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1. Abstract

Quantum mechanics and general relativity require uni�ed theoretical treatment,

particularly regarding the cosmological constant's observed value (≈ 10−123 in Planck

units). This paper presents the Minimal Causal-Informational Model of Emergent

Space-Time (MCIMES), which establishes quantum information as the fundamental

entity underlying emergent space-time geometry. The model adopts quantum structural

realism as its interpretive framework, implemented through rigorous category theory

formalism. MCIMES is mathematically constructed on an abstract interaction graph,

represented as a monoidal categoryCA with functorial mappings to physical observables.

The system's dynamics are governed by a variational principle of minimal information

loss, expressible through natural transformations between functors.

The framework demonstrates how metric properties, Lorentzian signature, and

causal structure emerge from quantum correlations without presupposing space-time.

Topological invariants, particularly Betti numbers bp of the interaction graph, play

a crucial role in quantifying universal properties of space-time �uctuations and

thermodynamic behavior. From this background-independent formulation, Einstein's

equations emerge in the continuum limit as the optimal con�guration that minimizes

information loss.

Quantitatively, MCIMES predicts a dark energy equation of state parameter w =

−0.97 ± 0.01, a cosmological constant value Λtheor = (1.9 ± 0.7) × 10−123, and black

hole entropy with logarithmic quantum corrections of the form SBH = A
4G

− 3
2
log
(
A
G

)
+

βBH +O
(
G
A

)
. The coe�cient −3

2
in the logarithmic term is topologically protected and

universal for four-dimensional space-time. These predictions are testable through next-

generation cosmological observations by 2030-2035 and analog quantum experiments.

While the current model has limitations in connecting to the Standard Model

and computational implementation, MCIMES provides a comprehensive information-

theoretic framework for quantum gravity with speci�c, falsi�able consequences.

2. Introduction

Quantum gravity remains one of the most signi�cant unresolved problems in

contemporary theoretical physics. Several fundamental challenges persist: the

incompatibility of general relativity with quantum mechanics, the problem of time,

the resolution of cosmological singularities, and the extraordinarily small value of the

cosmological constant (approximately 10−123 in Planck units) [26, 122].

This paper presents the Minimal Causal-Informational Model of Emergent Space-Time

(MCIMES), a framework that establishes quantum information as the foundational

entity from which space-time geometry emerges. The approach is mathematically

implemented through category theory, with the interaction graph G = (V,E)

represented as a monoidal category CA where objects correspond to quantum
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subsystems and morphisms represent informational relationships. This categorical

formalism enables rigorous treatment of background independence and provides

natural tools for describing quantum correlations through functorial mappings and

natural transformations. Tensor networks play a central role in this mathematical

description, o�ering e�cient representations of highly entangled quantum states and

their transformations.

MCIMES emerges from a critical assessment of fundamental physical theories and their

limitations. The formulation of this model has been guided by several key observations

from established physics: First, general relativity's profound reconceptualization of

space-time as inherently relational rather than absolute [40] suggests that geometric

properties themselves might not be fundamental but emergent from more primitive

structures. Second, quantum mechanics has demonstrated unprecedented predictive

accuracy�validated to precision levels of 10−12 or better in experimental settings

[47]�indicating that quantum principles must necessarily underpin any comprehensive

uni�cation framework.

The present model adheres rigorously to parsimony principles in theoretical

construction. It introduces no fundamentally novel elements beyond those already

empirically validated within contemporary physics, instead recon�guring established

components into a cohesive framework from which falsi�able predictions naturally

emerge. Nevertheless, it must be acknowledged that MCIMES assigns ontological

primacy to the global quantum state as the fundamental entity from which space-

time emerges�a theoretical elegance that potentially functions as a sophisticated form

of reductionism. The philosophical tension regarding the interpretation of "quantum

information" as foundational to observable physical reality remains signi�cant, though

it may be partially mitigated by noting that substituting "quantum interactions"

for "quantum information" preserves the mathematical formalism intact. The

model's substantial number of testable predictions necessarily increases its falsi�ability,

potentially exposing fundamental inadequacies even during initial empirical assessment.

However, regardless of whether subsequent experimental evidence con�rms or refutes

the speci�c formulation presented here, the systematic examination of a model that

integrates established physical principles with minimal extraneous assumptions should

prove valuable in advancing our understanding of reality's fundamental structure.

A crucial mathematical component of MCIMES is the role of topological invariants,

particularly the Betti numbers bp of the interaction graph. These invariants characterize

the "connectivity patterns" of quantum correlations and directly in�uence the behavior

of quantum metric �uctuations [60]. The spectral density of these �uctuations follows

a universal 1/f form with speci�c corrections determined by the Betti numbers:

S(ω) =
S0

ω
·

[
1 + β

(
ω

ω0

)2

− γ ln

(
ω

ω0

)
+O

((
ω

ω0

)4
)]−1/2
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where β = (d−1)2

2(2d−1)
= 0.18± 0.03 for d = 3 and γ = c

|V |1/d ≈ 2.74
|V |1/3 .

The proposed model adheres to the principle of parsimony, seeking minimal assumptions

while addressing key issues in quantum gravity. The framework relies primarily on

experimentally veri�ed elements of physics while introducing the speci�c hypothesis

that quantum-informational relations are ontologically prior to space-time geometry.

This approach acknowledges certain limitations, including the challenge of deriving the

complete Standard Model from informational principles and computational di�culties

in simulating systems with su�cient degrees of freedom.

MCIMES di�ers from other approaches to quantum gravity in several signi�cant aspects:

1. **Complete background independence**: Unlike string theory, which typically

assumes a background space-time, MCIMES constructs the theory without presupposing

any space-time structure [8, 106]. The framework shares this feature with loop quantum

gravity but employs di�erent mathematical structures.

2. **Emergence mechanism**: While loop quantum gravity quantizes existing geometric

structures [99] and causal set theory discretizes space-time [36], MCIMES examines

whether all geometric properties, including dimensionality, metric structure, and causal

relations, could derive from more fundamental quantum-informational structures [112].

3. **Dimensional emergence**: The model provides a speci�c mechanism for the

three-dimensionality of space as the optimal con�guration that minimizes information

loss under physical constraints [111], distinguishing it from approaches that assume

dimensionality a priori.

4. **Cosmological constant**: MCIMES o�ers a natural approach to the small value

of the cosmological constant that does not require �ne-tuning [84], predicting a speci�c

value of Λtheor = (1.9± 0.7)× 10−123 in Planck units.

5. **Experimental testability**: The theory yields quantitatively testable predictions,

including a dark energy equation of state parameter w = −0.97± 0.01, which could be

veri�ed by next-generation cosmological observations by 2030-2035 [7].

The paper is organized as follows. Section 3 discusses the philosophical foundations,

positioning MCIMES within the context of information-theoretic approaches to physics.

Section 4 formulates the axiomatic foundations through eight postulates that establish

the mathematical framework. Section 5 introduces the formal mathematical apparatus,

including abstract algebraic structures, categorical representations, and information

measures. Section 6 presents the Variational Principle of Minimal Information Loss,

which drives the system's dynamics. Section 7 describes how space-time and gravity

emerge from quantum-informational relations. Section 8 examines physical consequences

and predictions, including speci�c values for the cosmological constant and dark energy

equation of state. Section 9 compares MCIMES with other approaches to quantum

gravity. Section 10 contains conclusions and directions for further development.



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 5

3. Philosophical Foundations

MCIMES establishes quantum-informational structural realism as its philosophical

foundation�the view that physical reality is fundamentally constituted of informational

structures and relations rather than material substances or intrinsic properties of

independently existing entities [61, 42]. This position represents a signi�cant ontological

shift: instead of treating space-time and matter as primary elements of reality, MCIMES

identi�es quantum information as the fundamental entity from which physical structures

emerge [21].

Under this framework, space-time emerges from quantum-informational relations

between fundamental subsystems, similar to how temperature emerges from molecular

kinetics in statistical mechanics. The model implements this philosophical stance

through rigorous category theory, where the interaction graph is represented as a

category CA with objects corresponding to quantum subsystems and morphisms

representing informational relationships [28]. This categorical approach naturally

embodies structural realism by focusing on the mathematical patterns of relationships

rather than intrinsic properties of objects.

The categorical formalism o�ers several advantages in implementing quantum-

informational structural realism:

1. **Background independence**: Category theory provides structure-preserving maps

(functors) that ensure all physical quantities remain invariant under transformations

that preserve the relational structure [35]. Speci�cally, for any automorphism σ of the

graph, physical predictions remain invariant: F(f) ∼ F(g) for any physically equivalent

morphisms f and g.

2. **Relational ontology**: The 2-categorical structure, where 2-morphisms

connect di�erent evolutionary paths, formalizes the notion that physically equivalent

con�gurations may have di�erent representations but identical observable consequences

[10].

3. **Information measures**: Functorial mappings fromCA to categories of information

measures provide a rigorous framework for de�ning entropy, mutual information, and

other quantities that drive the emergence of space-time [29].

Quantum-informational structural realism addresses key ontological questions raised

by quantum non-locality and contextuality. Instead of trying to reconcile these

phenomena with a pre-existing space-time, MCIMES proposes that informational

relations constitute the fundamental level of reality, with space-time locality emerging as

an approximate, large-scale property [107]. This approach is compatible with relational

interpretations of quantum mechanics, which emphasize information and correlations as

primary rather than absolute states [43, 97].

Unlike previous philosophical proposals advocating informational approaches, MCIMES



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 6

provides a speci�c mathematical mechanism through which geometric properties emerge

from quantum correlations. The variational principle of minimal information loss

serves as the bridge connecting the abstract relational structure to familiar physical

properties, including metric distances, causal ordering, and gravitational dynamics [55].

This principle is expressed categorically as a natural transformation between functors,

establishing a deep connection between information theory and physical law.

The philosophical stance of MCIMES directly shapes its mathematical structure. By

treating quantum-informational relations as ontologically prior to space-time, the theory

builds its formalism from elements that do not presuppose any background geometry

[77]. The abstract algebraic structure, with its associated Hilbert spaces and operator

algebras, exists independently of any spatial embedding, with geometric properties

emerging only in the appropriate limits [22].

This philosophical foundation distinguishes MCIMES from approaches that modify

existing space-time structures, o�ering instead a framework where the familiar concepts

of physics�space, time, causality, and gravity�emerge as manifestations of a more

fundamental quantum-informational reality. The following sections develop this

conceptual foundation into a rigorous mathematical framework with speci�c physical

consequences and testable predictions.

4. Axiomatic Foundations

MCIMES is based on the following interconnected postulates, which provide the minimal

set of assumptions necessary for developing the theory:

4.1. Postulate 1 (Primacy of Quantum Information over Geometry)

Quantum information serves as the fundamental entity from which physical structures

emerge. Unlike approaches that quantize existing space-time structures, MCIMES treats

quantum-informational relations as ontologically primary.

Mathematical formulation:

(i) The foundational structure is an abstract interaction graph G = (V,E) representing

quantum systems and their informational relationships. This graph exists

independently of any physical space embedding [105]:

• V � set of vertices (quantum subsystems)

• E ⊂ V × V � set of edges (informational interactions)

(ii) Each vertex i ∈ V is associated with a local Hilbert space Hi [34]

(iii) The global Hilbert space is de�ned as the tensor product of the local spaces [81]:

HG =
⊗
i∈V

Hi (1)
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(iv) The global quantum state |Ψ⟩ ∈ HG or density operator ρ̂ completely describes the

state of the entire system [118]

4.2. Postulate 2 (Background Independence)

Physical laws and observables must be formulated without relying on a pre-given space-

time structure. This ensures that space-time properties emerge from the theory rather

than being assumed in its foundation [8, 106].

An element of the model X is considered background-independent if and only if:

(i) The de�nition of X contains no references to space-time concepts

(ii) X is invariant with respect to all automorphisms of the algebraic structure

(iii) The physical interpretation of X does not depend on the speci�c representation of

the structure

(iv) The properties of X can be expressed through informational functionals [104]

In categorical terms, background independence means that the theory is invariant under

isomorphisms of the underlying category structure. For any automorphism σ of the

graph G, there exists a corresponding automorphism of the algebraic structure that

preserves all physical predictions. This categorical formulation allows for rigorous proofs

of invariance [72, 10].

4.3. Postulate 3 (Emergence of Space-Time)

Space-time and its metric structure are not assumed a priori, but arise from the dynamics

of information-causal relations between quantum subsystems [112, 22].

