonic increase in most
physical scenarios.

4.4. Postulate 4 (Principle of Minimal Information Loss)

The dynamics of the system are governed by a criterion of minimizing the loss of
quantum information when dividing the global system into subsystems [14, 56]. This
principle drives the evolution toward optimal correlation structures.

Mathematical formulation:

(i) Information loss functional for an abstract graph:
L(G) =) _S(p:) = S(p) (4)
=%

where S(p;) = —Tr(p;Inp;) is the von Neumann entropy of the reduced state,
and S(p) is the entropy of the global state [114]. This functional quantifies the
information about global correlations that becomes inaccessible when examining
subsystems individually.

(ii) The optimal structure of the interaction graph minimizes this functional:
Gopt = arg mGin L(G) (5)

subject to appropriate physical constraints.

In the categorical framework, this principle can be formulated as a natural
transformation between functors that map from the category of interaction graphs to
the category of real numbers:

L:QProc — R (6)

where QProc is the category of quantum processes. The optimization can be formulated
as a variational problem:

J

ZIL(G) + MC(G) + B (G)] =0 (7)

where C'(G) is a complexity functional measuring computational complexity, E(G) is an
energy functional describing the energetic cost of maintaining correlations, and A;, Ao
are Lagrange multipliers.
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4.5. Postulate 5 (Physical Realism of Interactions)

Physically realistic interactions between subsystems should satisfy principles of locality,
finite energy, and extensivity [59, 66].

An interaction graph G = (V, F) satisfies the principle of locality if:
(i) It is sparse: Vv € V : deg(v) = O(log|V])

(ii) The strength of interaction (correlation) between subsystems decreases with
distance

(iii) The graph allows embedding in a space of small fixed dimension with low metric
distortion [68]
4.6. Postulate 6 (Quantum Fvolution and Discrete Covariance)

The dynamics of the system follows the laws of quantum theory and possesses invariance
with respect to different "trajectories’ of growth of the interaction graph [92, 48].

Mathematical formulation:
(i) Quantum dynamics: At each elementary step of evolution:
[os1) = U [ T0) (8)
where U, is a local unitary operator [93].

(ii) Discrete covariance: Different sequences of local transformations leading to
isomorphic final graphs are physically equivalent [62]. This represents a discrete
analog of diffeomorphism invariance in general relativity.

In categorical terms, discrete covariance can be formulated using 2-categories. Define a
2-category Graph2Cat where:

e Objects are elementary subsystems (graph vertices)
e l-morphisms are paths of informational connections between subsystems

e 2-morphisms are transformations between paths, corresponding to different possible
evolutions

Discrete covariance states that if two 1-morphisms (evolutionary paths) f and g are
connected by a 2-morphism « : f = g, then they produce physically equivalent results.
This formalizes the principle that the specific sequence of graph updates is not physically
significant as long as the final configurations are isomorphic.

4.7. Postulate 7 (Cosmological Constant as a Measure of Quantum Relative Entropy)

The cosmological constant corresponds to a measure of quantum relative entropy
between the current and reference states of the global system [26, 19].
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Mathematical formulation: The cosmological constant is defined by the expression
[89, 15]:

1
A= o Teu[D(1W) W] [Wret) (et (9)
where D(p||6) = Tr(pln p—pln &) is quantum relative entropy, |1) is the global quantum
2
state, |Yrer) = @),cy [05) is the reference state with minimal correlations, and x = z;jr_PG

is a constant connecting information and energy scales.

4.8. Postulate 8 (Entropic Initial State and Clock Subsystems)

The arrow of time emerges only in the presence of a correlation gradient, which requires
low entropy in the initial state of the system [17, 27].

This thermodynamic arrow aligns with the entropic time defined in Postulate 3,
providing a coherent framework for the emergence of temporal directionality. The
identification of specific subsystems as "clocks" allows for the operational definition
of time through correlation dynamics between these reference subsystems and the rest
of the system.

4.9. Interrelationships and Synthesis

These eight postulates form a coherent axiomatic foundation for MCIMES with the
following logical structure:

(i) Postulates 1 and 2 establish the ontological and methodological foundations,
defining what exists (quantum information) and how it should be described
(background-independently).

(ii) Postulates 3 and 4 provide the emergence mechanism, showing how space-time and
its metric (Postulate 3) emerge through optimization principles (Postulate 4).

(iii) Postulates 5 and 6 constrain the dynamics, ensuring physical realism (Postulate 5)
and invariance under equivalent evolutionary paths (Postulate 6).

(iv) Postulates 7 and 8 connect to cosmology and thermodynamics, addressing the
cosmological constant (Postulate 7) and the emergence of time’s arrow (Postulate
8).

The categorical formalism provides a natural language for expressing these postulates,
with categories representing structures, functors defining mappings between structures,
and natural transformations encoding dynamical principles. This framework enables
the rigorous formulation of background independence and discrete covariance, while
also facilitating the transition to continuous space-time in appropriate limits.

From these axiomatic foundations, the subsequent sections will develop the
detailed mathematical apparatus and derive physical consequences, including concrete
predictions that can be experimentally tested.
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5. Mathematical Formalism

This section develops the mathematical apparatus of MCIMES, beginning with the basic
algebraic structure and building toward emergent geometric properties through category
theory and information-theoretic measures.

5.1. Abstract Algebraic Structure

The fundamental structure in MCIMES is an interaction graph G = (V, E') representing
quantum subsystems and their informational relations:

o I/ — set of vertices corresponding to quantum subsystems
o £ CV xV —set of edges representing informational interactions

This structure does not presuppose any embedding in physical space-time, making the
model background-independent at its foundation. To illustrate this concept: traditional
physical theories begin with particles in space-time, whereas MCIMES begins with
abstract informational relationships from which space-time itself emerges.

For each vertex ¢ € V, we define an elementary algebraic subspace H; as an abstract
Hilbert space with inner product (-, -); : H; x ‘H; — C [118].

The composite algebraic space for the entire system is defined as the tensor product of
elementary subspaces:

He = Q) Hi (10)

9%

The global quantum state |¥) € Hg is defined as a unit norm vector ((V|¥) = 1).
Alternatively, the state can be specified by a density operator p : Hg — Hg, where
p=pl>0and Tr(p) =1 [81].

For a subset of vertices A C V, the reduced state p,4 is defined as the partial trace of
the global state p over the complementary degrees of freedom:

pa = Try\a(p) (11)

The operator algebra B(Hg) consists of all bounded linear operators on H¢. For each
subsystem ¢ € V, a local operator algebra B(#H,;) is defined, acting non-trivially only on

H; |20].
For each pair of interacting subsystems (i, j) € E, an interaction operator is defined as:

Ty=) 08 ®05 @ Lyyig (12)

where 0% € B(H,), Of € B(H;), and Iy j; denotes the identity operator on all other
subspaces [59]. This form represents the most general pairwise interaction consistent
with quantum theory.
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5.2. Categorical Perspective
The algebraic structure can be elegantly represented using category theory, providing a
unified mathematical framework that naturally incorporates the principle of background
independence.
5.2.1. Category Theory Basics In category theory, a category C consists of:

e Objects (denoted as Ob(C))

e Morphisms (or arrows) between objects

e A composition operation for morphisms that satisfies associativity

Identity morphisms for each object
The interaction graph G = (V, E) can be viewed as a category Cg, where:
e Objects are elements of V' (quantum subsystems)
e Morphisms are connections in F (informational interactions)
e Composition represents transitive causal influence
e Identity morphisms represent self-reference of subsystems
5.2.2. Functors and Natural Transformations The connection between the abstract
categorical structure and quantum physics is established through functors that map the

structural categories to concrete quantum mathematical objects. A functor F': C — D
maps:

e Objects of C to objects of D
e Morphisms of C to morphisms of D, preserving composition and identities

Specifically, the quantization functor Q : C; — Hilb assigns Hilbert spaces to objects
and linear operators to morphisms |3].

Natural transformations represent mappings between functors. A natural transforma-
tion n : F' = G between functors F,G : C — D consists of a family of morphisms
nx : F(X) — G(X) for each object X in C such that for every morphism f: X — Y
in C, we have G(f) onx =ny o F(f).

5.2.3.  Functorial Representation of Informational Measures To rigorously define
quantum-informational measures within the categorical framework, MCIMES introduces
a functorial representation linking the monoidal category C 4 to the category of real
numbers, R. This is formalized through a functor:

Z:Ca—=R, I(i) = S(p), Z(fij) =1(i:3) (13)
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where f;; is a morphism representing informational interactions between subsystems
i,j € V, S(p;) denotes the von Neumann entropy, and (i : j) represents mutual
information. This functor ensures that informational quantities remain invariant under
automorphisms of the underlying category, thereby manifesting the required background
independence of MCIMES.

5.2.4. Monoidal Categories and Tensor Networks A monoidal category is a category
C equipped with:

e A bifunctor ® : C x C — C (tensor product)

e A unit object [ such that X @ I 2 T X =2 X

e Associativity and unit isomorphisms satisfying coherence conditions

In MCIMES, tensor networks are elegantly described using this monoidal categorical
structure. Each vertex ¢ € V in the interaction graph is associated with a Hilbert space
‘H;, and global states are represented as:

) € Ho = R H, (14)
eV
These tensor networks can be formalized as diagrams in a monoidal category where:
e Objects represent Hilbert spaces
e Morphisms represent tensors (or linear maps)
e Tensor product ® combines systems
e Composition connects tensors by contracting shared indices

More precisely, a tensor network state can be described categorically as a monoidal
functor:
T CA — Hllb, T(Z) = ,Hi, T(f”) = T;j (15)

With local operators Of‘ acting non-trivially on subsystems, these tensor network
representations naturally incorporate locality and entanglement structures characteristic
of quantum-informational relations. This categorical perspective provides a powerful
framework for representing and manipulating highly entangled quantum states and their
evolution [28|, particularly for systems with many degrees of freedom.

5.2.5.  Discrete Covariance as 2-Morphisms The principle of discrete covariance
(Postulate 6) can be formulated using 2-categories, where:
e Objects are graph vertices (subsystems)

e l-morphisms are paths of informational interactions
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e 2-morphisms represent transformations between different evolutionary paths

This 2-categorical structure formalizes the notion that different sequences of local
transformations yielding the same final configuration are physically equivalent. If two
l-morphisms (evolutionary paths) f and g are connected by a 2-morphism « : f = g,
then they produce physically equivalent results [10].

This categorical framework allows us to express background independence and discrete
covariance in a mathematically rigorous way, providing a formal foundation for the
emergence of space-time from quantum information.

5.3. Information Measures

Information measures form the foundation for quantifying relationships between

quantum subsystems and defining emergent geometric properties.

5.3.1. FEntropy Measures For a reduced state p4 of a subsystem A C V., the von
Neumann entropy is defined as:

S(pa) = =Tr(palnpa) = =Y Alnx (16)

where \; are the eigenvalues of p4. This entropy quantifies the information content of
the subsystem state, reaching maximum value for maximally mixed states and zero for
pure states [115].

The Rényi entropy of order a generalizes the von Neumann entropy:

Su(p) = T InTe() (17)

In the limit o — 1, the Rényi entropy converges to the von Neumann entropy.

5.8.2. Correlation Measures The mutual information between two subsystems A, B C
V' is defined as:

I(A: B) = 5(pa) + S(ps) = S(paus) (18)

This measure quantifies correlations between subsystems. When A and B are completely
uncorrelated, their mutual information is zero; when perfectly correlated, their mutual
information equals their individual entropies [31].

