Boscá DíazPintado, María C.
(2007)
Updating the waveparticle duality.
In: UNSPECIFIED.
Abstract
Updating the waveparticle duality María C. Boscá email: bosca@ugr.es Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada E18071. Granada Spain The waveparticleduality, the fundamental component of the new quantum formalism in Bohr’s opinion, must be reformulated by incorporating the results of some experiments accomplished in the last decades of twentieth century. The Bohr´s complementarity principle stated the mutual exclusiveness and joint full completeness of the two (classical) descriptions of quantum systems; after EinsteinPodolskyRosen’paper, the waveparticle duality, or waveparticle complementarity, could be expressed by stating that it is impossible to build up an experimental arrangement in which we observe at the same time both corpuscular and wave aspects. In a twoslit experiment, they would correspond, respectively, to the whichway knowledge and the observation of interference pattern. Bohr showed this mutual exclusivity in numerous examples , and linked it to the unavoidable disturbance inherent in any measurement event. In quantum mechanical formalism, the complementarity principle has a clear mathematical expression: two observables are complementary if precise knowledge of one of them implies that all possible outcomes of the other are equally probable; their extension to classical concepts (as wave and particle) is not concerned. In 1991 Scully et al published a variant of the twoslit experiment that incorporates two micromasers cavities and a laser beam to provide whichpath information without net momentum transferred during the interaction ; the impossibility of know which slit an atom went through and still observe the interference fringes is preserved by the establishing of quantum correlations between the measuring apparatus and the system being observed. They claimed that complementarity, of which waveparticle duality would be to them a manifestation, is more fundamental than the uncertainty principle . In 1996 BG. Englert, following an approach originally due to Wooters and Zurek , derived , without making use of Heisenberg’s uncertainty relation, an inequality that quantifies the mutual compatibility relation between fringe visibility and whichway information. The inequality, that they denominated as “interferometric duality”, has the expression D^2 + V^2 ≤ 1, where D stands for the distinguishability of the ways and V for the fringe visibility; both of them are mathematical expressions that can be measured to check experimentally the inequality . Today, it is clear that intermediate particlewave behaviours exist and, in addition to that, there are single experiments in which both classical wavelike and particlelike behaviours are showed total and simultaneously on an individual system. For instance, in the Bose’s doubleprism experiment , tunnelling and perfect anticoincidence were observed in single photon states. Consequently, the meaning of the waveparticle duality must incorporate the simultaneous use of the two classical descriptions in the interpretation of experiments, loosing their original mutual exclusivity , which is incorporated as an extreme case in the new interferometric duality, a continuous quantum concept . The waveparticle duality, therefore, must be formulated as an interpretative addition to quantum mechanics, to which is possible to renounce if any pretension of visualize quantum phenomena in terms of classical concepts and intuitions is abandoned.
Monthly Views for the past 3 years
Monthly Downloads for the past 3 years
Plum Analytics
Actions (login required)

View Item 