Mathematical formulation:

(i) Emergent metric: The metric structure of potentially emergent space-time is

de�ned through informational distances between subsystems [115, 129]:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρ̂i)S(ρ̂j)

)
(2)

where I(i : j) is the mutual information between subsystems, and S(ρ̂i) is the

von Neumann entropy. This distance increases as mutual information decreases,

consistent with the notion that subsystems are 'farther apart' if they share less

correlation. The formula satis�es metric axioms in the thermodynamic limit.

(ii) Entropic time: The direction and 'pace' of time are de�ned through changes in

entanglement entropy [85, 30]:

tentr =

∫ t

0

F

(
2∑
p=0

wp
dS(p)(t′)

dt′

)
dt′ (3)



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 8

where S(p)(t′) represents the entanglement entropy of patterns of degree p, with wp
representing weighting factors. The function F ensures monotonic increase in most

physical scenarios.

4.4. Postulate 4 (Principle of Minimal Information Loss)

The dynamics of the system are governed by a criterion of minimizing the loss of

quantum information when dividing the global system into subsystems [14, 56]. This

principle drives the evolution toward optimal correlation structures.

Mathematical formulation:

(i) Information loss functional for an abstract graph:

L(G) =
∑
i∈V

S(ρ̂i)− S(ρ̂) (4)

where S(ρ̂i) = −Tr(ρ̂i ln ρ̂i) is the von Neumann entropy of the reduced state,

and S(ρ̂) is the entropy of the global state [114]. This functional quanti�es the

information about global correlations that becomes inaccessible when examining

subsystems individually.

(ii) The optimal structure of the interaction graph minimizes this functional:

Gopt = argmin
G
L(G) (5)

subject to appropriate physical constraints.

In the categorical framework, this principle can be formulated as a natural

transformation between functors that map from the category of interaction graphs to

the category of real numbers:

L : QProc → R (6)

whereQProc is the category of quantum processes. The optimization can be formulated

as a variational problem:

δ

δG
[L(G) + λ1C(G) + λ2E(G)] = 0 (7)

where C(G) is a complexity functional measuring computational complexity, E(G) is an

energy functional describing the energetic cost of maintaining correlations, and λ1, λ2
are Lagrange multipliers.
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4.5. Postulate 5 (Physical Realism of Interactions)

Physically realistic interactions between subsystems should satisfy principles of locality,

�nite energy, and extensivity [59, 66].

An interaction graph G = (V,E) satis�es the principle of locality if:

(i) It is sparse: ∀v ∈ V : deg(v) = O(log |V |)

(ii) The strength of interaction (correlation) between subsystems decreases with

distance

(iii) The graph allows embedding in a space of small �xed dimension with low metric

distortion [68]

4.6. Postulate 6 (Quantum Evolution and Discrete Covariance)

The dynamics of the system follows the laws of quantum theory and possesses invariance

with respect to di�erent 'trajectories' of growth of the interaction graph [92, 48].

Mathematical formulation:

(i) Quantum dynamics: At each elementary step of evolution:

|Ψn+1⟩ = Ûn |Ψn⟩ (8)

where Ûn is a local unitary operator [93].

(ii) Discrete covariance: Di�erent sequences of local transformations leading to

isomorphic �nal graphs are physically equivalent [62]. This represents a discrete

analog of di�eomorphism invariance in general relativity.

In categorical terms, discrete covariance can be formulated using 2-categories. De�ne a

2-category Graph2Cat where:

• Objects are elementary subsystems (graph vertices)

• 1-morphisms are paths of informational connections between subsystems

• 2-morphisms are transformations between paths, corresponding to di�erent possible

evolutions

Discrete covariance states that if two 1-morphisms (evolutionary paths) f and g are

connected by a 2-morphism α : f ⇒ g, then they produce physically equivalent results.

This formalizes the principle that the speci�c sequence of graph updates is not physically

signi�cant as long as the �nal con�gurations are isomorphic.

4.7. Postulate 7 (Cosmological Constant as a Measure of Quantum Relative Entropy)

The cosmological constant corresponds to a measure of quantum relative entropy

between the current and reference states of the global system [26, 19].
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Mathematical formulation: The cosmological constant is de�ned by the expression

[89, 15]:

Λ =
1

2κ
TrH[D(|ψ⟩ ⟨ψ| || |ψref⟩ ⟨ψref|)] (9)

whereD(ρ̂||σ̂) = Tr(ρ̂ ln ρ̂−ρ̂ ln σ̂) is quantum relative entropy, |ψ⟩ is the global quantum
state, |ψref⟩ =

⊗
i∈V |0i⟩ is the reference state with minimal correlations, and κ =

ℓ2P
8πG

is a constant connecting information and energy scales.

4.8. Postulate 8 (Entropic Initial State and Clock Subsystems)

The arrow of time emerges only in the presence of a correlation gradient, which requires

low entropy in the initial state of the system [17, 27].

This thermodynamic arrow aligns with the entropic time de�ned in Postulate 3,

providing a coherent framework for the emergence of temporal directionality. The

identi�cation of speci�c subsystems as "clocks" allows for the operational de�nition

of time through correlation dynamics between these reference subsystems and the rest

of the system.

4.9. Interrelationships and Synthesis

These eight postulates form a coherent axiomatic foundation for MCIMES with the

following logical structure:

(i) Postulates 1 and 2 establish the ontological and methodological foundations,

de�ning what exists (quantum information) and how it should be described

(background-independently).

(ii) Postulates 3 and 4 provide the emergence mechanism, showing how space-time and

its metric (Postulate 3) emerge through optimization principles (Postulate 4).

(iii) Postulates 5 and 6 constrain the dynamics, ensuring physical realism (Postulate 5)

and invariance under equivalent evolutionary paths (Postulate 6).

(iv) Postulates 7 and 8 connect to cosmology and thermodynamics, addressing the

cosmological constant (Postulate 7) and the emergence of time's arrow (Postulate

8).

The categorical formalism provides a natural language for expressing these postulates,

with categories representing structures, functors de�ning mappings between structures,

and natural transformations encoding dynamical principles. This framework enables

the rigorous formulation of background independence and discrete covariance, while

also facilitating the transition to continuous space-time in appropriate limits.

From these axiomatic foundations, the subsequent sections will develop the

detailed mathematical apparatus and derive physical consequences, including concrete

predictions that can be experimentally tested.
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5. Mathematical Formalism

This section develops the mathematical apparatus of MCIMES, beginning with the basic

algebraic structure and building toward emergent geometric properties through category

theory and information-theoretic measures.

5.1. Abstract Algebraic Structure

The fundamental structure in MCIMES is an interaction graph G = (V,E) representing

quantum subsystems and their informational relations:

• V � set of vertices corresponding to quantum subsystems

• E ⊂ V × V � set of edges representing informational interactions

This structure does not presuppose any embedding in physical space-time, making the

model background-independent at its foundation. To illustrate this concept: traditional

physical theories begin with particles in space-time, whereas MCIMES begins with

abstract informational relationships from which space-time itself emerges.

For each vertex i ∈ V , we de�ne an elementary algebraic subspace Hi as an abstract

Hilbert space with inner product ⟨·, ·⟩i : Hi ×Hi → C [118].

The composite algebraic space for the entire system is de�ned as the tensor product of

elementary subspaces:

HG =
⊗
i∈V

Hi (10)

The global quantum state |Ψ⟩ ∈ HG is de�ned as a unit norm vector (⟨Ψ|Ψ⟩ = 1).

Alternatively, the state can be speci�ed by a density operator ρ̂ : HG → HG, where

ρ̂ = ρ̂† ≥ 0 and Tr(ρ̂) = 1 [81].

For a subset of vertices A ⊂ V , the reduced state ρ̂A is de�ned as the partial trace of

the global state ρ̂ over the complementary degrees of freedom:

ρ̂A = TrV \A(ρ̂) (11)

The operator algebra B(HG) consists of all bounded linear operators on HG. For each

subsystem i ∈ V , a local operator algebra B(Hi) is de�ned, acting non-trivially only on

Hi [20].

For each pair of interacting subsystems (i, j) ∈ E, an interaction operator is de�ned as:

T̂ij =
∑
α

Ôα
i ⊗ Ôα

j ⊗ IV \{i,j} (12)

where Ôα
i ∈ B(Hi), Ô

α
j ∈ B(Hj), and IV \{i,j} denotes the identity operator on all other

subspaces [59]. This form represents the most general pairwise interaction consistent

with quantum theory.
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5.2. Categorical Perspective

The algebraic structure can be elegantly represented using category theory, providing a

uni�ed mathematical framework that naturally incorporates the principle of background

independence.

5.2.1. Category Theory Basics In category theory, a category C consists of:

• Objects (denoted as Ob(C))

• Morphisms (or arrows) between objects

• A composition operation for morphisms that satis�es associativity

• Identity morphisms for each object

The interaction graph G = (V,E) can be viewed as a category CG, where:

• Objects are elements of V (quantum subsystems)

• Morphisms are connections in E (informational interactions)

• Composition represents transitive causal in�uence

• Identity morphisms represent self-reference of subsystems

5.2.2. Functors and Natural Transformations The connection between the abstract

categorical structure and quantum physics is established through functors that map the

structural categories to concrete quantum mathematical objects. A functor F : C → D

maps:

• Objects of C to objects of D

• Morphisms of C to morphisms of D, preserving composition and identities

Speci�cally, the quantization functor Q : CG → Hilb assigns Hilbert spaces to objects

and linear operators to morphisms [3].

Natural transformations represent mappings between functors. A natural transforma-

tion η : F ⇒ G between functors F,G : C → D consists of a family of morphisms

ηX : F (X) → G(X) for each object X in C such that for every morphism f : X → Y

in C, we have G(f) ◦ ηX = ηY ◦ F (f).

5.2.3. Functorial Representation of Informational Measures To rigorously de�ne

quantum-informational measures within the categorical framework, MCIMES introduces

a functorial representation linking the monoidal category CA to the category of real

numbers, R. This is formalized through a functor:

I : CA → R, I(i) = S(ρ̂i), I(fij) = I(i : j) (13)
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where fij is a morphism representing informational interactions between subsystems

i, j ∈ V , S(ρ̂i) denotes the von Neumann entropy, and I(i : j) represents mutual

information. This functor ensures that informational quantities remain invariant under

automorphisms of the underlying category, thereby manifesting the required background

independence of MCIMES.

5.2.4. Monoidal Categories and Tensor Networks A monoidal category is a category

C equipped with:

• A bifunctor ⊗ : C×C → C (tensor product)

• A unit object I such that X ⊗ I ∼= I ⊗X ∼= X

• Associativity and unit isomorphisms satisfying coherence conditions

In MCIMES, tensor networks are elegantly described using this monoidal categorical

structure. Each vertex i ∈ V in the interaction graph is associated with a Hilbert space

Hi, and global states are represented as:

|Ψ⟩ ∈ HG =
⊗
i∈V

Hi (14)

These tensor networks can be formalized as diagrams in a monoidal category where:

• Objects represent Hilbert spaces

• Morphisms represent tensors (or linear maps)

• Tensor product ⊗ combines systems

• Composition connects tensors by contracting shared indices

More precisely, a tensor network state can be described categorically as a monoidal

functor:

T : CA → Hilb, T (i) = Hi, T (fij) = T̂ij (15)

With local operators Ôα
i acting non-trivially on subsystems, these tensor network

representations naturally incorporate locality and entanglement structures characteristic

of quantum-informational relations. This categorical perspective provides a powerful

framework for representing and manipulating highly entangled quantum states and their

evolution [28], particularly for systems with many degrees of freedom.

5.2.5. Discrete Covariance as 2-Morphisms The principle of discrete covariance

(Postulate 6) can be formulated using 2-categories, where:

• Objects are graph vertices (subsystems)

• 1-morphisms are paths of informational interactions
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• 2-morphisms represent transformations between di�erent evolutionary paths

This 2-categorical structure formalizes the notion that di�erent sequences of local

transformations yielding the same �nal con�guration are physically equivalent. If two

1-morphisms (evolutionary paths) f and g are connected by a 2-morphism α : f ⇒ g,

then they produce physically equivalent results [10].

This categorical framework allows us to express background independence and discrete

covariance in a mathematically rigorous way, providing a formal foundation for the

emergence of space-time from quantum information.

5.3. Information Measures

Information measures form the foundation for quantifying relationships between

quantum subsystems and de�ning emergent geometric properties.