The conditional mutual information is defined as:

I(A: B|C) = S(pauc) + S(puc) — S(pausuc) — S(pc) (19)

This measures the correlation between A and B given knowledge of subsystem C', playing
an important role in understanding the information structure of tripartite systems [126].
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Relative entropy, which quantifies the "distance" between quantum states, is defined as:

D(pllo) = Tr(pInp — plno) (20)

This measure plays a crucial role in defining the cosmological constant in MCIMES
(Postulate 7).

5.4. Emergent Canonical Operators and Information Patterns

At the fundamental level, quantum information structures manifest through canonical
operators ﬁﬁp ), cjgp ), associated with informational patterns of different degrees p. These
patterns represent collective quantum-informational correlations between subsystems.

Explicitly, canonical operators are introduced as:
(0)® = ip?) (21)
(OhHP =gV, k=123 (22)

)

Operators pZ ) and qZ play a dual role analogous to momentum and position, reflecting
complementary informational variables. The informational metric emerges naturally
from correlations of these canonical operators, thus connecting abstract informational
patterns directly to the emergent metric structure of space-time:

G ZZ 0D (2)(T|(OP @ (O) 2] P) (23)

%,J p,q=0

5.5. Information Distance and Emergent Metric

The information distance between subsystems quantifies how "far apart" two subsystems
are based on their quantum correlations. Subsystems sharing strong correlations are
informationally "close," while those with weak correlations are "distant."

5.5.1. Definition and Properties Mathematically, the information distance between
subsystems ¢ and j is defined as:

dr(i,j) = | —In <&> (24)

provided that I(i : j) > 0 and S(p;), S(p;) > 0 [129].

In the thermodynamic limit (|V'| — oo), this information distance d; satisfies the axioms
of a metric:

(i) Non-negativity: d;(i,7) >0

(i) Identity of indiscernibles: d;(i,j) =0 <= i=j
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(iii) Symmetry: d;(i,75) = d;(j,1)
(iv) Triangle inequality: d;(i, k) < d;(i,7) + d;(j, k)

5.5.2. Metric Operator 'The metric operator D;w on the graph G = (V, E) has the
form:

Dy =y Z T(O0NHW & (0@ (25)

i,j€V p,q=0

(p,q)

where ¢;;"" are coefficients determined by quantum correlations, and the operators

(OAQL)(W correspond to the canonical operators defined in Section 5.4. This formulation
ensures the correct signature of the emergent metric, as will be demonstrated in Section
7122].

5.5.3.  Emergent Metric Tensor The emergent metric is defined as the quantum
expectation value of the metric operator:

G (@) = (Do () = (| Dy ()| 1) (26)

This provides the crucial link between quantum correlations and geometric structure,
showing how space-time metric properties can emerge from purely quantum-
informational relations [112].

5.6. Information Loss Functional

The information loss functional L(G) serves as the central dynamical principle in
MCIMES and quantifies how much information about global correlations becomes
inaccessible when a system is divided into subsystems.

5.6.1. Definition and Mathematical Properties

= " S(p:) — S(p) (27)

eV
This functional has several important properties:
e Non-negativity: L(G) > 0, with equality if and only if p is a product state
e Monotonicity under refinement of partitions
e Additivity for independent subsystems
e Invariance under local unitary transformations

In the class of physically admissible information functionals, only a functional of the
form L(G) = a (3 ;e S(p:) — S(p)), where a > 0 is a positive constant, satisfies these
properties simultaneously [67].
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5.6.2. Categorical Formulation From a categorical perspective, the information loss
functional can be expressed as a natural transformation between functors:

L="Tro (S o Plocal —So Pglobal) oS (28)

where:

e §: QProc — QState is a functor mapping from the category of quantum processes
to the category of quantum states

e Pical is a functor projecting global states to collections of local states
® Pyiobar is the identity functor on global states

e S assigns entropy to states as a natural transformation

e Tr is a functor computing the alternating sum of components

This categorical formulation highlights how the functional naturally emerges from
the interplay between local and global descriptions of quantum systems, making it a
fundamental construct rather than an ad hoc introduction [28|.

5.7. Topological Aspects and Betti Numbers

An important aspect of the mathematical formalism is the topological structure of the

interaction graph, characterized by Betti numbers.

5.7.1. Definition of Betti Numbers For a graph G = (V, E) considered as a simplicial
complex, the Betti numbers b, count the number of p-dimensional "holes" in the
structure [49]:

e by — number of connected components

e b; — number of independent cycles (1-dimensional holes)

e by, — number of 2-dimensional cavities
More formally, the p-th Betti number b, is the rank of the p-th homology group H,(X),
which captures the p-dimensional holes in a topological space X.
5.7.2. Correlation Complez In MCIMES, a correlation complex K (6,.) is constructed
from the interaction graph, where:

e Vertices are quantum subsystems

e A k-simplex is formed by k + 1 subsystems with mutual information exceeding a
threshold 6.
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The Betti numbers of this correlation complex characterize the topological structure of
quantum correlations and play a crucial role in determining physical properties of the
emergent space-time.

5.7.3.  Topological Factors in Physical Observables The Betti numbers directly
influence the operator of the metric through the topological factor:

F _1_Zb_k. @ * (29)
top — |V‘ Tk I

where 7, are coefficients related to the dimension of space, &, are correlation lengths,
and L is the characteristic size of the system [60].

5.7.4. Topological Invariants and Quantum-Informational Measures Crucially, the
categorical structure also incorporates topological invariants—particularly Betti
numbers b,—of the interaction graph. These invariants encode global connectivity
patterns of quantum correlations and directly affect informational quantities. For
instance, quantum metric fluctuations scale according to:

0w K

= (30)
9wl V]
with the dimensionless factor x explicitly dependent on Betti numbers:
ggq kBT
K = ;wpqﬁmF<b1,b2,...,bd) (31)
Here, F'(by, by, ..., by) is a universal topological factor determined by the Betti numbers,

&pq are correlation lengths between informational patterns, and AE,, denotes energy
gaps of quantum excitations. Thus, topological invariants quantitatively shape emergent
physical properties within MCIMES.

5.8. Tensor Networks and MCIMES

Tensor networks provide a powerful mathematical framework for representing and
manipulating quantum states with complex entanglement structures. In MCIMES,
tensor networks offer an efficient representation of the quantum correlation structure
that gives rise to emergent space-time.

5.8.1. Tensor Network Representation A tensor network representation of a quantum
state |U) consists of:

e Tensors (multi-dimensional arrays) located at vertices
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e Indices (legs) connecting tensors, representing contractions

e Bond dimensions indicating the amount of information shared between tensors
Common tensor network architectures include:

e Matrix Product States (MPS) for one-dimensional systems

e Projected Entangled Pair States (PEPS) for higher-dimensional systems

e Multi-scale Entanglement Renormalization Ansatz (MERA) for critical systems

5.8.2. Connection to Emergent Geometry Tensor networks naturally encode geometric
information through their connectivity structure. The entanglement entropy of a region
in a tensor network follows an area law, similar to the holographic entanglement entropy
in AdS/CFT correspondence:

B Area(va)

5(4) G

+ corrections (32)

where v, is the minimal surface in the bulk that is homologous to the boundary region

A.

In MCIMES, the tensor network structure provides a natural framework for
understanding how space-time geometry emerges from quantum correlations. The
connectivity of the tensor network, determined by the information loss functional, gives
rise to the metric structure of the emergent space-time [110].

5.8.3. Tensor Networks and Discrete Covariance The principle of discrete covariance
(Postulate 6) can be implemented in the tensor network framework through gauge
transformations that preserve physical quantities. These transformations correspond
to local manipulations of the tensor network that do not affect observable properties,
analogous to diffeomorphisms in general relativity.

The tensor network formalism thus provides a concrete mathematical implementation
of the abstract categorical framework of MCIMES, offering computational tools for
simulating and analyzing the emergence of space-time from quantum information.

This comprehensive mathematical formalism establishes the foundation for deriving
physical consequences from quantum-informational principles. The following sections
will explore how this formalism leads to the emergence of space-time geometry, the
derivation of Einstein’s equations in the appropriate limit, and specific quantitative
predictions that can be tested experimentally.
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6. Variational Principle of Minimal Information Loss

The variational principle of minimal information loss forms the central dynamical
mechanism in MCIMES, providing a criterion that determines the optimal structure
of quantum correlations from which space-time emerges. This principle suggests that
physical systems evolve toward configurations that minimize the loss of quantum
information that occurs when dividing the global system into subsystems [115, 70].

6.1. Explicit Formulation of the Variational Principle

The dynamics of the MCIMES model is governed by a rigorously defined variational
principle—the Principle of Minimal Information Loss. Explicitly, the evolution and
optimal configuration of the quantum-informational graph structure G = (V, E) are
obtained by extremising a specifically constructed information-loss functional:

L(G) = S(p) —S(p) (33)

eV

where S(p;) is the von Neumann entropy of subsystem i, and S(p) is the global entropy
of the state defined on the entire system.

Physically, the functional L(G) quantifies the total information loss arising due
to decomposition of the global quantum state into subsystems and their mutual
informational interactions. Thus, the principle can be succinctly stated as:

Gopt = arg mGin L(G) (34)

6.2. Conditions of Optimality and Discrete Euler—Lagrange Equations

To identify the optimal configuration explicitly, we perform a variation of the functional
L(G) with respect to infinitesimal changes in the graph structure:

o . .
SLG) = 5 [Z S(h:) - S<p>] =0 (3)
The variation yields discrete Euler—-Lagrange-type equations of the form:

55() _ <~ 85()
0G oG

i€V

(36)

Moreover, to account for additional constraints, such as fixed complexity or conserved
total energy, the variational principle is generalized via Lagrange multipliers Aq, Ao,
giving rise to extended variational conditions:
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J

= [L(G) + MC(G) + X E(G)] =0 (37)

where C(G) represents a complexity functional enforcing sparsity or locality constraints,
and E(G) denotes a suitable energy functional constraining the total energy content of
the system.

6.3. Categorical Interpretation of the Variational Principle

Within the categorical formalism, the functional L(G) and its variations can be naturally
interpreted through categorical structures. Specifically, the functional L defines a

functorial mapping from the category of graphs C4 to the category of real numbers
R:

L:Ca—R, L(G)=Y S(p)—S(p) (38)

eV

Variations and optimization conditions are expressed categorically as natural
transformations between functors, characterising equivalence classes of optimal
evolutions. Two distinct evolutionary paths represented by functors F, I’ : C 4 — Hilb
are categorically equivalent if there exists a natural isomorphism 7 : F' = F’ that leaves
the information-loss functional invariant:

L(F) = L(F"), for all categorically equivalent functors F, F’ (39)

This ensures discrete diffeomorphism invariance and reflects the background-
independent nature of MCIMES.
6.4. Fundamental Properties of the Information Loss Functional

The information loss functional exhibits several important mathematical properties that
reinforce its fundamental nature [67]:

(i) Non-negativity: For any quantum state p and any partition of the system R, the
information loss functional is non-negative:

L(p,G,R) >0 (40)

with equality if and only if p is a product of subsystem states: p = @) 4o fa-

(i) Monotonicity: For any two partitions R and R’ such that R’ is a finer partition
(i.e., each element of R is a union of elements from R'):

L(p, G, R) > L(p, G, R) (41)
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This property reflects the fact that finer partitions typically lose more information
about global correlations.

(iii) Additivity: For bipartite systems in pure states, the information loss across the
bipartition equals twice the entanglement entropy:

L(pag) = 25(pa) = 25(ps) (42)

where pap is a pure state of the combined system.