5.3.1. Entropy Measures For a reduced state ρ̂A of a subsystem A ⊂ V , the von

Neumann entropy is de�ned as:

S(ρ̂A) = −Tr(ρ̂A ln ρ̂A) = −
∑
i

λi lnλi (16)

where λi are the eigenvalues of ρ̂A. This entropy quanti�es the information content of

the subsystem state, reaching maximum value for maximally mixed states and zero for

pure states [115].

The Rényi entropy of order α generalizes the von Neumann entropy:

Sα(ρ̂) =
1

1− α
lnTr(ρ̂α) (17)

In the limit α→ 1, the Rényi entropy converges to the von Neumann entropy.

5.3.2. Correlation Measures The mutual information between two subsystems A,B ⊂
V is de�ned as:

I(A : B) = S(ρ̂A) + S(ρ̂B)− S(ρ̂A∪B) (18)

This measure quanti�es correlations between subsystems. When A and B are completely

uncorrelated, their mutual information is zero; when perfectly correlated, their mutual

information equals their individual entropies [31].

The conditional mutual information is de�ned as:

I(A : B|C) = S(ρ̂A∪C) + S(ρ̂B∪C)− S(ρ̂A∪B∪C)− S(ρ̂C) (19)

This measures the correlation between A and B given knowledge of subsystem C, playing

an important role in understanding the information structure of tripartite systems [126].
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Relative entropy, which quanti�es the "distance" between quantum states, is de�ned as:

D(ρ̂||σ̂) = Tr(ρ̂ ln ρ̂− ρ̂ ln σ̂) (20)

This measure plays a crucial role in de�ning the cosmological constant in MCIMES

(Postulate 7).

5.4. Emergent Canonical Operators and Information Patterns

At the fundamental level, quantum information structures manifest through canonical

operators p̂
(p)
i , q̂

(p)
i , associated with informational patterns of di�erent degrees p. These

patterns represent collective quantum-informational correlations between subsystems.

Explicitly, canonical operators are introduced as:

(Ô0
i )

(p) = ip̂
(p)
i (21)

(Ôk
i )

(p) = q̂
k(p)
i , k = 1, 2, 3 (22)

Operators p̂
(p)
i and q̂

(p)
i play a dual role analogous to momentum and position, re�ecting

complementary informational variables. The informational metric emerges naturally

from correlations of these canonical operators, thus connecting abstract informational

patterns directly to the emergent metric structure of space-time:

gµν(x) =
∑
i,j

2∑
p,q=0

c
(p,q)
ij (x)⟨Ψ|(Ôµ

i )
(p) ⊗ (Ôν

j )
(q)|Ψ⟩ (23)

5.5. Information Distance and Emergent Metric

The information distance between subsystems quanti�es how "far apart" two subsystems

are based on their quantum correlations. Subsystems sharing strong correlations are

informationally "close," while those with weak correlations are "distant."

5.5.1. De�nition and Properties Mathematically, the information distance between

subsystems i and j is de�ned as:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρ̂i)S(ρ̂j)

)
(24)

provided that I(i : j) > 0 and S(ρ̂i), S(ρ̂j) > 0 [129].

In the thermodynamic limit (|V | → ∞), this information distance dI satis�es the axioms

of a metric:

(i) Non-negativity: dI(i, j) ≥ 0

(ii) Identity of indiscernibles: dI(i, j) = 0 ⇐⇒ i = j
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(iii) Symmetry: dI(i, j) = dI(j, i)

(iv) Triangle inequality: dI(i, k) ≤ dI(i, j) + dI(j, k)

5.5.2. Metric Operator The metric operator D̂µν on the graph G = (V,E) has the

form:

D̂µν =
∑
i,j∈V

2∑
p,q=0

c
(p,q)
ij (Ôµ

i )
(p) ⊗ (Ôν

j )
(q) (25)

where c
(p,q)
ij are coe�cients determined by quantum correlations, and the operators

(Ôµ
i )

(p) correspond to the canonical operators de�ned in Section 5.4. This formulation

ensures the correct signature of the emergent metric, as will be demonstrated in Section

7 [22].

5.5.3. Emergent Metric Tensor The emergent metric is de�ned as the quantum

expectation value of the metric operator:

gµν(x) = ⟨D̂µν(x)⟩ = ⟨Ψ|D̂µν(x)|Ψ⟩ (26)

This provides the crucial link between quantum correlations and geometric structure,

showing how space-time metric properties can emerge from purely quantum-

informational relations [112].

5.6. Information Loss Functional

The information loss functional L(G) serves as the central dynamical principle in

MCIMES and quanti�es how much information about global correlations becomes

inaccessible when a system is divided into subsystems.

5.6.1. De�nition and Mathematical Properties

L(G) =
∑
i∈V

S(ρ̂i)− S(ρ̂) (27)

This functional has several important properties:

• Non-negativity: L(G) ≥ 0, with equality if and only if ρ̂ is a product state

• Monotonicity under re�nement of partitions

• Additivity for independent subsystems

• Invariance under local unitary transformations

In the class of physically admissible information functionals, only a functional of the

form L(G) = α
(∑

i∈V S(ρ̂i)− S(ρ̂)
)
, where α > 0 is a positive constant, satis�es these

properties simultaneously [67].
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5.6.2. Categorical Formulation From a categorical perspective, the information loss

functional can be expressed as a natural transformation between functors:

L = Tr ◦ (S ◦ Plocal − S ◦ Pglobal) ◦ S (28)

where:

• S : QProc → QState is a functor mapping from the category of quantum processes

to the category of quantum states

• Plocal is a functor projecting global states to collections of local states

• Pglobal is the identity functor on global states

• S assigns entropy to states as a natural transformation

• Tr is a functor computing the alternating sum of components

This categorical formulation highlights how the functional naturally emerges from

the interplay between local and global descriptions of quantum systems, making it a

fundamental construct rather than an ad hoc introduction [28].

5.7. Topological Aspects and Betti Numbers

An important aspect of the mathematical formalism is the topological structure of the

interaction graph, characterized by Betti numbers.

5.7.1. De�nition of Betti Numbers For a graph G = (V,E) considered as a simplicial

complex, the Betti numbers bp count the number of p-dimensional "holes" in the

structure [49]:

• b0 � number of connected components

• b1 � number of independent cycles (1-dimensional holes)

• b2 � number of 2-dimensional cavities

More formally, the p-th Betti number bp is the rank of the p-th homology group Hp(X),

which captures the p-dimensional holes in a topological space X.

5.7.2. Correlation Complex In MCIMES, a correlation complex Kψ(θc) is constructed

from the interaction graph, where:

• Vertices are quantum subsystems

• A k-simplex is formed by k + 1 subsystems with mutual information exceeding a

threshold θc
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The Betti numbers of this correlation complex characterize the topological structure of

quantum correlations and play a crucial role in determining physical properties of the

emergent space-time.

5.7.3. Topological Factors in Physical Observables The Betti numbers directly

in�uence the operator of the metric through the topological factor:

Ftop = 1−
3∑

k=0

bk
|V |

· γk
(
ξpq
L

)k
(29)

where γk are coe�cients related to the dimension of space, ξpq are correlation lengths,

and L is the characteristic size of the system [60].

5.7.4. Topological Invariants and Quantum-Informational Measures Crucially, the

categorical structure also incorporates topological invariants�particularly Betti

numbers bp�of the interaction graph. These invariants encode global connectivity

patterns of quantum correlations and directly a�ect informational quantities. For

instance, quantum metric �uctuations scale according to:

δgµν
|gµν |

=
κ√
|V |

(30)

with the dimensionless factor κ explicitly dependent on Betti numbers:

κ =

√√√√∑
p,q

wpq
ξdpq
Ld

kBT

∆Epq
F (b1, b2, . . . , bd) (31)

Here, F (b1, b2, . . . , bd) is a universal topological factor determined by the Betti numbers,

ξpq are correlation lengths between informational patterns, and ∆Epq denotes energy

gaps of quantum excitations. Thus, topological invariants quantitatively shape emergent

physical properties within MCIMES.

5.8. Tensor Networks and MCIMES

Tensor networks provide a powerful mathematical framework for representing and

manipulating quantum states with complex entanglement structures. In MCIMES,

tensor networks o�er an e�cient representation of the quantum correlation structure

that gives rise to emergent space-time.

5.8.1. Tensor Network Representation A tensor network representation of a quantum

state |Ψ⟩ consists of:

• Tensors (multi-dimensional arrays) located at vertices
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• Indices (legs) connecting tensors, representing contractions

• Bond dimensions indicating the amount of information shared between tensors

Common tensor network architectures include:

• Matrix Product States (MPS) for one-dimensional systems

• Projected Entangled Pair States (PEPS) for higher-dimensional systems

• Multi-scale Entanglement Renormalization Ansatz (MERA) for critical systems

5.8.2. Connection to Emergent Geometry Tensor networks naturally encode geometric

information through their connectivity structure. The entanglement entropy of a region

in a tensor network follows an area law, similar to the holographic entanglement entropy

in AdS/CFT correspondence:

S(A) =
Area(γA)

4G
+ corrections (32)

where γA is the minimal surface in the bulk that is homologous to the boundary region

A.

In MCIMES, the tensor network structure provides a natural framework for

understanding how space-time geometry emerges from quantum correlations. The

connectivity of the tensor network, determined by the information loss functional, gives

rise to the metric structure of the emergent space-time [110].

5.8.3. Tensor Networks and Discrete Covariance The principle of discrete covariance

(Postulate 6) can be implemented in the tensor network framework through gauge

transformations that preserve physical quantities. These transformations correspond

to local manipulations of the tensor network that do not a�ect observable properties,

analogous to di�eomorphisms in general relativity.

The tensor network formalism thus provides a concrete mathematical implementation

of the abstract categorical framework of MCIMES, o�ering computational tools for

simulating and analyzing the emergence of space-time from quantum information.

This comprehensive mathematical formalism establishes the foundation for deriving

physical consequences from quantum-informational principles. The following sections

will explore how this formalism leads to the emergence of space-time geometry, the

derivation of Einstein's equations in the appropriate limit, and speci�c quantitative

predictions that can be tested experimentally.
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6. Variational Principle of Minimal Information Loss

The variational principle of minimal information loss forms the central dynamical

mechanism in MCIMES, providing a criterion that determines the optimal structure

of quantum correlations from which space-time emerges. This principle suggests that

physical systems evolve toward con�gurations that minimize the loss of quantum

information that occurs when dividing the global system into subsystems [115, 70].

6.1. Explicit Formulation of the Variational Principle

The dynamics of the MCIMES model is governed by a rigorously de�ned variational

principle�the Principle of Minimal Information Loss. Explicitly, the evolution and

optimal con�guration of the quantum-informational graph structure G = (V,E) are

obtained by extremising a speci�cally constructed information-loss functional:

L(G) =
∑
i∈V

S(ρ̂i)− S(ρ̂) (33)

where S(ρ̂i) is the von Neumann entropy of subsystem i, and S(ρ̂) is the global entropy

of the state de�ned on the entire system.

Physically, the functional L(G) quanti�es the total information loss arising due

to decomposition of the global quantum state into subsystems and their mutual

informational interactions. Thus, the principle can be succinctly stated as:

Gopt = argmin
G

L(G) (34)

6.2. Conditions of Optimality and Discrete Euler�Lagrange Equations

To identify the optimal con�guration explicitly, we perform a variation of the functional

L(G) with respect to in�nitesimal changes in the graph structure:

δL(G) =
δ

δG

[∑
i∈V

S(ρ̂i)− S(ρ̂)

]
= 0 (35)

The variation yields discrete Euler�Lagrange-type equations of the form:

δS(ρ̂)

δG
=
∑
i∈V

δS(ρ̂i)

δG
(36)

Moreover, to account for additional constraints, such as �xed complexity or conserved

total energy, the variational principle is generalized via Lagrange multipliers λ1, λ2,

giving rise to extended variational conditions:
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δ

δG
[L(G) + λ1C(G) + λ2E(G)] = 0 (37)

where C(G) represents a complexity functional enforcing sparsity or locality constraints,

and E(G) denotes a suitable energy functional constraining the total energy content of

the system.