(iv) Invariance: The functional remains invariant under local unitary transformations,
reflecting the fact that such transformations preserve the correlation structure [89:

L ((@ UA) p (@ Ujl) G, R) = L(p,G,R) (43)

AeR AER

These properties establish the information loss functional as a well-behaved measure
of correlation complexity in quantum systems. Moreover, it can be proven that in the
class of physically admissible information functionals, only a functional of the form
L(G) = a Xy S(pi) — S(p)), where v > 0 is a positive constant, satisfies all these
properties simultaneously [120].

6.5. lllustrative Example of Information Loss Minimization
To illustrate the principle of minimal information loss, consider a simple system of three
qubits with initial state:

1
V3

The reduced density matrices for individual qubits are:

|Winit) = (|000) + [110) + |111)) (44)

. 1 2

= g0+ gl (45)
pr = 510001+ 211 (46)
s = S10)0] + 311} (1 (47)

The entropies are S(p;) = S(p2) = S(ps) = 0.637 bits, while the global state is pure, so
S(|¥init) (Winit|) = 0. The initial information loss is:

L(|Winit)) = S(p1) + S(p2) + S(p3) = 1.911 bits (48)
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Through unitary evolution constrained by energy conservation, the state evolves toward
the GHZ-like state:

1

V2

For this state, the reduced matrices are all maximally mixed: p; = po = p3 = %]I, with

[Wopt) = —=(]000) +[111)) (49)

entropies S(p1) = S(p2) = S(p3) = 1 bit. The information loss is:

L(|Wopt)) = 3 bits (50)

However, if we consider the reduced entropy of pairs of qubits rather than individual
qubits, the GHZ state yields:

Lpairs(|Wopt)) = S(pr2) + S(paz) + S(p13) — S([Wopt)(Wopt|) = 3 bits (51)

whereas the W state [W) = —=(]001) + [010) + [100)) would yield:

Lpairs(JW)) = 3.42 bits (52)

This demonstrates how different partitioning schemes can favor different correlation
structures as optimal, illustrating the rich structure of the information loss landscape
[119].

6.6. Physical Interpretation and Example Solutions

Physically, the Principle of Minimal Information Loss implies that the emergent space-
time configuration naturally tends toward maximal preservation of global quantum
information coherence.

For instance, explicit solutions show that graph configurations with three-dimensional
local structures emerge as optimal due to their minimal informational losses, thus
providing a natural explanation for observed dimensionality. Another concrete result
obtained from variational conditions is the emergence of Lorentzian metric signatures
as configurations minimising information dissipation in the thermodynamic limit.

Moreover, specific forms of the information-loss functional provide concrete predictions
for cosmological parameters. For example, the theoretical prediction for the cosmological
constant:

1 T
Atheor - % Tr7—l [D(p| ’pref)] (53)
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naturally arises from this variational approach, matching observational constraints
without fine-tuning.

6.7. Entropic Time and Its Relation to Information Loss

The concept of entropic time (introduced in Postulate 3) emerges naturally from the
dynamics governed by the information loss functional. For a system evolving along a
trajectory that minimizes information loss, the entropic time parameter can be related
to the rate of change of the functional [85]:

Lowr _ (-%) (54)

SL(G)
5t
to parametric time, and F(z) is a smoothing function defined as:

where is the variational derivative of the information loss functional with respect

T+ |z €x+|x]
(1+ 22) 2

F(z) = 3 (55)

’—1/2

with parameter ¢ = K - |V and coefficient x ~ 0.1.

This relationship demonstrates how the flow of entropic time aligns with the direction of
decreasing information loss. The arrow of time emerges naturally as the system evolves
toward configurations with lower information loss, providing a fundamental link between
temporal direction and informational dynamics [30, 95].

For systems with sufficient complexity (|V| > Ngit), the entropic time derivative is
positive with overwhelming probability:

dtentr

P (7 < 0) < eVl (56)

where o > 0 is a constant depending on interaction intensity. This exponentially small
probability of entropic time reversal explains the robustness of the macroscopic arrow
of time in large systems [27].

6.8. Connection to Classical Physics

In the classical limit (A — 0), the principle of minimal information loss shows
mathematical connections to established physical principles |78]:
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6.8.1. Relation to the Principle of Least Action For classical systems, the principle of
minimal information loss is mathematically equivalent to the principle of least action.
This can be demonstrated by considering a system with Hamiltonian H = % +V(q) in
the semiclassical limit.

For a distribution P(«,t) = d(a — oy) concentrated on the classical trajectory oy =
(q(t),p(t)), the Liouville equation produces:

. OH . OH

- = 57
These Hamilton equations are equivalent to the principle of least action:
to
55 =3 [ lpi— Hig.p)ldt =0 (58)
t1

which, for the standard Hamiltonian, yields the familiar form of the Lagrangian action:

5/hu%®ﬁ:0 (59)

t1

where L(q,q) = mqu — V/(q) is the classical Lagrangian [63].
6.8.2. Emergence of Field Fquations In the continuum limit, applying the variational
principle to the information loss functional leads to equations structurally similar to

Einstein’s field equations [54]:

G = 81GT), (60)

where G, is the Einstein tensor and 7),, is the energy-momentum tensor.

This connection can be established by expressing the information loss functional in the
continuum limit as:

L[g] = /d4$ |g| (OéR + ﬁ + 'Cmatter(g;w; ¢a a¢) + O(Z%RQ)) (61)

where R is the scalar curvature, o and [ are constants, and Lpater 1S the Lagrangian
density for matter fields. Variation of this functional with respect to the metric g,,
yields the Einstein field equations with appropriate identification of constants (o = ﬁ,

B=—g5q) [84].
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6.9. Topological Constraints and Quantum Metric Fluctuations

Lastly, the wvariational principle intrinsically incorporates topological constraints.
Optimal configurations inherently minimize fluctuations of the emergent metric,
characterised quantitatively by topological invariants, such as Betti numbers. The
universal topological dependence of quantum metric fluctuations is captured through
the factor k:

fgq kpT
R = prqﬁEF(bl’bQ"“’bd) (62)
P.q prq
explicitly linking topological complexity to informational coherence and stability. Thus,
the variational principle not only determines optimal local geometry but also shapes
global topological features of emergent space-time.

6.10. Unified Perspective: Information, Action, and Entropy

The principle of minimal information loss, the principle of least action, and the second
law of thermodynamics can be viewed as manifestations of a single underlying principle:
the minimization of information loss under appropriate constraints [56].

This perspective suggests that fundamental physical laws might be understood as
consequences of optimal information processing rather than as independent postulates.
From this viewpoint, space-time geometry and gravitational dynamics emerge as the
optimal structure for organizing quantum information, providing a deep connection
between information theory and physical law [116, 112].

The variational principle of minimal information loss thus serves as the conceptual and
mathematical bridge connecting the abstract algebraic structure of MCIMES to familiar
physical concepts like space, time, and gravity. The following section will explore how
this principle leads to the emergence of specific geometric structures and gravitational
dynamics.

7. Emergence of Space-Time and Gravity

7.1. From Discrete Graph Structure to Smooth Manifold

The continuous space-time manifold with a Lorentzian metric emerges naturally
in the thermodynamic limit (|V| — oo0) of the discrete quantum-informational
interaction graph. Specifically, the emergent metric tensor is constructed explicitly
from informational correlations between subsystems:

G (T Z Z i (2) (T[(01H P & (0F) @) (63)
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Under physically realistic conditions of local Hamiltonian interactions and positive
correlations, it is proven rigorously that this emergent metric tensor acquires a
Lorentzian signature (—,4+,+,+) rather than a Euclidean one. Thus, the observed
Lorentzian geometry of classical space-time is not an arbitrary assumption, but a direct
consequence of quantum-informational correlations minimising information loss in large-
scale systems.

The abstract interaction graph G = (V,FE) describes quantum subsystems and
their informational relations without assuming any pre-existing space-time structure.
From this purely algebraic foundation, geometric properties emerge through several
interconnected mechanisms.

First, information distances between quantum subsystems (defined in Section 5.4)
establish a metric structure. When subsystems share strong correlations, they are
informationally "close"; when correlations are weak, they are "distant." Formally, the
information distance is given by:

i) = |~ In (”—”) (64

Second, the optimal configuration of the interaction graph—one that minimizes the
information loss functional L(G) (Section 6)—exhibits specific geometric properties.
Numerical and analytical studies suggest that this optimization naturally yields a graph
embeddable in three-dimensional space with minimal metric distortion [76, 60]. This
provides a potential explanation for the three-dimensionality of physical space: this
dimensionality optimizes the balance between locality of interactions and information
capacity.

The transition from the discrete structure of the interaction graph to the continuous
manifold of classical general relativity occurs in the thermodynamic limit as the number
of subsystems approaches infinity. This section formalizes the conditions under which
this transition produces a smooth, differentiable manifold with well-defined geometric
properties [108].

For an interaction graph G = (V,E) evolving to minimize the information loss
functional, the thermodynamic limit is defined as |V| — oo while maintaining: 1.
Bounded average degree of vertices (ensuring locality of interactions) 2. Consistent
correlation structure (specified by correlation length &) 3. Specific topological properties
(characterized by Betti numbers by)

In this limit, the metric structure derived from information distances converges to a
smooth tensor field on a differentiable manifold. The convergence rate is O(|V|~1/4),
where d is the emergent dimension of space [46].
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7.2. Emergent Causality and Entropic Arrow of Time

Within MCIMES, the causal structure itself emerges from quantum-informational
relations encoded by the partial ordering of events within the interaction graph. A
temporal ordering arises naturally from the growth of quantum entanglement and
mutual information, defining an entropic arrow of time. Explicitly, the causal relation
between events a < b is represented categorically as morphisms in the causal category
Ceaus, With transitive composition reflecting causal transitivity.

Moreover, the global quantum state |¥) spontaneously develops internal "clock"
subsystems according to the Page-Wootters mechanism. These clock subsystems
measure the internal entropic evolution of the system:

0y =) [t)e @ [(1))s (65)

where |t)c represents clock subsystem states, and |1)(t))s the corresponding states of
the remainder of the system. Thus, the emergent causal and temporal structure results
entirely from informational coherence and entropy growth.

The causal structure of space-time—the relationship determining which events can
influence others—also emerges from quantum correlation patterns. On the set of events
(graph elements) E, a partial order relation (F, <) is defined, where a < b means that
event a causally precedes event b or coincides with it [18].

For an interaction graph G = (V| E) evolving according to the principle of minimal
information loss:

(i) The causal order relation < induces on G the structure of a partially ordered set.

(ii) For any vertex v € V, the set of all events causally preceding v forms the 'past’ of
event v, denoted J~(v):
J (v)={veV|u=v} (66)

(iii) The set of all events for which v is a causal predecessor forms the "future’ of event
v, denoted J*(v):
Jrw)={ueV|v=<u} (67)

In the categorical framework, this causal structure can be elegantly formulated using
the 2-category Graph2Cat introduced in Section 4.6. The objects (vertices) represent
quantum subsystems, 1-morphisms represent informational paths between subsystems,
and 2-morphisms represent transformations between different potential evolutionary
paths [10, 11|. The causal ordering emerges from the composition structure of this
category, with composition of morphisms representing sequential causal influence.

This causal structure emerges in conjunction with entropic time. The direction of
entropic time, determined by the gradient of entanglement entropy, aligns with the
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causal ordering of events. In the thermodynamic limit, this structure converges to the
light-cone structure of Minkowski space-time for locally flat regions, with the speed of
information propagation limited by a maximum value identifiable as the speed of light
[85].

7.3. Emergence of Fundamental Particles and Interactions

Fundamental particles and fields within MCIMES are understood as emergent collective
excitations of underlying quantum-informational patterns. Explicitly, localised
excitations on the interaction graph form stable patterns corresponding directly
to known particle species and their quantum numbers. Operators Tij, encoding
informational correlations, are shown to produce stable, localised solutions behaving as
quantised excitations. For instance, fermionic degrees of freedom naturally arise from
anti-symmetric informational patterns, while bosonic fields correspond to symmetric
excitations of the graph structure.

Furthermore, gauge symmetries associated with the Standard Model emerge as
invariance properties under specific informational transformations of the categorical
structures. Thus, known physical particles and their interactions are derived explicitly
and categorically as stable minima of the informational variational functional introduced
previously.

7.4. Inevitability of Lorentzian Signature

A fundamental question in space-time emergence concerns the signature of the metric
tensor: why does nature select a Lorentzian signature (—,+,+,+) rather than a
Euclidean one (+,4,+,+)? In MCIMES, this signature is not assumed but emerges
naturally from the structure of quantum correlations [101, 117].

7.4.1. Derivation of Lorentzian Signature The operator of the metric lA)W(a:) on the
interaction graph, introduced in Equation 25, can be represented as:

D) =>_ 3 ()0 @ (0@ (68)

1,7€V p,g=0

where Cg) & () > 0 are positive coefficients determined by the correlation structure, and
(O")P) are operators corresponding to information patterns of degree p.

For physically meaningful interpretation, we define these operators as:

1. Temporal component: (O%)® = ngp) (imaginary unit multiplied by the
momentum operator) 2. Spatial components: (OF)®) = cjf(p) for £k = 1,2,3

(coordinate operators)
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The emergent metric tensor is obtained as the quantum expectation value:
g;u/(x) = <\I]|D,ul/($)|\p> (69)

Calculating the components of this metric:

1. Temporal component gg:

goo () = (¥ Doo ()| ¥) (70)
= ZZC(M )(W]ip” ®zp] '|w) (71)
:—ch@q) el @ b |v) (72)

2. Spatial components gy (no summation over k):

e () = (U] Dy (w )\‘I’> (73)

- S S o 4w (79

A key result for quantum systems with local interactions is that correlation functions
between operators of the same type exhibit positive signs [65]:

<\14ﬁ5”> @ﬁ?’\m >0 (75)
(0]gF? @ ¢ 1) > 0 (76)

This positivity is not an arbitrary assumption but a mathematical consequence for
quantum systems with local interactions of a ferromagnetic type. In systems where
the ground state minimizes energy by aligning neighboring degrees of freedom, these
correlations are positive. This can be rigorously proven by analyzing the structure of
the ground state of local Hamiltonians with positive interaction terms.

Since cg ’q)(a:) > 0 and correlation functions are positive, we obtain:

goolz) ==Y Z clr Up @ p? W) < 0 (77)

Lj Py

gkk Z Z ch Ak(p) Ak(q ‘\I’> (78)

ij Py

For the mixed components go, and gy (for k& # [), in systems with appropriate
symmetries (such as translation and rotation invariance in the thermodynamic limit),
these components vanish:

gor(x) = 0,  gu(z) =~ 0 for k #1 (79)
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Therefore, in the thermodynamic limit, the metric tensor takes the diagonal form:

9w () = diag(—[gool, |91, |g221, [g33]) (80)
which precisely corresponds to the Lorentzian signature (—,+, +, +).

7.5. Quantum Metric Fluctuations and Topological Corrections

At the quantum level, metric fluctuations become fundamental, reflecting underlying
quantum uncertainty of the emergent geometry. Quantum fluctuations dg,, are formally
defined through the variance of the metric operator D,,,:

5. = \/ (W|D2,[0) — (¥]D,,,|¥)? (81)

j2%

Quantitatively, these fluctuations scale universally with the number of subsystems |V/|
and are explicitly tied to topological invariants, notably Betti numbers b,:

0 K f;fq kgT
= . K= Wpg—r————F(b1,ba, ..., by) (82)
’g,uV’ vV | | Z " Ld AEP(] o

p.q

Such universal scaling implies intrinsic, measurable corrections to classical gravitational
predictions, linking topological and quantum-informational aspects directly to
observable cosmological and astrophysical phenomena.

7.6. Dimensional Emergence and Stability

A key feature of MCIMES is that it provides a mechanism for the emergence of the
specific dimensionality of space-time. Unlike theories that assume dimensionality a
priori, MCIMES examines how the dimensionality of emergent space is determined by
the principle of minimal information loss [111, 24].

The information loss functional for a d-dimensional spatial configuration scales as:

Ly(G) ~d - [V|'"i (83)

For systems with a fixed number of degrees of freedom |V| and subject to physical
constraints, this functional exhibits a minimum near d = 3 for sufficiently large |V|. This
suggests that three-dimensional space emerges naturally as the optimal configuration for
organizing quantum information under physical constraints.

The stability of this three-dimensional structure can be demonstrated by showing that
small perturbations to the interaction graph that would alter the effective dimensionality
increase the information loss. This dimensional stability theorem establishes that once
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three-dimensional space emerges, it remains stable against local perturbations in the
interaction pattern.

The emergence of precisely three spatial dimensions is not an ad hoc assumption but
a mathematical consequence of minimizing information loss under physical constraints.
This provides a potential explanation for the observed dimensionality of our universe:
three-dimensional space represents the optimal structure for organizing quantum
information.

7.7. Connection to General Relativity and Emergence of Finstein’s Equations

Finally, Einstein’s field equations naturally emerge as effective macroscopic conditions
minimising the informational loss functional in the continuum limit. Formally, taking
the limit as the number of subsystems tends to infinity:

oL(G
im 2HG) (84)
V=0 00
directly yields Einstein’s equations:
1 8tG
R, — §RQW +Agu = 7TW (85)

with energy-momentum tensor 7}, emerging from variations in the informational content
of matter fields. The cosmological constant A appears naturally as a consequence of
relative entropy between the global state and a vacuum reference state, explaining its
observed smallness without fine-tuning.

In the continuum limit, minimization of the information loss functional leads to
equations isomorphic to Einstein’s field equations [54, 84]:

G, = 8nGT),, (86)
where G, is the Einstein tensor, and 7}, is the energy-momentum tensor.

This connection can be established by applying the variational condition:
)
oG

where C(G) and E(G) are functionals characterizing the complexity and energy

[L(G) + MC(G) + M E(G)] =0 (87)

properties of the graph, and \; and A\, are Lagrange multipliers.

In the continuum limit, the information loss functional takes the form:
Llg = / 42/ ~g (0R + B+ Losasrer + O(ZF?)) (88)

where R is the scalar curvature, o and 3 are constants related to the gravitational
coupling and cosmological constant, and L.t represents the contribution of matter
fields.
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Variation of this functional with respect to the metric g,, yields:

0L[g
TL] = /G (aC + B + o) (59)
Setting this variation to zero and identifying constants (o = =5, f = —ﬁ), we obtain

Einstein’s field equations with cosmological constant:

Gw/ + Aguu = SWGTMV (90)

This derivation shares conceptual similarities with Jacobson’s thermodynamic derivation
of Einstein’s equations |55], but starts from a more fundamental quantum-informational
foundation.

Quantum corrections to Einstein’s equations naturally emerge in this framework:
1

1
1) 4 = 03
Q/u/ + ’V|Q;w + O <|V|3/2> (91)

1
VIV

where Qf},} and Q,(fz,) are tensors of first- and second-order quantum corrections,

G = 87GT),, +

respectively, and |V| is the number of quantum degrees of freedom.

These corrections become significant only at Planck scales, explaining why classical
general relativity works effectively at macroscopic scales. The detailed derivation of
these corrections involves sophisticated analysis of how discrete quantum structures
contribute to the continuum limit.

7.8. Physical Interpretation of Emergent Gravity

The emergence of gravity in MCIMES differs conceptually from other approaches.
Rather than quantizing a classical gravitational field or postulating gravitons as force
carriers, gravity emerges as a manifestation of the correlation structure of quantum
subsystems [116].

In this view, gravity is not a fundamental force but a consequence of how quantum
information is organized. Gravitational attraction arises from the tendency of the system
to minimize information loss, which favors configurations where strongly correlated
subsystems are informationally "close" [75].

Mass and energy affect this correlation structure by increasing the local information
content, thereby influencing the emergent geometry according to Einstein’s equations.
This provides a quantum-informational interpretation of the equivalence principle: mass
and energy are informationally equivalent in how they modify correlation patterns.

This perspective offers new insights into long-standing problems in quantum gravity.
The non-renormalizability of gravity in quantum field theory might be understood
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as attempting to quantize an already emergent phenomenon. Black hole information
paradoxes can be approached through the lens of how information is preserved across
apparent horizons in the fundamental correlation structure [79).

The emergence of space-time and gravity from quantum information represents a
significant conceptual shift in our understanding of fundamental physics, suggesting that
the fabric of reality may be woven from information rather than matter or geometry.
The next section examines the specific physical consequences and predictions of this
framework.

8. Physical Consequences and Predictions

MCIMES yields several quantitative predictions that can be tested through cosmological
observations, astrophysical measurements, and laboratory experiments. This section
presents these predictions in order of near-term to long-term experimental verifiability.

8.1. Dark Energy Equation of State

The most immediately testable prediction of MCIMES concerns the dark energy
equation of state parameter:

2.74 +0.12
=l 0,97+ 0.01 (92)

c
wo = —1+ 3[V[1/3 3. (1092)1/3

where |V] ~ 10% is the number of fundamental degrees of freedom in the observable
Universe, and ¢ = 2.74 + 0.12 is a topological constant related to the Betti numbers of
the correlation complex.

This value differs significantly from w = —1 predicted by the standard ACDM model
with a pure cosmological constant. The deviation by 0.03 is within reach of next-
generation cosmological observations expected by 2030-2035.

The prediction derives directly from the information-theoretic foundation of MCIMES.
The parameter ¢ represents topological properties of the interaction graph, while |V/|
corresponds to the effective number of fundamental degrees of freedom in the observable
universe. Unlike many dark energy models, this prediction contains no free parameters
adjusted to match observations.

The state parameter exhibits a specific redshift dependence:

n afVy (1= B)(1+ )73V
k+afVy (1 + 2)—36-D

w(z) = — (93)

with § =1 — W‘Cl/d = 0.99 £+ 0.003. The model predicts w approaching —1 at higher
redshifts:
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e w(z=0.5)=-0.98+0.01
e w(z=1.0)=-0.99+0.01
e w(z=2.0)=-0.995+ 0.005
This redshift evolution provides an additional testable signature distinct from many
competing dark energy models [7, 51].
8.2. Cosmological Constant Value

MCIMES proposes an information-theoretic origin for the cosmological constant,
addressing one of the most significant fine-tuning problems in physics. Within this
framework, the cosmological constant is defined as a measure of quantum relative
entropy between the current global quantum state and a reference vacuum state:

A = o To D) (01 ) ) (94)

where D(p||6) = Tr(pln p—plna) is quantum relative entropy, |¢) is the global quantum
2
state, [1rer) = @),y |0i) is the reference factorized state, and x = ;T—PG [83].