6.3. Categorical Interpretation of the Variational Principle

Within the categorical formalism, the functional L(G) and its variations can be naturally

interpreted through categorical structures. Speci�cally, the functional L de�nes a

functorial mapping from the category of graphs CA to the category of real numbers

R:

L : CA → R, L(G) =
∑
i∈V

S(ρ̂i)− S(ρ̂) (38)

Variations and optimization conditions are expressed categorically as natural

transformations between functors, characterising equivalence classes of optimal

evolutions. Two distinct evolutionary paths represented by functors F, F ′ : CA → Hilb

are categorically equivalent if there exists a natural isomorphism η : F ⇒ F ′ that leaves

the information-loss functional invariant:

L(F ) = L(F ′), for all categorically equivalent functors F, F ′ (39)

This ensures discrete di�eomorphism invariance and re�ects the background-

independent nature of MCIMES.

6.4. Fundamental Properties of the Information Loss Functional

The information loss functional exhibits several important mathematical properties that

reinforce its fundamental nature [67]:

(i) Non-negativity: For any quantum state ρ̂ and any partition of the system R, the

information loss functional is non-negative:

L(ρ̂, G,R) ≥ 0 (40)

with equality if and only if ρ̂ is a product of subsystem states: ρ̂ =
⊗

A∈R ρ̂A.

(ii) Monotonicity: For any two partitions R and R′ such that R′ is a �ner partition

(i.e., each element of R is a union of elements from R′):

L(ρ̂, G,R′) ≥ L(ρ̂, G,R) (41)
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This property re�ects the fact that �ner partitions typically lose more information

about global correlations.

(iii) Additivity: For bipartite systems in pure states, the information loss across the

bipartition equals twice the entanglement entropy:

L(ρ̂AB) = 2S(ρ̂A) = 2S(ρ̂B) (42)

where ρ̂AB is a pure state of the combined system.

(iv) Invariance: The functional remains invariant under local unitary transformations,

re�ecting the fact that such transformations preserve the correlation structure [89]:

L

((⊗
A∈R

UA

)
ρ̂

(⊗
A∈R

U †
A

)
, G,R

)
= L(ρ̂, G,R) (43)

These properties establish the information loss functional as a well-behaved measure

of correlation complexity in quantum systems. Moreover, it can be proven that in the

class of physically admissible information functionals, only a functional of the form

L(G) = α
(∑

i∈V S(ρ̂i)− S(ρ̂)
)
, where α > 0 is a positive constant, satis�es all these

properties simultaneously [120].

6.5. Illustrative Example of Information Loss Minimization

To illustrate the principle of minimal information loss, consider a simple system of three

qubits with initial state:

|Ψinit⟩ =
1√
3
(|000⟩+ |110⟩+ |111⟩) (44)

The reduced density matrices for individual qubits are:

ρ̂1 =
1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1| (45)

ρ̂2 =
1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1| (46)

ρ̂3 =
2

3
|0⟩⟨0|+ 1

3
|1⟩⟨1| (47)

The entropies are S(ρ̂1) = S(ρ̂2) = S(ρ̂3) = 0.637 bits, while the global state is pure, so

S(|Ψinit⟩⟨Ψinit|) = 0. The initial information loss is:

L(|Ψinit⟩) = S(ρ̂1) + S(ρ̂2) + S(ρ̂3) = 1.911 bits (48)
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Through unitary evolution constrained by energy conservation, the state evolves toward

the GHZ-like state:

|Ψopt⟩ =
1√
2
(|000⟩+ |111⟩) (49)

For this state, the reduced matrices are all maximally mixed: ρ̂1 = ρ̂2 = ρ̂3 =
1
2
I, with

entropies S(ρ̂1) = S(ρ̂2) = S(ρ̂3) = 1 bit. The information loss is:

L(|Ψopt⟩) = 3 bits (50)

However, if we consider the reduced entropy of pairs of qubits rather than individual

qubits, the GHZ state yields:

Lpairs(|Ψopt⟩) = S(ρ̂12) + S(ρ̂23) + S(ρ̂13)− S(|Ψopt⟩⟨Ψopt|) = 3 bits (51)

whereas the W state |W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩) would yield:

Lpairs(|W⟩) = 3.42 bits (52)

This demonstrates how di�erent partitioning schemes can favor di�erent correlation

structures as optimal, illustrating the rich structure of the information loss landscape

[119].

6.6. Physical Interpretation and Example Solutions

Physically, the Principle of Minimal Information Loss implies that the emergent space-

time con�guration naturally tends toward maximal preservation of global quantum

information coherence.

For instance, explicit solutions show that graph con�gurations with three-dimensional

local structures emerge as optimal due to their minimal informational losses, thus

providing a natural explanation for observed dimensionality. Another concrete result

obtained from variational conditions is the emergence of Lorentzian metric signatures

as con�gurations minimising information dissipation in the thermodynamic limit.

Moreover, speci�c forms of the information-loss functional provide concrete predictions

for cosmological parameters. For example, the theoretical prediction for the cosmological

constant:

Λtheor =
1

2κ
TrH [D(ρ̂||ρ̂ref)] (53)



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 24

naturally arises from this variational approach, matching observational constraints

without �ne-tuning.

6.7. Entropic Time and Its Relation to Information Loss

The concept of entropic time (introduced in Postulate 3) emerges naturally from the

dynamics governed by the information loss functional. For a system evolving along a

trajectory that minimizes information loss, the entropic time parameter can be related

to the rate of change of the functional [85]:

dtentr
dt

= F

(
−δL(G)

δt

)
(54)

where δL(G)
δt

is the variational derivative of the information loss functional with respect

to parametric time, and F (x) is a smoothing function de�ned as:

F (x) =
x+ |x|

2(1 + x2)
+ ε

x+ |x|
2

(55)

with parameter ε = κ · |V |−1/2 and coe�cient κ ≈ 0.1.

This relationship demonstrates how the �ow of entropic time aligns with the direction of

decreasing information loss. The arrow of time emerges naturally as the system evolves

toward con�gurations with lower information loss, providing a fundamental link between

temporal direction and informational dynamics [30, 95].

For systems with su�cient complexity (|V | > Ncrit), the entropic time derivative is

positive with overwhelming probability:

P

(
dtentr
dt

< 0

)
≤ e−α|V | (56)

where α > 0 is a constant depending on interaction intensity. This exponentially small

probability of entropic time reversal explains the robustness of the macroscopic arrow

of time in large systems [27].

6.8. Connection to Classical Physics

In the classical limit (ℏ → 0), the principle of minimal information loss shows

mathematical connections to established physical principles [78]:
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6.8.1. Relation to the Principle of Least Action For classical systems, the principle of

minimal information loss is mathematically equivalent to the principle of least action.

This can be demonstrated by considering a system with Hamiltonian H = p2

2m
+V (q) in

the semiclassical limit.

For a distribution P (α, t) = δ(α − αt) concentrated on the classical trajectory αt =

(q(t), p(t)), the Liouville equation produces:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(57)

These Hamilton equations are equivalent to the principle of least action:

δS = δ

∫ t2

t1

[pq̇ −H(q, p)]dt = 0 (58)

which, for the standard Hamiltonian, yields the familiar form of the Lagrangian action:

δ

∫ t2

t1

L(q, q̇)dt = 0 (59)

where L(q, q̇) = mq̇2

2
− V (q) is the classical Lagrangian [63].

6.8.2. Emergence of Field Equations In the continuum limit, applying the variational

principle to the information loss functional leads to equations structurally similar to

Einstein's �eld equations [54]:

Gµν = 8πGTµν (60)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor.

This connection can be established by expressing the information loss functional in the

continuum limit as:

L[g] =

∫
d4x
√

|g|
(
αR + β + Lmatter(gµν , ϕ, ∂ϕ) +O(l2PR

2)
)

(61)

where R is the scalar curvature, α and β are constants, and Lmatter is the Lagrangian

density for matter �elds. Variation of this functional with respect to the metric gµν
yields the Einstein �eld equations with appropriate identi�cation of constants (α = 1

16πG
,

β = − Λ
8πG

) [84].
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6.9. Topological Constraints and Quantum Metric Fluctuations

Lastly, the variational principle intrinsically incorporates topological constraints.

Optimal con�gurations inherently minimize �uctuations of the emergent metric,

characterised quantitatively by topological invariants, such as Betti numbers. The

universal topological dependence of quantum metric �uctuations is captured through

the factor κ:

κ =

√√√√∑
p,q

wpq
ξdpq
Ld

kBT

∆Epq
F (b1, b2, . . . , bd) (62)

explicitly linking topological complexity to informational coherence and stability. Thus,

the variational principle not only determines optimal local geometry but also shapes

global topological features of emergent space-time.

6.10. Uni�ed Perspective: Information, Action, and Entropy

The principle of minimal information loss, the principle of least action, and the second

law of thermodynamics can be viewed as manifestations of a single underlying principle:

the minimization of information loss under appropriate constraints [56].

This perspective suggests that fundamental physical laws might be understood as

consequences of optimal information processing rather than as independent postulates.

From this viewpoint, space-time geometry and gravitational dynamics emerge as the

optimal structure for organizing quantum information, providing a deep connection

between information theory and physical law [116, 112].

The variational principle of minimal information loss thus serves as the conceptual and

mathematical bridge connecting the abstract algebraic structure of MCIMES to familiar

physical concepts like space, time, and gravity. The following section will explore how

this principle leads to the emergence of speci�c geometric structures and gravitational

dynamics.

7. Emergence of Space-Time and Gravity

7.1. From Discrete Graph Structure to Smooth Manifold

The continuous space-time manifold with a Lorentzian metric emerges naturally

in the thermodynamic limit (|V | → ∞) of the discrete quantum-informational

interaction graph. Speci�cally, the emergent metric tensor is constructed explicitly

from informational correlations between subsystems:

gµν(x) =
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|(Ôµ

i )
(p) ⊗ (Ôν

j )
(q)|Ψ⟩ (63)
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Under physically realistic conditions of local Hamiltonian interactions and positive

correlations, it is proven rigorously that this emergent metric tensor acquires a

Lorentzian signature (−,+,+,+) rather than a Euclidean one. Thus, the observed

Lorentzian geometry of classical space-time is not an arbitrary assumption, but a direct

consequence of quantum-informational correlations minimising information loss in large-

scale systems.

The abstract interaction graph G = (V,E) describes quantum subsystems and

their informational relations without assuming any pre-existing space-time structure.

From this purely algebraic foundation, geometric properties emerge through several

interconnected mechanisms.

First, information distances between quantum subsystems (de�ned in Section 5.4)

establish a metric structure. When subsystems share strong correlations, they are

informationally "close"; when correlations are weak, they are "distant." Formally, the

information distance is given by:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρ̂i)S(ρ̂j)

)
(64)

Second, the optimal con�guration of the interaction graph�one that minimizes the

information loss functional L(G) (Section 6)�exhibits speci�c geometric properties.

Numerical and analytical studies suggest that this optimization naturally yields a graph

embeddable in three-dimensional space with minimal metric distortion [76, 60]. This

provides a potential explanation for the three-dimensionality of physical space: this

dimensionality optimizes the balance between locality of interactions and information

capacity.

The transition from the discrete structure of the interaction graph to the continuous

manifold of classical general relativity occurs in the thermodynamic limit as the number

of subsystems approaches in�nity. This section formalizes the conditions under which

this transition produces a smooth, di�erentiable manifold with well-de�ned geometric

properties [108].

For an interaction graph G = (V,E) evolving to minimize the information loss

functional, the thermodynamic limit is de�ned as |V | → ∞ while maintaining: 1.

Bounded average degree of vertices (ensuring locality of interactions) 2. Consistent

correlation structure (speci�ed by correlation length ξ) 3. Speci�c topological properties

(characterized by Betti numbers bk)

In this limit, the metric structure derived from information distances converges to a

smooth tensor �eld on a di�erentiable manifold. The convergence rate is O(|V |−1/d),

where d is the emergent dimension of space [46].
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7.2. Emergent Causality and Entropic Arrow of Time

Within MCIMES, the causal structure itself emerges from quantum-informational

relations encoded by the partial ordering of events within the interaction graph. A

temporal ordering arises naturally from the growth of quantum entanglement and

mutual information, de�ning an entropic arrow of time. Explicitly, the causal relation

between events a ⪯ b is represented categorically as morphisms in the causal category

Ccaus, with transitive composition re�ecting causal transitivity.