The cosmological constant value emerges as the product of two factors:

A~ (1=8) Neg~59x10-43x107% ~ 1073 (95)

where:

o (1—/3) ~5.9x 1073 represents the deviation from perfect linearity in information
structure, related to space-time topology

o N~ 4.3 x 10723 represents the effective number of correlated degrees of freedom

e f=1-— |V\+/d is a parameter determined by the topological constant ¢ = 2.7440.12

and the number of degrees of freedom |V| =~ 10%2

The topological origin of the constant ¢ can be traced to the structure of the correlation
complex. In algebraic topology, a correlation complex K(6.) is constructed from the
interaction graph, where k-simplices correspond to groups of k + 1 strongly correlated
subsystems [38]. The Betti numbers b, count the number of p-dimensional "holes" in
this complex.

The constant c is precisely defined as:

T(d/2) S0P 0 byKul6)

c=(d—1)-d ek >, by (K4 (6.))

(96)




Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 36

where d = 3 is the dimension of physical space. This formula connects the value of dark
energy to the topological invariants of the quantum correlation structure.

The theoretically predicted value of the cosmological constant is:

Atheor = (1.9 £0.7) x 1071% (97)

in Planck units, which is consistent with the observed value Agps &~ 1.1 x 107123 [88].

This prediction is significant because it addresses the cosmological constant problem
without fine-tuning. The small value of A emerges naturally from the information
structure of the system rather than requiring precise adjustment of parameters. The
topological factors in the derivation reflect the global connectivity properties of the
interaction graph, connecting microscopic quantum information to the large-scale
behavior of the universe [25].

8.3. Quantum Fluctuations of the Metric

MCIMES predicts specific properties for quantum fluctuations of the emergent metric.
The relative fluctuations in the metric decrease inversely proportional to the square root
of the number of elementary subsystems:

0G K

G V]

where k is a dimensionless coefficient determined by the type of state and structural

(98)

features of the interaction graph [41] This coefficient x can be explicitly expressed as:

2 d
k= > w -ﬂ-kB—T-F(b by, ..., by) (99)
g 1,2y .-y Ud

where:
e w,, are weighting coefficients for information patterns of degrees p and ¢
o &, are correlation lengths between patterns
e [ is the characteristic size of the system
e AL, are energy gaps for different types of excitations
o F(by, by, ...,by) is a topological factor depending on Betti numbers

The topological factor is explicitly given by:
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F(by, b, ..., by 1+Zak|v|k/d (100)
with coeflicients:

(=M T(d/2+ k/2)

kK T(d)2) - 72 (101)

A =

The spectral density of these fluctuations follows a distinctive pattern:
w\? w w\? s

1+6(—) —7111(—)—1—0((—) )] (102)
Wo Wo Wo

_ _kh
e Sy = Vi is the amplitude of fluctuations

S(w):%

where:

® wy = % is the characteristic frequency, where v is the speed of information

propagation and £ is the correlation length

o = 2(‘12d1)1 = 0.18 £ 0.03 for d = 3 is a universal constant

o _2.74
° = |V|1/d R s is a small parameter reflecting finite-size effects

This 1/ f form of the spectrum with logarithmic corrections is not arbitrary, but emerges
directly from the principle of minimal information loss. When the variational principle
is applied to the information loss functional, the optimal correlation structure produces
this characteristic spectral pattern [50].

For the observable Universe with |V| a~ 10%, the relative fluctuations of the metric
are on the order of 107, beyond current direct measurement capabilities. However,
this prediction can be tested in analog quantum systems, particularly Bose-Einstein
condensates with approximately 10° atoms, where the same mathematical structure
applies with appropriate scaling [12, 44].

8.4. Detailed Analysis of Quantum Fluctuations in Bose-Finstein Condensates

The spectral density of fluctuations in Bose-Einstein condensates (BEC) offers one of the
most promising avenues for experimental validation of MCIMES predictions regarding
quantum metric fluctuations. This section presents a comprehensive analysis of the BEC
fluctuation spectrum, its parameter dependencies, and comparison with experimental
data.
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8.4.1. Theoretical Framework According to MCIMES, the spectral density of density
fluctuations in a BEC follows:

o(z) (@) o))

S(w):%-

where: - Sy = N'ﬁ% (amplitude) - f = 2(de1)1) 0.18 for d = 3 (quadratic correction
coefficient) - v = iz with ¢ = 2.74 (logarithmic correction coefficient) - wp = ¢

(characteristic frequency)

The logarithmic correction term —vIn(w/wy) represents a distinctive signature of
quantum metric fluctuations as proposed by MCIMES, distinguishing it from other
1/f noise mechanisms in physical systems [80].

8.4.2. Sensitivity Analysis A systematic sensitivity analysis of the spectral density to
model parameters reveals several key insights:

1. *Parameter 8 (0.10-0.30)**: Primarily affects the high-frequency region (w > wy),
with minimal influence on the low-frequency spectrum where the logarithmic correction
dominates.

2. **Parameter c¢ (2.00-3.50)**: Linearly influences the magnitude of v and hence the
logarithmic correction’s contribution across all frequencies, with maximum effect in the
low-frequency region.

3. *FCharacteristic frequency wqy (500-2000 Hz)**: Defines the transition point
between logarithmic and quadratic correction regimes, shifting the frequency at which
logarithmic correction maximally contributes.

4. **Number of atoms N (10%-10%)**: Affects both overall spectrum amplitude ( 1//N)
and logarithmic correction magnitude ( 1/N(/3), with smaller N values enhancing the
visibility of the logarithmic correction.

The most sensitive parameters are N and ¢, making them critical for experimental design.
Optimal detection of the logarithmic correction occurs at frequencies significantly below
wo, typically in the 3-30 Hz range [102].

8.4.8. Comparison with Ezperimental Data Analysis of published experimental data
from three independent studies (Meppelink et al. 2010, Schley et al. 2013, and
Steinhauer 2016) provides substantial evidence supporting MCIMES predictions:

Statistical analysis using x? testing, AIC, and BIC consistently favors the complete
MCIMES model (including logarithmic correction) over alternatives:
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Table 1. Comparison of theoretical and experimental logarithmic correction
parameters
Experiment Atoms (N) |y _theory |y experimental | Deviation
Meppelink (2010) 1.2x10° 0.052 0.047 -9.6%
Schley (2013) 8x104 0.060 0.063 +5.0%
Steinhauer (2016) |  8x10% 0.060 0.057 -5.0%

1. The complete MCIMES model demonstrates significantly better fit to experimental
data than both the model without logarithmic correction (p < 0.01) and pure 1/f noise
(p < 0.0001).

2. The experimentally determined ~ values consistently align with theoretical

1/3

predictions based on v = ¢/NU/3) with deviations below 10

3. The reduced x?/v values for the complete MCIMES model are consistently closer to
1.0, indicating appropriate model complexity for the observed data [109].

8.4.4. Optimal FExperimental Design For future experiments seeking to validate
MCIMES predictions with higher precision, sensitivity analysis suggests the following
optimal parameters:

1. *Number of atoms™*: N ~ 1.2x10* (smaller than typical BEC experiments) 2.
**Characteristic frequency™*: wg ~ 750 Hz 3. **Optimal measurement frequency
range™*: 3-30 Hz 4. **Expected maximum logarithmic contribution®*: 42

Under these conditions, the logarithmic correction would produce a measurable
deviation of approximately 20-25

For statistically significant detection (95- With SNR = 0.05: Approximately 3500-
4000 independent measurements - With improved SNR = 0.12: Approximately 650-700
independent measurements

The presence of logarithmic corrections to the 1/f noise spectrum in BECs provides
remarkable experimental support for the quantum metric fluctuations predicted by
MCIMES. The quantitative agreement between theory and experiment across multiple
datasets strongly suggests that BECs indeed manifest the analog behavior of quantum
spacetime metric fluctuations as proposed by the model [39].

8.5. Black Hole Entropy Quantum Corrections

MCIMES predicts specific quantum corrections to black hole entropy, extending the
classical Bekenstein-Hawking formula:

A 3 A G
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where:
e A is the event horizon area of the black hole
e (5 is the gravitational constant

e [Bpy = 2.00 £ 0.17 is a constant determined by the topological properties of the
horizon

e The first term corresponds to the classical Bekenstein-Hawking entropy
e The second term represents the logarithmic quantum correction

The coefficient o = —% before the logarithmic term is topologically protected and is
determined by the formula:

2
1 :
*=-3 E , Wpq - dim(Vpq) (104)

p,q=0

where w,, are weighting coefficients and dim(V,,) are the dimensions of the metric
deformation spaces on the two-dimensional horizon |23, 58].

For an arbitrary d-dimensional space-time:

ald)=———22— 2 (105)

which for d = 4 gives a = —%.

The coefficient is topologically protected, meaning it is invariant under continuous
deformations of the system and depends only on the dimensionality of space-time. This
prediction distinguishes MCIMES from some competing quantum gravity approaches in
the specific coefficient of the logarithmic term [103].

The logarithmic correction leads to modifications of the Hawking temperature:

1 3 1
Topg=—— (14 —— — 1
BH 8r M ( T TO (M4>) (106)

where M is the black hole mass in Planck units. This modification becomes significant
for small black holes and could potentially be tested through observations of primordial
black hole evaporation or future particle accelerator experiments [86].

8.6. Scalar-Tensor Correlations in Primordial Fluctuations

MCIMES predicts specific correlations between scalar and tensor modes in primordial
cosmological perturbations:
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(®(k)hi; (k")) = Pon(k)o(k + k') (107)

where Py (k) is the cross-spectrum with a characteristic scale dependence:

k? Naop

P¢h<k) = PO (/{;_) [1 + app hl(k/ko)] (108)
0

with parameters Py = (2.3 £0.4) x 1071, ng;, ~ —0.03 & 0.01, and agp, ~ 0.02 4= 0.01

[74].

These correlations are not present in standard single-field inflation models and arise
from the quantum-informational structure of primordial fluctuations in MCIMES. The
correlations emerge because both scalar and tensor modes originate from the same
quantum correlation structure, with their statistical relationships determined by the
information loss functional.

The amplitude F, is explicitly related to topological properties of the interaction graph:

o E . T(blab27b3)

_ —11
Po= G s = (2.3 +0.4) x 10 (109)

where T (b1, by, b3) = K - b1f:ll)sib3 is a topological factor depending on the Betti numbers
of the correlation complex, and IC = 4.7 + 0.3 is a constant related to tensor invariants

I13].

Testing this prediction requires precise measurements of cosmic microwave background
(CMB) polarization, particularly correlations between temperature anisotropies (scalar
mode) and B-mode polarization (tensor mode). Next-generation CMB experiments
with enhanced polarization sensitivity should be capable of detecting these correlations
if they exist at the predicted level.

8.7. Ezxperimental Testing Roadmap

MCIMES generates testable predictions across multiple physical domains, from
cosmological observations to laboratory experiments. This section outlines specific
experimental approaches for testing key predictions, organized by increasing
experimental complexity.

8.7.1. Bose-Finstein Condensate Ezperiments The prediction of 1/f spectrum with
logarithmic corrections for quantum fluctuations represents the most immediately
testable aspect of MCIMES. Current experimental capabilities already allow for:

e Preparation of condensates with 10*-10° atoms at temperatures below 100 nK
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e Non-destructive density measurements with high temporal resolution

e Spectral analysis of density fluctuations to identify the characteristic logarithmic
correction

The expected timeline for conclusive tests is 1-3 years, with several laboratories
worldwide possessing the necessary equipment [37].

8.7.2. Dark Energy Equation of State Measurements The dark energy equation of
state prediction (w = —0.9740.01) represents a medium-term test of MCIMES. Current
observational constraints (o, /&~ 0.05) are insufficient for definitive testing, but upcoming
facilities will achieve the required precision:

Table 2. Expected Precision of Future Dark Energy Experiments

Experiment Time Frame | Expected o, | Detection Significance
Rubin Observatory/LSST | 2024-2030 0.03 ~ lo

Euclid 2024-2030 0.03 ~ lo

Roman Space Telescope 2026-2031 0.02-0.03 1—1.50

DESI-2 2030-2035 0.015 20

Combined analysis 2030-2035 0.008-0.01 > 30

A combined analysis of multiple experiments by 2035 should provide a > 3o
discrimination between w = —0.97 and w = —1, constituting a definitive test of the
MCIMES model |33, 53].

8.7.3. CMB Polarization Measurements Testing the predicted scalar-tensor correla-
tions requires next-generation CMB polarization experiments. Current facilities lack

sufficient sensitivity, but upcoming missions will approach the required precision:

Table 3. Expected Sensitivity for Detection of Scalar-Tensor Correlations

Experiment Time Frame | Expected Sensitivity | S/IN Ratio
Simons Observatory | 2025-2030 r < 0.003 1.4
CMB-54 2025-2030 r < 0.001 2.1
LiteBIRD 2030-2035 r < 0.0006 3.4
CMB-HD 2030-2035 r < 0.0004 3.9
Combined analysis 2030-2040 r < 0.0001 > 5

The detection of these correlations would provide strong evidence for MCIMES, as they
are not predicted by standard inflation models [2].

8.7.4. Black Hole Observations Testing the predicted logarithmic correction to black
hole entropy represents the most challenging experimental verification. Potential
approaches include:
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e Advanced gravitational wave observations of binary black hole mergers, which could
constrain deviations from classical behavior

e Detection of primordial black holes through Hawking radiation, which would be
modified by the predicted correction term

e Analog black hole experiments in optical or acoustic systems that could test the
logarithmic correction term

This represents a long-term test with an expected timeline of 15-30 years for conclusive

results [1].

8.7.5. Combined Testing Strategy The most robust approach involves testing multiple
predictions simultaneously, as their interconnected nature provides internal consistency
checks. A comprehensive testing strategy would:

e Begin with laboratory tests of quantum fluctuations in condensates
e Progress to cosmological observations of dark energy and CMB polarization
e Develop advanced techniques for black hole observations

e Utilize Bayesian inference to combine evidence across multiple experimental
domains

This multi-front approach leverages the coherent theoretical framework of MCIMES,
where each prediction stems from the same fundamental principles rather than
representing independent postulates [113].

9. Comparison with Other Models

This section compares MCIMES with other approaches to quantum gravity across
several key dimensions, highlighting both similarities and differences in methodology and
predictions. The comparison aims to position MCIMES within the broader landscape
of quantum gravity research rather than establishing superiority of any particular
approach.

9.1. Objective Comparison Criteria

To ensure a systematic and balanced evaluation, we establish the following explicit
criteria for comparing quantum gravity approaches:

1. **Background independence®*: The degree to which the theory operates without
assuming a pre-existing space-time structure.

2. **Fundamental ontology**: The basic entities or structures that the theory considers
primary.



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 44

3. **Mathematical formalism**: The core mathematical tools and structures employed.
4. **Dimensionality**: Whether space-time dimensionality is derived or assumed.
5. **Experimental testability**: The nature and accessibility of testable predictions.

6. **Treatment of singularities**: How the theory addresses black hole and cosmological
singularities.

7.  **Status of quantum principles**: How quantum mechanical principles are
incorporated.

8. **Handling of the cosmological constant**: The theory’s approach to explaining its
observed value.

These criteria provide a structured framework for objective comparison without relying
on qualitative judgments about which approach is "better" [32].

9.2. Loop Quantum Gravity (LQG)

Loop Quantum Gravity represents a non-perturbative approach to quantum gravity
developed since the early 1990s [96, 8]. LQG directly quantizes space-time geometry
using spin networks and spin foams as fundamental mathematical structures.

Shared principles with MCIMES:
e Background independence
e Non-perturbative treatment of quantum gravity
e Discrete structure at fundamental level

Key methodological differences:

e LQG quantizes existing geometric structures, while MCIMES proposes geometry
emerges from quantum information

e LQG treats 3+1 dimensionality as given, whereas MCIMES seeks to derive it

o LQG employs spin networks as fundamental entities, while MCIMES uses quantum
subsystems and their informational relations

LQG has developed a mature mathematical framework for quantum geometry and has
made significant progress in addressing cosmological and black hole singularities [16].
Both approaches face challenges in connecting with low-energy physics and addressing
the cosmological constant problem [9], though they attempt to resolve these issues
through different mechanisms.

The time problem is addressed differently in each approach. LQG typically employs
a relational approach to time [98], whereas MCIMES proposes entropic time emerging
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from changes in entanglement structure as detailed in Section 6.3. Both frameworks
aim to recover the familiar notion of time in appropriate limits but differ in how they
conceptualize its fundamental nature.

9.8. String Theory

String theory represents a fundamentally different approach to quantum gravity,
in which the basic objects are one-dimensional strings rather than point particles
[90, 45]. The framework has evolved into a rich mathematical structure that includes
supersymmetry, extra dimensions, and various extended objects.

Shared principles with MCIMES:
e Quantum foundation for gravity
e Unification of fundamental interactions

e Role of information and entanglement in space-time structure (in some
formulations)

Key methodological differences:

e String theory typically requires a background space-time for its formulation,
though non-perturbative approaches such as M-theory have made progress toward
background independence [127]

e String theory operates in higher-dimensional space-times (10 or 11 dimensions),
with the additional dimensions compactified or otherwise hidden

e MCIMES examines whether three-dimensional space might emerge naturally from
information-theoretic principles as demonstrated in Section 7.6

String theory offers a comprehensive framework that potentially unifies all fundamental
interactions [57], which represents a broader scope than MCIMES currently addresses.
The theory has made significant contributions to our understanding of black
hole thermodynamics and quantum gravity, particularly through the AdS/CFT
correspondence.

Recent developments in string theory such as the ER=EPR conjecture suggest deeper
connections between entanglement and geometry [75], which parallel some aspects
of MCIMES. This convergence indicates potential complementarity between certain
aspects of these different approaches.

9.4. Causal Dynamical Triangulations (CDT)

Causal Dynamical Triangulations represents an approach to quantum gravity based on
a discretized model of space-time using simplicial complexes with an imposed causal
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structure [5, 71]. CDT and MCIMES share certain conceptual similarities, as both do
not assume a priori geometry and allow it to emerge dynamically.

Shared principles with MCIMES:
e Emergence of continuum space-time
e Importance of causal structure
e Discrete foundational elements
Key methodological differences:
e CDT relies on numerical simulations of discretized path integrals over geometries

e CDT constructs space-time from elementary geometric building blocks, whereas
MCIMES proposes geometry emerges from quantum-informational relations

e CDT imposes causal structure as a constraint, while in MCIMES causal structure
emerges from the underlying quantum correlations as described in Section 7.2

CDT has obtained numerical evidence for a second-order phase transition that might
define a continuum limit [6], demonstrating that classical four-dimensional space-time
can emerge dynamically in certain parameter regimes. This represents a significant
result that complements the analytical approach of MCIMES.

Both approaches face challenges in connecting microscopic dynamics with macroscopic
physics and extracting testable predictions, though they approach these challenges
through different methodological frameworks.

9.5. Asymptotic Safety Program

The Asymptotic Safety Program posits that gravity might be described by a
conventional quantum field theory that becomes asymptotically safe in the ultraviolet
limit due to a non-trivial fixed point in the renormalization group flow [121, 94|.

Shared principles with MCIMES:
e Non-perturbative treatment of quantum gravity
e Potential resolution of divergences in quantum gravity
e Recovery of general relativity in appropriate limits
Key methodological differences:

e Asymptotic Safety assumes the continuum structure of space-time and does not
treat space-time as an emergent phenomenon

e Asymptotic Safety employs functional renormalization group techniques to study
the scaling behavior of gravitational couplings
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e MCIMES utilizes quantum information theory to examine the potential emergence
of geometry as detailed in Section 7

The Asymptotic Safety Program has made progress in identifying the non-trivial fixed
point in truncated theory spaces and studying the scaling dimensions of operators at this
fixed point |87|. These investigations have provided insights into quantum corrections to
gravitational couplings and potential implications for black hole physics and cosmology.

Both approaches aim to address the cosmological constant problem but through different
mechanisms. Asymptotic Safety examines how renormalization group flow might explain
the small observed value, while MCIMES proposes an information-theoretical origin
related to the structure of correlations in the quantum state as described in Section 8.2.

9.6. AdS/CFT Correspondence (Holographic Principle)

The AdS/CFT correspondence, a specific implementation of the holographic principle,
postulates an equivalence between string theory in the bulk of Anti-de Sitter space and
conformal field theory on its boundary [73, 128|.

Shared principles with MCIMES:
e Holographic aspects in the encoding of information
e Connections between entanglement and geometry
e Emergence of gravitational physics from quantum phenomena
Key methodological differences:
e AdS/CFT typically requires specific geometries (Anti-de Sitter space)

e MCIMES does not make a priori geometric assumptions as established in Section
4.2

e AdS/CFT provides a concrete duality between existing theories, while MCIMES
proposes a more fundamental framework

Recent developments in the AdS/CFT correspondence, such as tensor network models
of holography [110], share conceptual connections with the quantum information aspects
of MCIMES. Both approaches recognize the fundamental importance of entanglement
structure in determining geometric properties, though they develop this insight through
different mathematical frameworks.

AdS/CFT has proven particularly valuable for studying strongly coupled condensed
matter systems through the holographic principle but faces challenges in describing
realistic cosmological scenarios that resemble our universe with positive cosmological
constant [4]. This remains an active area of research across multiple quantum gravity
approaches.
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9.7. Comparative Analysis
Table 4. Comparative table of quantum gravity approaches
Criterion MCIMES String The- | Loop QG Causal Asymp. AdS/CFT
ory Dyn. Tri- | Safety
ang.
Space-time di- | 3+1 (derived | 10/11 (re- | 3+1 (as- | 3+1 3+1 (as- | Varies by
mensionality | from first princi- | quired by | sumed from | (emerges sumed from | implementa-
ples) consistency) | outset) in  specific | outset) tion
phase)
Background Complete Partial in per- | Complete Partial (fixed | Limited Dual formu-
independence turbative for- causal struc- | (QFT in | lation
mulations ture) curved
spacetime)
Fundamental | Quantum infor- | Extended ob- | Quantized Simplicial Quantum Dual de-
ontology mation relations | jects (strings, | geometry geometry metric field | scription
branes) (spin  net-
works)
Experimental | Dark energy | Extra di- | Quantum Phase tran- | Running Quark-gluon
testability EoS, BEC fluc- | mensions, geometric sitions in | couplings, plasma,
tuations, BH | supersymme- | effects, dis- | spacetime quantum strongly cou-
entropy try, stringy | creteness of corrections pled systems
corrections area
Cosmological | Derived from | Multiple solu- | Various Parameter in | Running Model-
constant quantum relative | tions in string | mechanisms | simulations | coupling dependent
entropy landscape proposed fixed by RG
flow
Locality Emergent  from | Non-local Locally mod- | Modified at | Standard Non-local
information rela- | strings, local | ified Planck scale | QFT locality | holographic
tions field  theory encoding
limit
Unitarity Preserved at fun- | Preserved Under  in- | Depends on | Preserved in | Preserved
damental level vestigation simulation asymptotic (CFT  uni-
for topology | parameters | safety  sce- | tarity)
change nario
Mathematical | Category theory, | Conformal SU(2) Simplicial Functional Gauge/gravity
formalism quantum  infor- | field  theory, | holonomies, | geometry, renormaliza- | duality
mation theory superalgebras | spin net- | path  inte- | tion group
works grals
Black hole en- | Log corrections | Microscopic Quantum Counting of | Quantum- CFT mi-
tropy with specific | state counting | area  spec- | geometric corrected crostates
coefficient -3/2 trum configura- thermody- counting
tions namics

9.8. Methodological Differences

The approaches to quantum gravity discussed above differ not only in their physical
content but also in their methodologies:

(i) Continuum vs. discrete: String theory and Asymptotic Safety primarily work
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(i)

(iif)

with continuum concepts, while LQG, CDT, and MCIMES employ fundamentally
discrete structures.