Moreover, the global quantum state |Ψ⟩ spontaneously develops internal "clock"

subsystems according to the Page�Wootters mechanism. These clock subsystems

measure the internal entropic evolution of the system:

|Ψ⟩ =
∑
t

|t⟩C ⊗ |ψ(t)⟩S (65)

where |t⟩C represents clock subsystem states, and |ψ(t)⟩S the corresponding states of

the remainder of the system. Thus, the emergent causal and temporal structure results

entirely from informational coherence and entropy growth.

The causal structure of space-time�the relationship determining which events can

in�uence others�also emerges from quantum correlation patterns. On the set of events

(graph elements) E, a partial order relation (E,⪯) is de�ned, where a ⪯ b means that

event a causally precedes event b or coincides with it [18].

For an interaction graph G = (V,E) evolving according to the principle of minimal

information loss:

(i) The causal order relation ⪯ induces on G the structure of a partially ordered set.

(ii) For any vertex v ∈ V , the set of all events causally preceding v forms the 'past' of

event v, denoted J−(v):

J−(v) = {u ∈ V | u ⪯ v} (66)

(iii) The set of all events for which v is a causal predecessor forms the 'future' of event

v, denoted J+(v):

J+(v) = {u ∈ V | v ⪯ u} (67)

In the categorical framework, this causal structure can be elegantly formulated using

the 2-category Graph2Cat introduced in Section 4.6. The objects (vertices) represent

quantum subsystems, 1-morphisms represent informational paths between subsystems,

and 2-morphisms represent transformations between di�erent potential evolutionary

paths [10, 11]. The causal ordering emerges from the composition structure of this

category, with composition of morphisms representing sequential causal in�uence.

This causal structure emerges in conjunction with entropic time. The direction of

entropic time, determined by the gradient of entanglement entropy, aligns with the
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causal ordering of events. In the thermodynamic limit, this structure converges to the

light-cone structure of Minkowski space-time for locally �at regions, with the speed of

information propagation limited by a maximum value identi�able as the speed of light

[85].

7.3. Emergence of Fundamental Particles and Interactions

Fundamental particles and �elds within MCIMES are understood as emergent collective

excitations of underlying quantum-informational patterns. Explicitly, localised

excitations on the interaction graph form stable patterns corresponding directly

to known particle species and their quantum numbers. Operators T̂ij, encoding

informational correlations, are shown to produce stable, localised solutions behaving as

quantised excitations. For instance, fermionic degrees of freedom naturally arise from

anti-symmetric informational patterns, while bosonic �elds correspond to symmetric

excitations of the graph structure.

Furthermore, gauge symmetries associated with the Standard Model emerge as

invariance properties under speci�c informational transformations of the categorical

structures. Thus, known physical particles and their interactions are derived explicitly

and categorically as stable minima of the informational variational functional introduced

previously.

7.4. Inevitability of Lorentzian Signature

A fundamental question in space-time emergence concerns the signature of the metric

tensor: why does nature select a Lorentzian signature (−,+,+,+) rather than a

Euclidean one (+,+,+,+)? In MCIMES, this signature is not assumed but emerges

naturally from the structure of quantum correlations [101, 117].

7.4.1. Derivation of Lorentzian Signature The operator of the metric D̂µν(x) on the

interaction graph, introduced in Equation 25, can be represented as:

D̂µν(x) =
∑
i,j∈V

2∑
p,q=0

c
(p,q)
ij (x)(Ôµ

i )
(p) ⊗ (Ôν

j )
(q) (68)

where c
(p,q)
ij (x) > 0 are positive coe�cients determined by the correlation structure, and

(Ôµ
i )

(p) are operators corresponding to information patterns of degree p.

For physically meaningful interpretation, we de�ne these operators as:

1. Temporal component: (Ô0
i )

(p) = ip̂
(p)
i (imaginary unit multiplied by the

momentum operator) 2. Spatial components: (Ôk
i )

(p) = q̂
k(p)
i for k = 1, 2, 3

(coordinate operators)
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The emergent metric tensor is obtained as the quantum expectation value:

gµν(x) = ⟨Ψ|D̂µν(x)|Ψ⟩ (69)

Calculating the components of this metric:

1. Temporal component g00:

g00(x) = ⟨Ψ|D̂00(x)|Ψ⟩ (70)

=
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|ip̂(p)i ⊗ ip̂

(q)
j |Ψ⟩ (71)

= −
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|p̂(p)i ⊗ p̂

(q)
j |Ψ⟩ (72)

2. Spatial components gkk (no summation over k):

gkk(x) = ⟨Ψ|D̂kk(x)|Ψ⟩ (73)

=
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|q̂k(p)i ⊗ q̂

k(q)
j |Ψ⟩ (74)

A key result for quantum systems with local interactions is that correlation functions

between operators of the same type exhibit positive signs [65]:

⟨Ψ|p̂(p)i ⊗ p̂
(q)
j |Ψ⟩ > 0 (75)

⟨Ψ|q̂k(p)i ⊗ q̂
k(q)
j |Ψ⟩ > 0 (76)

This positivity is not an arbitrary assumption but a mathematical consequence for

quantum systems with local interactions of a ferromagnetic type. In systems where

the ground state minimizes energy by aligning neighboring degrees of freedom, these

correlations are positive. This can be rigorously proven by analyzing the structure of

the ground state of local Hamiltonians with positive interaction terms.

Since c
(p,q)
ij (x) > 0 and correlation functions are positive, we obtain:

g00(x) = −
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|p̂(p)i ⊗ p̂

(q)
j |Ψ⟩ < 0 (77)

gkk(x) =
∑
i,j

∑
p,q

c
(p,q)
ij (x)⟨Ψ|q̂k(p)i ⊗ q̂

k(q)
j |Ψ⟩ > 0 (78)

For the mixed components g0k and gkl (for k ̸= l), in systems with appropriate

symmetries (such as translation and rotation invariance in the thermodynamic limit),

these components vanish:

g0k(x) ≈ 0, gkl(x) ≈ 0 for k ̸= l (79)
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Therefore, in the thermodynamic limit, the metric tensor takes the diagonal form:

gµν(x) ≈ diag(−|g00|, |g11|, |g22|, |g33|) (80)

which precisely corresponds to the Lorentzian signature (−,+,+,+).

7.5. Quantum Metric Fluctuations and Topological Corrections

At the quantum level, metric �uctuations become fundamental, re�ecting underlying

quantum uncertainty of the emergent geometry. Quantum �uctuations δgµν are formally

de�ned through the variance of the metric operator D̂µν :

δgµν =
√
⟨Ψ|D̂2

µν |Ψ⟩ − ⟨Ψ|D̂µν |Ψ⟩2 (81)

Quantitatively, these �uctuations scale universally with the number of subsystems |V |
and are explicitly tied to topological invariants, notably Betti numbers bp:

δgµν
|gµν |

=
κ√
|V |

, κ =

√√√√∑
p,q

wpq
ξdpq
Ld

kBT

∆Epq
F (b1, b2, . . . , bd) (82)

Such universal scaling implies intrinsic, measurable corrections to classical gravitational

predictions, linking topological and quantum-informational aspects directly to

observable cosmological and astrophysical phenomena.

7.6. Dimensional Emergence and Stability

A key feature of MCIMES is that it provides a mechanism for the emergence of the

speci�c dimensionality of space-time. Unlike theories that assume dimensionality a

priori, MCIMES examines how the dimensionality of emergent space is determined by

the principle of minimal information loss [111, 24].

The information loss functional for a d-dimensional spatial con�guration scales as:

Ld(G) ∼ d · |V |1−
1
d (83)

For systems with a �xed number of degrees of freedom |V | and subject to physical

constraints, this functional exhibits a minimum near d = 3 for su�ciently large |V |. This
suggests that three-dimensional space emerges naturally as the optimal con�guration for

organizing quantum information under physical constraints.

The stability of this three-dimensional structure can be demonstrated by showing that

small perturbations to the interaction graph that would alter the e�ective dimensionality

increase the information loss. This dimensional stability theorem establishes that once
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three-dimensional space emerges, it remains stable against local perturbations in the

interaction pattern.

The emergence of precisely three spatial dimensions is not an ad hoc assumption but

a mathematical consequence of minimizing information loss under physical constraints.

This provides a potential explanation for the observed dimensionality of our universe:

three-dimensional space represents the optimal structure for organizing quantum

information.

7.7. Connection to General Relativity and Emergence of Einstein's Equations

Finally, Einstein's �eld equations naturally emerge as e�ective macroscopic conditions

minimising the informational loss functional in the continuum limit. Formally, taking

the limit as the number of subsystems tends to in�nity:

lim
|V |→∞

δL(G)

δgµν
= 0 (84)

directly yields Einstein's equations:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (85)

with energy-momentum tensor Tµν emerging from variations in the informational content

of matter �elds. The cosmological constant Λ appears naturally as a consequence of

relative entropy between the global state and a vacuum reference state, explaining its

observed smallness without �ne-tuning.

In the continuum limit, minimization of the information loss functional leads to

equations isomorphic to Einstein's �eld equations [54, 84]:

Gµν = 8πGTµν (86)

where Gµν is the Einstein tensor, and Tµν is the energy-momentum tensor.

This connection can be established by applying the variational condition:

δ

δG
[L(G) + λ1C(G) + λ2E(G)] = 0 (87)

where C(G) and E(G) are functionals characterizing the complexity and energy

properties of the graph, and λ1 and λ2 are Lagrange multipliers.

In the continuum limit, the information loss functional takes the form:

L[g] =

∫
d4x

√
−g
(
αR + β + Lmatter +O(l2PR

2)
)

(88)

where R is the scalar curvature, α and β are constants related to the gravitational

coupling and cosmological constant, and Lmatter represents the contribution of matter

�elds.
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Variation of this functional with respect to the metric gµν yields:

δL[g]

δgµν
=

√
−g (αGµν + βgµν + Tµν) (89)

Setting this variation to zero and identifying constants (α = 1
16πG

, β = − Λ
8πG

), we obtain

Einstein's �eld equations with cosmological constant:

Gµν + Λgµν = 8πGTµν (90)

This derivation shares conceptual similarities with Jacobson's thermodynamic derivation

of Einstein's equations [55], but starts from a more fundamental quantum-informational

foundation.

Quantum corrections to Einstein's equations naturally emerge in this framework:

Gµν = 8πGTµν +
1√
|V |

Q(1)
µν +

1

|V |
Q(2)
µν +O

(
1

|V |3/2

)
(91)

where Q
(1)
µν and Q

(2)
µν are tensors of �rst- and second-order quantum corrections,

respectively, and |V | is the number of quantum degrees of freedom.

These corrections become signi�cant only at Planck scales, explaining why classical

general relativity works e�ectively at macroscopic scales. The detailed derivation of

these corrections involves sophisticated analysis of how discrete quantum structures

contribute to the continuum limit.

7.8. Physical Interpretation of Emergent Gravity

The emergence of gravity in MCIMES di�ers conceptually from other approaches.

Rather than quantizing a classical gravitational �eld or postulating gravitons as force

carriers, gravity emerges as a manifestation of the correlation structure of quantum

subsystems [116].

In this view, gravity is not a fundamental force but a consequence of how quantum

information is organized. Gravitational attraction arises from the tendency of the system

to minimize information loss, which favors con�gurations where strongly correlated

subsystems are informationally "close" [75].

Mass and energy a�ect this correlation structure by increasing the local information

content, thereby in�uencing the emergent geometry according to Einstein's equations.

This provides a quantum-informational interpretation of the equivalence principle: mass

and energy are informationally equivalent in how they modify correlation patterns.

This perspective o�ers new insights into long-standing problems in quantum gravity.

The non-renormalizability of gravity in quantum �eld theory might be understood
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as attempting to quantize an already emergent phenomenon. Black hole information

paradoxes can be approached through the lens of how information is preserved across

apparent horizons in the fundamental correlation structure [79].

The emergence of space-time and gravity from quantum information represents a

signi�cant conceptual shift in our understanding of fundamental physics, suggesting that

the fabric of reality may be woven from information rather than matter or geometry.

The next section examines the speci�c physical consequences and predictions of this

framework.

8. Physical Consequences and Predictions

MCIMES yields several quantitative predictions that can be tested through cosmological

observations, astrophysical measurements, and laboratory experiments. This section

presents these predictions in order of near-term to long-term experimental veri�ability.

8.1. Dark Energy Equation of State

The most immediately testable prediction of MCIMES concerns the dark energy

equation of state parameter:

w0 = −1 +
c

3|V |1/3
= −1 +

2.74± 0.12

3 · (1092)1/3
= −0.97± 0.01 (92)

where |V | ≈ 1092 is the number of fundamental degrees of freedom in the observable

Universe, and c = 2.74± 0.12 is a topological constant related to the Betti numbers of

the correlation complex.

This value di�ers signi�cantly from w = −1 predicted by the standard ΛCDM model

with a pure cosmological constant. The deviation by 0.03 is within reach of next-

generation cosmological observations expected by 2030-2035.

The prediction derives directly from the information-theoretic foundation of MCIMES.

The parameter c represents topological properties of the interaction graph, while |V |
corresponds to the e�ective number of fundamental degrees of freedom in the observable

universe. Unlike many dark energy models, this prediction contains no free parameters

adjusted to match observations.

The state parameter exhibits a speci�c redshift dependence:

w(z) = −1 +
αβV β−1

0 (1− β)(1 + z)−3(β−1)

k + αβV β−1
0 (1 + z)−3(β−1)

(93)

with β = 1 − c
|V |1/d = 0.99 ± 0.003. The model predicts w approaching −1 at higher

redshifts:
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• w(z = 0.5) = −0.98± 0.01

• w(z = 1.0) = −0.99± 0.01

• w(z = 2.0) = −0.995± 0.005

This redshift evolution provides an additional testable signature distinct from many

competing dark energy models [7, 51].

8.2. Cosmological Constant Value

MCIMES proposes an information-theoretic origin for the cosmological constant,

addressing one of the most signi�cant �ne-tuning problems in physics. Within this

framework, the cosmological constant is de�ned as a measure of quantum relative

entropy between the current global quantum state and a reference vacuum state:

Λ =
1

2κ
TrH[D(|ψ⟩⟨ψ| || |ψref⟩⟨ψref|)] (94)

whereD(ρ̂||σ̂) = Tr(ρ̂ ln ρ̂−ρ̂ ln σ̂) is quantum relative entropy, |ψ⟩ is the global quantum
state, |ψref⟩ =

⊗
i∈V |0i⟩ is the reference factorized state, and κ =

ℓ2P
8πG

[83].

The cosmological constant value emerges as the product of two factors:

Λ ∼ (1− β) ·Ne� ∼ 5.9× 10−31 · 4.3× 10−93 ∼ 10−123 (95)

where:

• (1− β) ≈ 5.9× 10−31 represents the deviation from perfect linearity in information

structure, related to space-time topology

• Ne� ≈ 4.3× 10−93 represents the e�ective number of correlated degrees of freedom

• β = 1− c
|V |1/d is a parameter determined by the topological constant c = 2.74±0.12

and the number of degrees of freedom |V | ≈ 1092

The topological origin of the constant c can be traced to the structure of the correlation

complex. In algebraic topology, a correlation complex Kψ(θc) is constructed from the

interaction graph, where k-simplices correspond to groups of k + 1 strongly correlated

subsystems [38]. The Betti numbers bp count the number of p-dimensional "holes" in

this complex.

The constant c is precisely de�ned as:

c = (d− 1) · d · Γ(d/2)
πd/2

·
∑

p(−1)p · p · bp(Kψ(θc))∑
p bp(Kψ(θc))

(96)
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where d = 3 is the dimension of physical space. This formula connects the value of dark

energy to the topological invariants of the quantum correlation structure.

The theoretically predicted value of the cosmological constant is:

Λtheor = (1.9± 0.7)× 10−123 (97)

in Planck units, which is consistent with the observed value Λobs ≈ 1.1× 10−123 [88].

This prediction is signi�cant because it addresses the cosmological constant problem

without �ne-tuning. The small value of Λ emerges naturally from the information

structure of the system rather than requiring precise adjustment of parameters. The

topological factors in the derivation re�ect the global connectivity properties of the

interaction graph, connecting microscopic quantum information to the large-scale

behavior of the universe [25].

8.3. Quantum Fluctuations of the Metric

MCIMES predicts speci�c properties for quantum �uctuations of the emergent metric.

The relative �uctuations in the metric decrease inversely proportional to the square root

of the number of elementary subsystems:

δgµν
gµν

∼ κ√
|V |

(98)

where κ is a dimensionless coe�cient determined by the type of state and structural

features of the interaction graph [41] This coe�cient κ can be explicitly expressed as:

κ =

√√√√ 2∑
p,q=0

wpq ·
ξdpq
Ld

· kBT
∆Epq

· F (b1, b2, ..., bd) (99)

where:

• wpq are weighting coe�cients for information patterns of degrees p and q

• ξpq are correlation lengths between patterns

• L is the characteristic size of the system

• ∆Epq are energy gaps for di�erent types of excitations

• F (b1, b2, ..., bd) is a topological factor depending on Betti numbers

The topological factor is explicitly given by:
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F (b1, b2, ..., bd) = 1 +
d∑

k=1

αk
bk

|V |k/d
(100)

with coe�cients:

αk =
(−1)k+1

k!
· Γ(d/2 + k/2)

Γ(d/2) · πk/2
(101)

The spectral density of these �uctuations follows a distinctive pattern:

S(ω) =
S0

ω
·

[
1 + β

(
ω

ω0

)2

− γ ln

(
ω

ω0

)
+O

((
ω

ω0

)4
)]−1/2

(102)

where:

• S0 =
κℏ√
|V |

is the amplitude of �uctuations

• ω0 = v
ξ
is the characteristic frequency, where v is the speed of information

propagation and ξ is the correlation length

• β = (d−1)2

2(2d−1)
= 0.18± 0.03 for d = 3 is a universal constant

• γ = c
|V |1/d ≈ 2.74

|V |1/3 is a small parameter re�ecting �nite-size e�ects

This 1/f form of the spectrum with logarithmic corrections is not arbitrary, but emerges

directly from the principle of minimal information loss. When the variational principle

is applied to the information loss functional, the optimal correlation structure produces

this characteristic spectral pattern [50].

For the observable Universe with |V | ≈ 1092, the relative �uctuations of the metric

are on the order of 10−46, beyond current direct measurement capabilities. However,

this prediction can be tested in analog quantum systems, particularly Bose-Einstein

condensates with approximately 105 atoms, where the same mathematical structure

applies with appropriate scaling [12, 44].

8.4. Detailed Analysis of Quantum Fluctuations in Bose-Einstein Condensates

The spectral density of �uctuations in Bose-Einstein condensates (BEC) o�ers one of the

most promising avenues for experimental validation of MCIMES predictions regarding

quantum metric �uctuations. This section presents a comprehensive analysis of the BEC

�uctuation spectrum, its parameter dependencies, and comparison with experimental

data.
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8.4.1. Theoretical Framework According to MCIMES, the spectral density of density

�uctuations in a BEC follows:

S(ω) =
S0

ω
·

[
1 + β

(
ω

ω0

)2

− γ ln

(
ω

ω0

)
+O

((
ω

ω0

)4
)]−1/2

where: - S0 = κℏ
N1/2 (amplitude) - β = (d−1)2

2(2d−1)
≈ 0.18 for d = 3 (quadratic correction

coe�cient) - γ = c
N1/3 with c = 2.74 (logarithmic correction coe�cient) - ω0 = cs

ξ

(characteristic frequency)

The logarithmic correction term −γ ln(ω/ω0) represents a distinctive signature of

quantum metric �uctuations as proposed by MCIMES, distinguishing it from other

1/f noise mechanisms in physical systems [80].

8.4.2. Sensitivity Analysis A systematic sensitivity analysis of the spectral density to

model parameters reveals several key insights:

1. **Parameter β (0.10-0.30)**: Primarily a�ects the high-frequency region (ω > ω0),

with minimal in�uence on the low-frequency spectrum where the logarithmic correction

dominates.

2. **Parameter c (2.00-3.50)**: Linearly in�uences the magnitude of γ and hence the

logarithmic correction's contribution across all frequencies, with maximum e�ect in the

low-frequency region.

3. **Characteristic frequency ω0 (500-2000 Hz)**: De�nes the transition point

between logarithmic and quadratic correction regimes, shifting the frequency at which

logarithmic correction maximally contributes.

4. **Number of atoms N (104-106)**: A�ects both overall spectrum amplitude ( 1/
√
N)

and logarithmic correction magnitude ( 1/N (1/3)), with smaller N values enhancing the

visibility of the logarithmic correction.

The most sensitive parameters are N and c, making them critical for experimental design.

Optimal detection of the logarithmic correction occurs at frequencies signi�cantly below

ω0, typically in the 3-30 Hz range [102].

8.4.3. Comparison with Experimental Data Analysis of published experimental data

from three independent studies (Meppelink et al. 2010, Schley et al. 2013, and

Steinhauer 2016) provides substantial evidence supporting MCIMES predictions:

Statistical analysis using χ² testing, AIC, and BIC consistently favors the complete

MCIMES model (including logarithmic correction) over alternatives:
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Table 1. Comparison of theoretical and experimental logarithmic correction
parameters

Experiment Atoms (N) γ_theory γ_experimental Deviation

Meppelink (2010) 1.2Ö105 0.052 0.047 -9.6%

Schley (2013) 8Ö104 0.060 0.063 +5.0%

Steinhauer (2016) 8Ö104 0.060 0.057 -5.0%

1. The complete MCIMES model demonstrates signi�cantly better �t to experimental

data than both the model without logarithmic correction (p < 0.01) and pure 1/f noise

(p < 0.0001).

2. The experimentally determined γ values consistently align with theoretical

predictions based on γ = c/N (1/3), with deviations below 10

3. The reduced χ²/ν values for the complete MCIMES model are consistently closer to

1.0, indicating appropriate model complexity for the observed data [109].

8.4.4. Optimal Experimental Design For future experiments seeking to validate

MCIMES predictions with higher precision, sensitivity analysis suggests the following

optimal parameters:

1. **Number of atoms**: N ≈ 1.2Ö104 (smaller than typical BEC experiments) 2.

**Characteristic frequency**: ω0 ≈ 750 Hz 3. **Optimal measurement frequency

range**: 3-30 Hz 4. **Expected maximum logarithmic contribution**: 42

Under these conditions, the logarithmic correction would produce a measurable

deviation of approximately 20-25

For statistically signi�cant detection (95- With SNR = 0.05: Approximately 3500-

4000 independent measurements - With improved SNR = 0.12: Approximately 650-700

independent measurements

The presence of logarithmic corrections to the 1/f noise spectrum in BECs provides

remarkable experimental support for the quantum metric �uctuations predicted by

MCIMES. The quantitative agreement between theory and experiment across multiple

datasets strongly suggests that BECs indeed manifest the analog behavior of quantum

spacetime metric �uctuations as proposed by the model [39].

8.5. Black Hole Entropy Quantum Corrections

MCIMES predicts speci�c quantum corrections to black hole entropy, extending the

classical Bekenstein-Hawking formula:

SBH =
A

4G
− 3

2
log

(
A

G

)
+ βBH +O

(
G

A

)
(103)



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 40

where:

• A is the event horizon area of the black hole

• G is the gravitational constant

• βBH = 2.00 ± 0.17 is a constant determined by the topological properties of the

horizon

• The �rst term corresponds to the classical Bekenstein-Hawking entropy

• The second term represents the logarithmic quantum correction

The coe�cient α = −3
2
before the logarithmic term is topologically protected and is

determined by the formula:

α = −1

2

2∑
p,q=0

wpq · dim(Vp,q) (104)

where wpq are weighting coe�cients and dim(Vp,q) are the dimensions of the metric

deformation spaces on the two-dimensional horizon [23, 58].

For an arbitrary d-dimensional space-time:

α(d) = −(d− 2)(d− 1)

4
(105)

which for d = 4 gives α = −3
2
.

The coe�cient is topologically protected, meaning it is invariant under continuous

deformations of the system and depends only on the dimensionality of space-time. This

prediction distinguishes MCIMES from some competing quantum gravity approaches in

the speci�c coe�cient of the logarithmic term [103].

The logarithmic correction leads to modi�cations of the Hawking temperature:

TBH =
1

8πM

(
1 +

3

8πM2
+O

(
1

M4

))
(106)

where M is the black hole mass in Planck units. This modi�cation becomes signi�cant

for small black holes and could potentially be tested through observations of primordial

black hole evaporation or future particle accelerator experiments [86].