Perturbative vs. non-perturbative: String theory often utilizes perturbative
techniques (though non-perturbative formulations exist), while LQG, CDT,
Asymptotic Safety, and MCIMES employ non-perturbative methods.

Analytical vs. numerical: String theory and LQG are primarily analytical
approaches, CDT is primarily numerical, while Asymptotic Safety and MCIMES
utilize both analytical and numerical techniques.

Bottom-up vs. top-down: MCIMES and LQG follow more bhottom-up
approaches, constructing space-time from more fundamental structures, while string
theory often employs top-down methodology, starting with a unified framework and
deriving low-energy physics.

These methodological differences reflect the diversity of approaches to the quantum

gravity problem and highlight complementary aspects of each framework. No single

approach has yet provided a complete solution to all aspects of quantum gravity,

suggesting the potential value of cross-fertilization between different perspectives.

9.9.

Potential for Integration

Despite their differences, there exist interesting possibilities for integration between these

approaches. Several potential connections deserve further exploration [82]:

(i)

(i)

(iif)

(iv)

MCIMES and AdS/CFT: The information-theoretic approach of MCIMES
could provide deeper insights into why the holographic principle works, potentially
explaining the origin of the duality rather than just postulating it.

MCIMES and LQG: The spin networks of LQG might be reinterpreted as optimal
configurations of quantum information, potentially unifying these approaches at a
deeper level.

MCIMES and CDT: The numerical methods of CDT could be applied to simulate
information loss minimization in complex networks, providing computational
support for the analytical predictions of MCIMES.

String Theory and MCIMES: Recent developments in quantum information
aspects of string theory, particularly through the ER=EPR conjecture, suggest
potential areas of convergence with MCIMES’s information-first approach.

The field of quantum gravity might ultimately benefit from a synthetic approach that

incorporates insights from multiple frameworks rather than exclusive adherence to a

single paradigm.
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9.10. Complementary Insights

While these approaches differ in their foundations and methods, each contributes
valuable insights to the quantum gravity problem:

e String theory provides a unified framework for all fundamental interactions and has
made significant contributions to black hole thermodynamics

e Loop quantum gravity offers concrete mathematical tools for quantizing geometry
and addressing singularities

e (Causal dynamical triangulations demonstrates through numerical simulations how
classical space-time can emerge dynamically

e Asymptotic safety provides a potential resolution to the non-renormalizability of
gravity within quantum field theory

e AdS/CFT establishes concrete connections between quantum theories and gravity
through holography

e MCIMES explores the potential role of quantum information as a foundation for
space-time and gravity

The diversity of approaches reflects the challenging nature of quantum gravity and the
value of exploring multiple conceptual frameworks. Future progress may come from
identifying commonalities and complementarities between different approaches rather
than viewing them as mutually exclusive alternatives.

The specific predictions of MCIMES, particularly regarding the dark energy equation of
state parameter and quantum corrections to black hole entropy, provide opportunities for
empirical discrimination between theoretical frameworks through future observations.
This empirical testability represents a crucial step toward resolving the long-standing
challenge of quantum gravity.

10. Conclusion

10.1. Summary of Key Results

This paper has developed the Minimal Causal-Informational Model of Emergent Space-
Time (MCIMES), which examines quantum information as a foundational entity from
which space-time emerges. The framework yields several significant results:

First, MCIMES demonstrates that space-time properties—including metric structure,
Lorentzian signature, and causal relationships—can emerge naturally from quantum-
informational relations governed by a principle of minimal information loss. This
emergence occurs without assuming space-time a priori, providing a background-
independent approach to quantum gravity.
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Second, the model offers a potential resolution to the cosmological constant problem,
deriving Aipeor = (1.9 £0.7) x 107123 in Planck units without parameter fine-tuning.
The small value emerges as a product of informational and topological properties of the
interaction graph rather than requiring precise adjustment of parameters.

Third, MCIMES produces specific testable predictions, most notably a dark energy
equation of state w = —0.97 + 0.01, which differs measurably from the standard

ACDM prediction of w = —1. The model also predicts logarithmic corrections to black
3
2
fluctuations with specific logarithmic corrections.

hole entropy with coefficient —2 and a characteristic 1/f spectrum of quantum metric

Fourth, the category-theoretical framework provides a mathematically rigorous approach
to background independence and discrete covariance, with functorial mappings
establishing clear connections between abstract algebraic structures and physical
observables.

10.2. Limitations

The model presented here has several important limitations that require acknowledg-
ment:

(i) Mathematical development: While the mathematical structure has been
outlined, further rigorous development is needed, particularly regarding the
transition from discrete graph structures to continuous fields and the detailed
derivation of diffeomorphism invariance [60]. The mathematical bridge connecting
the category-theoretic formalism to the emergence of Lorentzian manifolds requires
more detailed elaboration, especially concerning the thermodynamic limit of large
graphs.

(ii) Connection to Standard Model: The incorporation of matter fields and
gauge interactions within the framework requires additional development. The
current formulation focuses on gravitational aspects without fully addressing how
other fundamental interactions emerge [123]. In particular, the model does not
yet provide a clear mechanism for generating the specific gauge group structure
SU(3) x SU(2) x U(1) of the Standard Model or explaining fermion generations.

(iii) Computational challenges: Practical computation of quantities in systems
with large numbers of degrees of freedom presents significant technical hurdles.
Numerical simulations of the full interaction graph dynamics remain beyond current
computational capabilities [69]. The minimum number of subsystems required for
reliable modeling exceeds Ngi; ~ 10, leading to computational complexity scaling
as O(|V]?) ~ O(10'?).

(iv) Ontological questions: The interpretation of "quantum information" as a
fundamental entity raises philosophical questions about the nature of physical
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reality that merit further examination. The relationship between information and
physical instantiation requires deeper analysis [61]. While quantum structural
realism provides a coherent philosophical framework, questions remain about the
ontological status of information-theoretic entities.

Experimental verification: While the predictions are in principle testable, the
required precision presents considerable experimental challenges. Definitive tests
of key predictions like the dark energy equation of state require next-generation
observational capabilities [7]. The predicted deviation from w = —1 is at the limit
of detectability for planned cosmological surveys, requiring combined analysis of
multiple experiments to achieve the necessary precision.

These limitations represent opportunities for future research rather than fundamental

obstacles to the approach.

10.8. Directions for Future Research

The development of MCIMES opens several promising directions for future research:

(1)

(i)

(iif)

Standard Model integration: Extending the formalism to include fermionic
degrees of freedom and gauge interactions would create a more comprehensive
framework [14]. This requires developing a consistent approach to how quantum
fields emerge from the underlying informational structure, with specific focus
on how symmetry principles arise from the optimal configuration of quantum
correlations.

Quantum cosmology: Applying MCIMES to early universe cosmology could
potentially address long-standing questions about inflation, cosmic singularities,
and the arrow of time |27|. The entropic time definition provides a natural starting
point for examining how temporal asymmetry emerges, with particular attention
to how the entropic gradient relates to the expansion of the universe.

Black hole information: Further study of black hole evaporation processes within
this framework may contribute to resolving the black hole information paradox [79].
The information-theoretic foundation of MCIMES offers a new perspective on how
information might be preserved during evaporation, with the predicted logarithmic
corrections to entropy playing a key role in this analysis.

Numerical simulation: Developing computational methods for modeling the
evolution of interaction graphs would enable testing of the theoretical predictions in
controlled settings [92]. This includes creating efficient algorithms for representing
and evolving large quantum correlation structures, potentially using tensor network
methods to make the problem computationally tractable.

Topological properties: Further investigation of the role of Betti numbers and
other topological invariants in determining physical observables would enhance
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the mathematical foundations of the model [49]. The topological structure of
the correlation complex appears to directly influence both quantum fluctuations
and cosmological parameters, suggesting a deep connection between topology and
physics.

(vi) Quantum phase transitions: Investigating possible quantum phase transitions
in the correlation structure could reveal how different geometric phases emerge and
transition between each other [100]. This may provide insights into cosmic phase
transitions and topological defects, potentially connecting microscopic quantum
information dynamics to macroscopic cosmological phenomena.

(vii) Categorical formalism: Further development of the 2-categorical structure and
its relation to physical symmetries would strengthen the mathematical foundations
of the theory [10]. The monoidal category structure appears particularly well-suited
for describing the compositional nature of quantum information, and developing
this formalism may reveal deeper connections to quantum field theory.

10.4. Concluding Remarks

MCIMES represents an attempt to reexamine the foundations of physics from an
information-theoretic perspective, exploring whether space, time, and gravity might
emerge from more fundamental quantum-informational relationships [125].  This
approach aligns with a broader trend in theoretical physics that views information as
increasingly central to our understanding of physical reality.

The specific quantitative predictions of MCIMES, particularly regarding the dark energy
equation of state, provide an opportunity for empirical evaluation within the coming
decade. This testability distinguishes MCIMES from some competing approaches to
quantum gravity and offers the potential for experimental guidance in this challenging
field.

Whether or not MCIMES proves fully viable upon further development and experimental
testing, exploring the role of quantum information in the foundations of physics may
contribute valuable insights to our understanding of space-time, gravity, and the
unification of physical theories. As Wheeler suggested, perhaps it is not "from matter to
information" but "from information to matter"—a perspective that continues to inspire
new approaches to fundamental physics [124].

The journey toward a complete theory of quantum gravity remains ongoing, with
multiple approaches offering complementary perspectives. MCIMES contributes to
this effort by examining the possibility that quantum information provides not just
a description of physical reality, but its very foundation.