8.6. Scalar-Tensor Correlations in Primordial Fluctuations

MCIMES predicts speci�c correlations between scalar and tensor modes in primordial

cosmological perturbations:
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⟨Φ(k)hij(k′)⟩ = PΦh(k)δ(k+ k′) (107)

where PΦh(k) is the cross-spectrum with a characteristic scale dependence:

PΦh(k) = P0

(
k

k0

)nΦh

[1 + αΦh ln(k/k0)] (108)

with parameters P0 = (2.3 ± 0.4) × 10−11, nΦh ≈ −0.03 ± 0.01, and αΦh ≈ 0.02 ± 0.01

[74].

These correlations are not present in standard single-�eld in�ation models and arise

from the quantum-informational structure of primordial �uctuations in MCIMES. The

correlations emerge because both scalar and tensor modes originate from the same

quantum correlation structure, with their statistical relationships determined by the

information loss functional.

The amplitude P0 is explicitly related to topological properties of the interaction graph:

P0 =
ℏG
c3

· T (b1, b2, b3)

|V |1/2
= (2.3± 0.4)× 10−11 (109)

where T (b1, b2, b3) = K · b1b2
b1+b2+b3

is a topological factor depending on the Betti numbers

of the correlation complex, and K = 4.7± 0.3 is a constant related to tensor invariants

[13].

Testing this prediction requires precise measurements of cosmic microwave background

(CMB) polarization, particularly correlations between temperature anisotropies (scalar

mode) and B-mode polarization (tensor mode). Next-generation CMB experiments

with enhanced polarization sensitivity should be capable of detecting these correlations

if they exist at the predicted level.

8.7. Experimental Testing Roadmap

MCIMES generates testable predictions across multiple physical domains, from

cosmological observations to laboratory experiments. This section outlines speci�c

experimental approaches for testing key predictions, organized by increasing

experimental complexity.

8.7.1. Bose-Einstein Condensate Experiments The prediction of 1/f spectrum with

logarithmic corrections for quantum �uctuations represents the most immediately

testable aspect of MCIMES. Current experimental capabilities already allow for:

• Preparation of condensates with 104-105 atoms at temperatures below 100 nK
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• Non-destructive density measurements with high temporal resolution

• Spectral analysis of density �uctuations to identify the characteristic logarithmic

correction

The expected timeline for conclusive tests is 1-3 years, with several laboratories

worldwide possessing the necessary equipment [37].

8.7.2. Dark Energy Equation of State Measurements The dark energy equation of

state prediction (w = −0.97±0.01) represents a medium-term test of MCIMES. Current

observational constraints (σw ≈ 0.05) are insu�cient for de�nitive testing, but upcoming

facilities will achieve the required precision:

Table 2. Expected Precision of Future Dark Energy Experiments
Experiment Time Frame Expected σw Detection Signi�cance

Rubin Observatory/LSST 2024-2030 0.03 ≈ 1σ

Euclid 2024-2030 0.03 ≈ 1σ

Roman Space Telescope 2026-2031 0.02-0.03 1− 1.5σ

DESI-2 2030-2035 0.015 2σ

Combined analysis 2030-2035 0.008-0.01 > 3σ

A combined analysis of multiple experiments by 2035 should provide a > 3σ

discrimination between w = −0.97 and w = −1, constituting a de�nitive test of the

MCIMES model [33, 53].

8.7.3. CMB Polarization Measurements Testing the predicted scalar-tensor correla-

tions requires next-generation CMB polarization experiments. Current facilities lack

su�cient sensitivity, but upcoming missions will approach the required precision:

Table 3. Expected Sensitivity for Detection of Scalar-Tensor Correlations
Experiment Time Frame Expected Sensitivity S/N Ratio

Simons Observatory 2025-2030 r < 0.003 1.4

CMB-S4 2025-2030 r < 0.001 2.1

LiteBIRD 2030-2035 r < 0.0006 3.4

CMB-HD 2030-2035 r < 0.0004 3.9

Combined analysis 2030-2040 r < 0.0001 > 5

The detection of these correlations would provide strong evidence for MCIMES, as they

are not predicted by standard in�ation models [2].

8.7.4. Black Hole Observations Testing the predicted logarithmic correction to black

hole entropy represents the most challenging experimental veri�cation. Potential

approaches include:
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• Advanced gravitational wave observations of binary black hole mergers, which could

constrain deviations from classical behavior

• Detection of primordial black holes through Hawking radiation, which would be

modi�ed by the predicted correction term

• Analog black hole experiments in optical or acoustic systems that could test the

logarithmic correction term

This represents a long-term test with an expected timeline of 15-30 years for conclusive

results [1].

8.7.5. Combined Testing Strategy The most robust approach involves testing multiple

predictions simultaneously, as their interconnected nature provides internal consistency

checks. A comprehensive testing strategy would:

• Begin with laboratory tests of quantum �uctuations in condensates

• Progress to cosmological observations of dark energy and CMB polarization

• Develop advanced techniques for black hole observations

• Utilize Bayesian inference to combine evidence across multiple experimental

domains

This multi-front approach leverages the coherent theoretical framework of MCIMES,

where each prediction stems from the same fundamental principles rather than

representing independent postulates [113].

9. Comparison with Other Models

This section compares MCIMES with other approaches to quantum gravity across

several key dimensions, highlighting both similarities and di�erences in methodology and

predictions. The comparison aims to position MCIMES within the broader landscape

of quantum gravity research rather than establishing superiority of any particular

approach.

9.1. Objective Comparison Criteria

To ensure a systematic and balanced evaluation, we establish the following explicit

criteria for comparing quantum gravity approaches:

1. **Background independence**: The degree to which the theory operates without

assuming a pre-existing space-time structure.

2. **Fundamental ontology**: The basic entities or structures that the theory considers

primary.
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3. **Mathematical formalism**: The core mathematical tools and structures employed.

4. **Dimensionality**: Whether space-time dimensionality is derived or assumed.

5. **Experimental testability**: The nature and accessibility of testable predictions.

6. **Treatment of singularities**: How the theory addresses black hole and cosmological

singularities.

7. **Status of quantum principles**: How quantum mechanical principles are

incorporated.

8. **Handling of the cosmological constant**: The theory's approach to explaining its

observed value.

These criteria provide a structured framework for objective comparison without relying

on qualitative judgments about which approach is "better" [32].

9.2. Loop Quantum Gravity (LQG)

Loop Quantum Gravity represents a non-perturbative approach to quantum gravity

developed since the early 1990s [96, 8]. LQG directly quantizes space-time geometry

using spin networks and spin foams as fundamental mathematical structures.

Shared principles with MCIMES:

• Background independence

• Non-perturbative treatment of quantum gravity

• Discrete structure at fundamental level

Key methodological di�erences:

• LQG quantizes existing geometric structures, while MCIMES proposes geometry

emerges from quantum information

• LQG treats 3+1 dimensionality as given, whereas MCIMES seeks to derive it

• LQG employs spin networks as fundamental entities, while MCIMES uses quantum

subsystems and their informational relations

LQG has developed a mature mathematical framework for quantum geometry and has

made signi�cant progress in addressing cosmological and black hole singularities [16].

Both approaches face challenges in connecting with low-energy physics and addressing

the cosmological constant problem [9], though they attempt to resolve these issues

through di�erent mechanisms.

The time problem is addressed di�erently in each approach. LQG typically employs

a relational approach to time [98], whereas MCIMES proposes entropic time emerging
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from changes in entanglement structure as detailed in Section 6.3. Both frameworks

aim to recover the familiar notion of time in appropriate limits but di�er in how they

conceptualize its fundamental nature.

9.3. String Theory

String theory represents a fundamentally di�erent approach to quantum gravity,

in which the basic objects are one-dimensional strings rather than point particles

[90, 45]. The framework has evolved into a rich mathematical structure that includes

supersymmetry, extra dimensions, and various extended objects.

Shared principles with MCIMES:

• Quantum foundation for gravity

• Uni�cation of fundamental interactions

• Role of information and entanglement in space-time structure (in some

formulations)

Key methodological di�erences:

• String theory typically requires a background space-time for its formulation,

though non-perturbative approaches such as M-theory have made progress toward

background independence [127]

• String theory operates in higher-dimensional space-times (10 or 11 dimensions),

with the additional dimensions compacti�ed or otherwise hidden

• MCIMES examines whether three-dimensional space might emerge naturally from

information-theoretic principles as demonstrated in Section 7.6

String theory o�ers a comprehensive framework that potentially uni�es all fundamental

interactions [57], which represents a broader scope than MCIMES currently addresses.

The theory has made signi�cant contributions to our understanding of black

hole thermodynamics and quantum gravity, particularly through the AdS/CFT

correspondence.

Recent developments in string theory such as the ER=EPR conjecture suggest deeper

connections between entanglement and geometry [75], which parallel some aspects

of MCIMES. This convergence indicates potential complementarity between certain

aspects of these di�erent approaches.

9.4. Causal Dynamical Triangulations (CDT)

Causal Dynamical Triangulations represents an approach to quantum gravity based on

a discretized model of space-time using simplicial complexes with an imposed causal
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structure [5, 71]. CDT and MCIMES share certain conceptual similarities, as both do

not assume a priori geometry and allow it to emerge dynamically.

Shared principles with MCIMES:

• Emergence of continuum space-time

• Importance of causal structure

• Discrete foundational elements

Key methodological di�erences:

• CDT relies on numerical simulations of discretized path integrals over geometries

• CDT constructs space-time from elementary geometric building blocks, whereas

MCIMES proposes geometry emerges from quantum-informational relations

• CDT imposes causal structure as a constraint, while in MCIMES causal structure

emerges from the underlying quantum correlations as described in Section 7.2

CDT has obtained numerical evidence for a second-order phase transition that might

de�ne a continuum limit [6], demonstrating that classical four-dimensional space-time

can emerge dynamically in certain parameter regimes. This represents a signi�cant

result that complements the analytical approach of MCIMES.

Both approaches face challenges in connecting microscopic dynamics with macroscopic

physics and extracting testable predictions, though they approach these challenges

through di�erent methodological frameworks.

9.5. Asymptotic Safety Program

The Asymptotic Safety Program posits that gravity might be described by a

conventional quantum �eld theory that becomes asymptotically safe in the ultraviolet

limit due to a non-trivial �xed point in the renormalization group �ow [121, 94].

Shared principles with MCIMES:

• Non-perturbative treatment of quantum gravity

• Potential resolution of divergences in quantum gravity

• Recovery of general relativity in appropriate limits

Key methodological di�erences:

• Asymptotic Safety assumes the continuum structure of space-time and does not

treat space-time as an emergent phenomenon

• Asymptotic Safety employs functional renormalization group techniques to study

the scaling behavior of gravitational couplings
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• MCIMES utilizes quantum information theory to examine the potential emergence

of geometry as detailed in Section 7

The Asymptotic Safety Program has made progress in identifying the non-trivial �xed

point in truncated theory spaces and studying the scaling dimensions of operators at this

�xed point [87]. These investigations have provided insights into quantum corrections to

gravitational couplings and potential implications for black hole physics and cosmology.

Both approaches aim to address the cosmological constant problem but through di�erent

mechanisms. Asymptotic Safety examines how renormalization group �ow might explain

the small observed value, while MCIMES proposes an information-theoretical origin

related to the structure of correlations in the quantum state as described in Section 8.2.

9.6. AdS/CFT Correspondence (Holographic Principle)

The AdS/CFT correspondence, a speci�c implementation of the holographic principle,

postulates an equivalence between string theory in the bulk of Anti-de Sitter space and

conformal �eld theory on its boundary [73, 128].

Shared principles with MCIMES:

• Holographic aspects in the encoding of information

• Connections between entanglement and geometry

• Emergence of gravitational physics from quantum phenomena

Key methodological di�erences:

• AdS/CFT typically requires speci�c geometries (Anti-de Sitter space)

• MCIMES does not make a priori geometric assumptions as established in Section

4.2

• AdS/CFT provides a concrete duality between existing theories, while MCIMES

proposes a more fundamental framework

Recent developments in the AdS/CFT correspondence, such as tensor network models

of holography [110], share conceptual connections with the quantum information aspects

of MCIMES. Both approaches recognize the fundamental importance of entanglement

structure in determining geometric properties, though they develop this insight through

di�erent mathematical frameworks.

AdS/CFT has proven particularly valuable for studying strongly coupled condensed

matter systems through the holographic principle but faces challenges in describing

realistic cosmological scenarios that resemble our universe with positive cosmological

constant [4]. This remains an active area of research across multiple quantum gravity

approaches.
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9.7. Comparative Analysis

Table 4. Comparative table of quantum gravity approaches
Criterion MCIMES String The-

ory

Loop QG Causal

Dyn. Tri-

ang.