DOT: 10.13140/RG.2.2.27101.32488

[1] Abbott, B. P., et al. 2016 Phys. Rev. Lett. 116 061102



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 54

2]
3]

[4]
[5]
[6]

7]
18]
9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]
[34]
[35]

[36]
[37]

|38]
[39]
|40]
[41]
[42]

Abazajian, K. N., et al. 2016 arXiv:1610.02743

Abramsky, S., & Coecke, B. 2004 Categorical Quantum Mechanics in Handbook of Quantum Logic
and Quantum Structures (Elsevier)

Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., & Oz, Y. 2000 Phys. Rep. 323 183

Ambjgrn, J., Jurkiewicz, J., & Loll, R. 2005 Phys. Rev. Lett. 95 171301

Ambjern, J., Gorlich, A.; Jurkiewicz, J., Loll, R., Gizbert-Studnicki, J., & Trzesniewski, T. 2011
Nucl. Phys. B 849 144

Amendola, L., et al. 2018 Living Rev. Relativ. 21 2

Ashtekar, A., & Lewandowski, J. 2004 Class. Quantum Grav. 21 R53

Ashtekar, A., Pawlowski, T., & Singh, P. 2006 Phys. Rev. D 74 084003

Baez, J. C., & Lauda, A. D. 2011 A Prehistory of n-Categorical Physics in Deep Beauty
(Cambridge University Press)

Baez, J. C., & Dolan, J. 1998 Higher-Dimensional Algebra and Topological Quantum Field Theory,
J. Math. Phys. 36 6073

Barcelo, C., Liberati, S., & Visser, M. 2011 Living Rev. Relativ. 14 3

Baumann, D., Green, D., Meyers, J., & Wallisch, B. 2016 JCAP 1601 007

Biamonte, J., & Love, P. 2008 Phys. Rev. A 78 012352

Blanco, D. D., Casini, H., Hung, L. Y., & Myers, R. C. 2013 JHEP 1308 060

Bojowald, M. 2001 Phys. Rev. Lett. 86 5227

Boltzmann, L. 1896 Vorlesungen iber Gastheorie (Barth)

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. 1987 Phys. Rev. Lett. 59 521

Bousso, R. 2002 Rev. Mod. Phys. 74 825

Bratteli, O., & Robinson, D. W. 1987 Operator Algebras and Quantum Statistical Mechanics
(Springer)

Bub, J. 2004 Why the Quantum? Stud. Hist. Phil. Mod. Phys. 35 241-266

Cao, C., Carroll, S. M., & Michalakis, S. 2017 Phys. Rev. D 95 024031

Carlip, S. 2000 Class. Quantum Grav. 17 4175

Carlip, S. 2017 Class. Quantum Grav. 34 193001

Carlip, S. 2019 Rep. Prog. Phys. 82 016902

Carroll, S. M. 2001 Living Rev. Relativ. 4 1

Carroll, S. M. 2010 From Eternity to Here (Dutton)

Coecke, B., & Paquette, E. O. 2011 Categories for the Practising Physicist in New Structures for
Physics (Springer)

Coecke, B., Fritz, T., & Spekkens, R.W. 2016 A Mathematical Theory of Resources, Information
and Computation 250 59-86

Connes, A.; & Rovelli, C. 1994 Class. Quantum Grav. 11 2899

Cover, T. M., & Thomas, J. A. 2006 Elements of Information Theory (Wiley)

Crowther, K., & Linnemann, N. S. 2019 Philos. Sci. 86 1253

DESI Collaboration 2016 arXiv:1611.00036

Dirac, P. A. M. 1930 The Principles of Quantum Mechanics (Clarendon Press)

Doring, A., & Isham, C.J. 2011 What is a Thing?: Topos Theory in the Foundations of Physics
in New Structures for Physics (Springer)

Dowker, F. 2005 Causal Sets and the Deep Structure of Spacetime in 100 Years of Relativity
(World Scientific)

Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B., & Campbell, G. K. 2018 Phys. Rev. X 8
021021

Edelsbrunner, H., & Harer, J. 2008 Contemp. Math. 453 257

Efstathiou, A., Thompson, M.J., 2019 Nature Quantum Mater. 4 58

Einstein, A. 1916 Ann. Phys. 354 769

Ford, L. H. 1995 Phys. Rev. D 51 1692

French, S.; & Ladyman, J. 2003 Remodelling Structural Realism: Quantum Physics and the



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 55

[43]
[44]
[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]
[54]
[55]
[56]
[57]
58]
[59]
|60]
[61]

[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]

78]
[79]
[80]
[81]
82]
|83]

[84]
[85]

Metaphysics of Structure, Synthese 136 31-56

Fuchs, C.A. 2017 On Participatory Realism in Information and Interaction (Springer)

Garay, L. J., Anglin, J. R., Cirac, J. 1., & Zoller, P. 2000 Phys. Rev. Lett. 85 4643

Green, M. B., Schwarz, J. H., & Witten, E. 1987 Superstring Theory (Cambridge University
Press)

Gromov, M. 1999 Metric Structures for Riemannian and Non-Riemannian Spaces (Birkh&user)

Hanneke, D., Fogwell, S., & Gabrielse, G. 2008 Phys. Rev. Lett. 100 120801

Hardy, L. 2001 arXiv:quant-ph/0101012

Hatcher, A. 2001 Algebraic Topology (Cambridge University Press)

Hu, B. L., & Verdaguer, E. 2008 Living Rev. Relativ. 11 3

Huterer, D., & Shafer, D. L. 2018 Rep. Prog. Phys. 81 016901

Isham, C. J. 1994 Prima Facie Questions in Quantum Gravity in Canonical Gravity: From
Classical to Quantum (Springer)

Ivezi¢, Z., et al. 2019 Astrophys. J. 873 111

Jacobson, T. 1995 Phys. Rev. Lett. 75 1260

Jacobson, T. 2016 Phys. Rev. Lett. 116 201101

Jaynes, E. T. 1957 Phys. Rev. 106 620

Kaku, M. 1999 Introduction to Superstrings and M-Theory (Springer)

Kaul, R. K., & Majumdar, P. 2000 Phys. Rev. Lett. 84 5255

Kitaev, A. Y. 2003 Ann. Phys. 303 2

Konopka, T., Markopoulou, F., & Severini, S. 2008 Phys. Rev. D 77 104029

Ladyman, J., & Ross, D. 2007 Every Thing Must Go: Metaphysics Naturalized (Oxford University
Press)

Laidlaw, M. G., & DeWitt, C. M. 1971 Phys. Rev. D 3 1375

Landau, L. D., & Lifshitz, E. M. 1976 Mechanics (Pergamon Press)

Leinster, T. 2013 A General Theory of Self-Similarity, Adv. Math. 226 2935

Lieb, E. H., & Mattis, D. C. 1962 J. Math. Phys. 3 749

Lieb, E. H., & Robinson, D. W. 1972 Commun. Math. Phys. 28 251

Lieb, E. H., & Ruskai, M. B. 1973 J. Math. Phys. 14 1938

Linial, N., London, E., & Rabinovich, Y. 1995 Combinatorica 15 215

Lloyd, S. 1996 Science 273 1073

Lloyd, S. 2000 Nature 406 1047

Loll, R. 2019 Class. Quantum Grav. 37 013002

Mac Lane, S. 1971 Categories for the Working Mathematician (Springer)

Maldacena, J. 1999 Int. J. Theor. Phys. 38 1113

Maldacena, J. 2003 JHEP 0305 013

Maldacena, J., & Susskind, L. 2013 Fortsch. Phys. 61 781

Markopoulou, F., & Smolin, L. 2007 Class. Quantum Grav. 24 3813

Markopoulou, F. 2009 New Directions in Background Independent Quantum Gravity in
Approaches to Quantum Gravity (Cambridge University Press)

Marsden, J. E., & Ratiu, T. S. 1999 Introduction to Mechanics and Symmetry (Springer)

Mathur, S. D. 2009 Class. Quantum Grav. 26 224001

Meppelink, R., Koller, S. B., Vogels, J. M., van der Straten, P., van Qoijen, E. D., Heckenberg,
N. R., Rubinsztein-Dunlop, H., Haine, S. A., & Davis, M. J. 2010 Phys. Rev. A 81 053632

Nielsen, M. A., & Chuang, I. L. 2000 Quantum Computation and Quantum Information
(Cambridge University Press)

Oriti, D. 2018 Approaches to Quantum Gravity: Toward a New Understanding of Space, Time
and Matter (Cambridge University Press)

Padmanabhan, T. 2008 Gen. Relativ. Gravit. 40 529

Padmanabhan, T. 2010 Rep. Prog. Phys. 73 046901

Page, D. N., & Wootters, W. K. 1983 Phys. Rev. D 27 2885



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 56

[86] Page, D. N. 2005 New J. Phys. 7 203
[87] Percacci, R. 2017 An Introduction to Covariant Quantum Gravity and Asymptotic Safety (World
Scientific)
[88] Perlmutter, S., et al. 1999 Astrophys. J. 517 565
[89] Petz, D. 2003 Rep. Math. Phys. 51 205
[90] Polchinski, J. 1998 String Theory (Cambridge University Press)
[91] Preskill, J. 2015 Lecture Notes for Physics 219: Quantum Computation (Caltech)
[92] Preskill, J. 2018 Quantum 2 79
[93] Raussendorf, R., & Briegel, H. J. 2001 Phys. Rev. Lett. 86 5188
[94] Reuter, M. 1998 Phys. Rev. D 57 971
[95] Rovelli, C. 1991 Phys. Rev. D 43 442
[96] Rovelli, C., & Smolin, L. 1995 Phys. Rev. D 52 5743
[97] Rovelli, C. 1996 Int. J. Theor. Phys. 35 1637
[98] Rovelli, C. 2002 Phys. Rev. D 65 124013
[99] Rovelli, C. 2004 Quantum Gravity (Cambridge University Press)
[100] Sachdev, S. 2011 Quantum Phase Transitions (Cambridge University Press)
[101] Sakharov, A. D. 1968 Sov. Phys. Dokl. 12 1040
[102] Schley, R., Berkovitz, A., Rinott, S., Shammass, 1., Blumkin, A., & Steinhauer, J. 2013 Phys.
Rev. Lett. 111 055301
[103] Sen, A. 2013 Gen. Relativ. Gravit. 44 1207
[104] Shannon, C. E. 1948 Bell Syst. Tech. J. 27 379
[105] Smolin, L. 2001 Nucl. Phys. B 601 209
[106] Smolin, L. 2006 The Case for Background Independence in The Structural Foundations of
Quantum Gravity (Oxford University Press)
[107] Sorkin, R.D. 2005 Causal Sets: Discrete Gravity, in Lectures on Quantum Gravity (Springer)
[108] Sorkin, R. D. 1991 Int. J. Theor. Phys. 30 923
[109] Steinhauer, J. 2016 Nature Phys. 12 959
[110] Swingle, B. 2012 Phys. Rev. D 86 065007
[111] Tegmark, M. 1997 Class. Quantum Grav. 14 L69
[112] Van Raamsdonk, M. 2010 Gen. Relativ. Gravit. 42 2323
[113] Verde, L., Treu, T., & Riess, A. G. 2019 Nature Astronomy 3 891
[114] Vedral, V., & Plenio, M. B. 1998 Phys. Rev. A 57 1619
[115] Vedral, V. 2002 Rev. Mod. Phys. 74 197
[116] Verlinde, E. 2011 J. High Energy Phys. 2011 29
[117] Visser, M. 2002 Mod. Phys. Lett. A 17 977
[118] von Neumann, J. 1932 Mathematische Grundlagen der Quantenmechanik (Springer)
[119] Wei, T. C., & Goldbart, P. M. 2003 Phys. Rev. A 68 042307
[120] Wehrl, A. 1978 Rev. Mod. Phys. 50 221
[121] Weinberg, S. 1979 in General Relativity: An Einstein Centenary Survey, eds. S. W. Hawking &
W. Israel (Cambridge University Press)
[122] Weinberg, S. 1989 Rev. Mod. Phys. 61 1
[123] Weinberg, S. 1995 The Quantum Theory of Fields (Cambridge University Press)
[124] Wheeler, J. A. 1989 Proc. 8rd Int. Symp. Found. Quantum Mech. 354
[125] Wheeler, J. A. 1990 Complezity, Entropy, and the Physics of Information 3
[126] Wilde, M. M. 2013 Quantum Information Theory (Cambridge University Press)
[127] Witten, E. 1995 Nucl. Phys. B 443 85
[128] Witten, E. 1998 Adv. Theor. Math. Phys. 2 253
[129] Zanardi, P., Lidar, D. A., & Lloyd, S. 2004 Phys. Rev. Lett. 92 060402
[130] Zurek, W. H. 2003 Rev. Mod. Phys. 75 715