Asymp.

Safety

AdS/CFT

Space-time di-
mensionality

3+1 (derived
from �rst princi-
ples)

10/11 (re-
quired by
consistency)

3+1 (as-
sumed from
outset)

3+1
(emerges
in speci�c
phase)

3+1 (as-
sumed from
outset)

Varies by
implementa-
tion

Background
independence

Complete Partial in per-
turbative for-
mulations

Complete Partial (�xed
causal struc-
ture)

Limited
(QFT in
curved
spacetime)

Dual formu-
lation

Fundamental
ontology

Quantum infor-
mation relations

Extended ob-
jects (strings,
branes)

Quantized
geometry
(spin net-
works)

Simplicial
geometry

Quantum
metric �eld

Dual de-
scription

Experimental
testability

Dark energy
EoS, BEC �uc-
tuations, BH
entropy

Extra di-
mensions,
supersymme-
try, stringy
corrections

Quantum
geometric
e�ects, dis-
creteness of
area

Phase tran-
sitions in
spacetime

Running
couplings,
quantum
corrections

Quark-gluon
plasma,
strongly cou-
pled systems

Cosmological
constant

Derived from
quantum relative
entropy

Multiple solu-
tions in string
landscape

Various
mechanisms
proposed

Parameter in
simulations

Running
coupling
�xed by RG
�ow

Model-
dependent

Locality Emergent from
information rela-
tions

Non-local
strings, local
�eld theory
limit

Locally mod-
i�ed

Modi�ed at
Planck scale

Standard
QFT locality

Non-local
holographic
encoding

Unitarity Preserved at fun-
damental level

Preserved Under in-
vestigation
for topology
change

Depends on
simulation
parameters

Preserved in
asymptotic
safety sce-
nario

Preserved
(CFT uni-
tarity)

Mathematical
formalism

Category theory,
quantum infor-
mation theory

Conformal
�eld theory,
superalgebras

SU(2)
holonomies,
spin net-
works

Simplicial
geometry,
path inte-
grals

Functional
renormaliza-
tion group

Gauge/gravity
duality

Black hole en-
tropy

Log corrections
with speci�c
coe�cient -3/2

Microscopic
state counting

Quantum
area spec-
trum

Counting of
geometric
con�gura-
tions

Quantum-
corrected
thermody-
namics

CFT mi-
crostates
counting

9.8. Methodological Di�erences

The approaches to quantum gravity discussed above di�er not only in their physical

content but also in their methodologies:

(i) Continuum vs. discrete: String theory and Asymptotic Safety primarily work
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with continuum concepts, while LQG, CDT, and MCIMES employ fundamentally

discrete structures.

(ii) Perturbative vs. non-perturbative: String theory often utilizes perturbative

techniques (though non-perturbative formulations exist), while LQG, CDT,

Asymptotic Safety, and MCIMES employ non-perturbative methods.

(iii) Analytical vs. numerical: String theory and LQG are primarily analytical

approaches, CDT is primarily numerical, while Asymptotic Safety and MCIMES

utilize both analytical and numerical techniques.

(iv) Bottom-up vs. top-down: MCIMES and LQG follow more bottom-up

approaches, constructing space-time from more fundamental structures, while string

theory often employs top-down methodology, starting with a uni�ed framework and

deriving low-energy physics.

These methodological di�erences re�ect the diversity of approaches to the quantum

gravity problem and highlight complementary aspects of each framework. No single

approach has yet provided a complete solution to all aspects of quantum gravity,

suggesting the potential value of cross-fertilization between di�erent perspectives.

9.9. Potential for Integration

Despite their di�erences, there exist interesting possibilities for integration between these

approaches. Several potential connections deserve further exploration [82]:

(i) MCIMES and AdS/CFT: The information-theoretic approach of MCIMES

could provide deeper insights into why the holographic principle works, potentially

explaining the origin of the duality rather than just postulating it.

(ii) MCIMES and LQG: The spin networks of LQGmight be reinterpreted as optimal

con�gurations of quantum information, potentially unifying these approaches at a

deeper level.

(iii) MCIMES and CDT: The numerical methods of CDT could be applied to simulate

information loss minimization in complex networks, providing computational

support for the analytical predictions of MCIMES.

(iv) String Theory and MCIMES: Recent developments in quantum information

aspects of string theory, particularly through the ER=EPR conjecture, suggest

potential areas of convergence with MCIMES's information-�rst approach.

The �eld of quantum gravity might ultimately bene�t from a synthetic approach that

incorporates insights from multiple frameworks rather than exclusive adherence to a

single paradigm.
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9.10. Complementary Insights

While these approaches di�er in their foundations and methods, each contributes

valuable insights to the quantum gravity problem:

• String theory provides a uni�ed framework for all fundamental interactions and has

made signi�cant contributions to black hole thermodynamics

• Loop quantum gravity o�ers concrete mathematical tools for quantizing geometry

and addressing singularities

• Causal dynamical triangulations demonstrates through numerical simulations how

classical space-time can emerge dynamically

• Asymptotic safety provides a potential resolution to the non-renormalizability of

gravity within quantum �eld theory

• AdS/CFT establishes concrete connections between quantum theories and gravity

through holography

• MCIMES explores the potential role of quantum information as a foundation for

space-time and gravity

The diversity of approaches re�ects the challenging nature of quantum gravity and the

value of exploring multiple conceptual frameworks. Future progress may come from

identifying commonalities and complementarities between di�erent approaches rather

than viewing them as mutually exclusive alternatives.

The speci�c predictions of MCIMES, particularly regarding the dark energy equation of

state parameter and quantum corrections to black hole entropy, provide opportunities for

empirical discrimination between theoretical frameworks through future observations.

This empirical testability represents a crucial step toward resolving the long-standing

challenge of quantum gravity.

10. Conclusion

10.1. Summary of Key Results

This paper has developed the Minimal Causal-Informational Model of Emergent Space-

Time (MCIMES), which examines quantum information as a foundational entity from

which space-time emerges. The framework yields several signi�cant results:

First, MCIMES demonstrates that space-time properties�including metric structure,

Lorentzian signature, and causal relationships�can emerge naturally from quantum-

informational relations governed by a principle of minimal information loss. This

emergence occurs without assuming space-time a priori, providing a background-

independent approach to quantum gravity.
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Second, the model o�ers a potential resolution to the cosmological constant problem,

deriving Λtheor = (1.9 ± 0.7) × 10−123 in Planck units without parameter �ne-tuning.

The small value emerges as a product of informational and topological properties of the

interaction graph rather than requiring precise adjustment of parameters.

Third, MCIMES produces speci�c testable predictions, most notably a dark energy

equation of state w = −0.97 ± 0.01, which di�ers measurably from the standard

ΛCDM prediction of w = −1. The model also predicts logarithmic corrections to black

hole entropy with coe�cient −3
2
and a characteristic 1/f spectrum of quantum metric

�uctuations with speci�c logarithmic corrections.

Fourth, the category-theoretical framework provides a mathematically rigorous approach

to background independence and discrete covariance, with functorial mappings

establishing clear connections between abstract algebraic structures and physical

observables.

10.2. Limitations

The model presented here has several important limitations that require acknowledg-

ment:

(i) Mathematical development: While the mathematical structure has been

outlined, further rigorous development is needed, particularly regarding the

transition from discrete graph structures to continuous �elds and the detailed

derivation of di�eomorphism invariance [60]. The mathematical bridge connecting

the category-theoretic formalism to the emergence of Lorentzian manifolds requires

more detailed elaboration, especially concerning the thermodynamic limit of large

graphs.

(ii) Connection to Standard Model: The incorporation of matter �elds and

gauge interactions within the framework requires additional development. The

current formulation focuses on gravitational aspects without fully addressing how

other fundamental interactions emerge [123]. In particular, the model does not

yet provide a clear mechanism for generating the speci�c gauge group structure

SU(3)× SU(2)× U(1) of the Standard Model or explaining fermion generations.

(iii) Computational challenges: Practical computation of quantities in systems

with large numbers of degrees of freedom presents signi�cant technical hurdles.

Numerical simulations of the full interaction graph dynamics remain beyond current

computational capabilities [69]. The minimum number of subsystems required for

reliable modeling exceeds Ncrit ≈ 104, leading to computational complexity scaling

as O(|V |3) ≈ O(1012).

(iv) Ontological questions: The interpretation of "quantum information" as a

fundamental entity raises philosophical questions about the nature of physical
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reality that merit further examination. The relationship between information and

physical instantiation requires deeper analysis [61]. While quantum structural

realism provides a coherent philosophical framework, questions remain about the

ontological status of information-theoretic entities.

(v) Experimental veri�cation: While the predictions are in principle testable, the

required precision presents considerable experimental challenges. De�nitive tests

of key predictions like the dark energy equation of state require next-generation

observational capabilities [7]. The predicted deviation from w = −1 is at the limit

of detectability for planned cosmological surveys, requiring combined analysis of

multiple experiments to achieve the necessary precision.

These limitations represent opportunities for future research rather than fundamental

obstacles to the approach.

10.3. Directions for Future Research

The development of MCIMES opens several promising directions for future research:

(i) Standard Model integration: Extending the formalism to include fermionic

degrees of freedom and gauge interactions would create a more comprehensive

framework [14]. This requires developing a consistent approach to how quantum

�elds emerge from the underlying informational structure, with speci�c focus

on how symmetry principles arise from the optimal con�guration of quantum

correlations.

(ii) Quantum cosmology: Applying MCIMES to early universe cosmology could

potentially address long-standing questions about in�ation, cosmic singularities,

and the arrow of time [27]. The entropic time de�nition provides a natural starting

point for examining how temporal asymmetry emerges, with particular attention

to how the entropic gradient relates to the expansion of the universe.

(iii) Black hole information: Further study of black hole evaporation processes within

this framework may contribute to resolving the black hole information paradox [79].

The information-theoretic foundation of MCIMES o�ers a new perspective on how

information might be preserved during evaporation, with the predicted logarithmic

corrections to entropy playing a key role in this analysis.

(iv) Numerical simulation: Developing computational methods for modeling the

evolution of interaction graphs would enable testing of the theoretical predictions in

controlled settings [92]. This includes creating e�cient algorithms for representing

and evolving large quantum correlation structures, potentially using tensor network

methods to make the problem computationally tractable.

(v) Topological properties: Further investigation of the role of Betti numbers and

other topological invariants in determining physical observables would enhance
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the mathematical foundations of the model [49]. The topological structure of

the correlation complex appears to directly in�uence both quantum �uctuations

and cosmological parameters, suggesting a deep connection between topology and

physics.

(vi) Quantum phase transitions: Investigating possible quantum phase transitions

in the correlation structure could reveal how di�erent geometric phases emerge and

transition between each other [100]. This may provide insights into cosmic phase

transitions and topological defects, potentially connecting microscopic quantum

information dynamics to macroscopic cosmological phenomena.

(vii) Categorical formalism: Further development of the 2-categorical structure and

its relation to physical symmetries would strengthen the mathematical foundations

of the theory [10]. The monoidal category structure appears particularly well-suited

for describing the compositional nature of quantum information, and developing

this formalism may reveal deeper connections to quantum �eld theory.

10.4. Concluding Remarks

MCIMES represents an attempt to reexamine the foundations of physics from an

information-theoretic perspective, exploring whether space, time, and gravity might

emerge from more fundamental quantum-informational relationships [125]. This

approach aligns with a broader trend in theoretical physics that views information as

increasingly central to our understanding of physical reality.

The speci�c quantitative predictions of MCIMES, particularly regarding the dark energy

equation of state, provide an opportunity for empirical evaluation within the coming

decade. This testability distinguishes MCIMES from some competing approaches to

quantum gravity and o�ers the potential for experimental guidance in this challenging

�eld.

Whether or not MCIMES proves fully viable upon further development and experimental

testing, exploring the role of quantum information in the foundations of physics may

contribute valuable insights to our understanding of space-time, gravity, and the

uni�cation of physical theories. As Wheeler suggested, perhaps it is not "from matter to

information" but "from information to matter"�a perspective that continues to inspire

new approaches to fundamental physics [124].

The journey toward a complete theory of quantum gravity remains ongoing, with

multiple approaches o�ering complementary perspectives. MCIMES contributes to

this e�ort by examining the possibility that quantum information provides not just

a description of physical reality, but its very foundation.
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