PhilSci Archive

On Empirical Generalisations

Russo, Federica (2011) On Empirical Generalisations. [Preprint]

EmpiricalGeneralisations.pdf - Draft Version

Download (369kB)


Manipulationism holds that information about the results of interventions is of utmost importance for scientific practices such as causal assessment or explanation. Specifically, manipulation provides information about the stability, or invariance, of the (causal) relationship between (variables) X and Y: were we to wiggle the cause X, the effect Y would accordingly wiggle and, additionally, the relation between the two will not be disrupted. This sort of relationship between variables are called 'invariant empirical generalisations'. The paper focuses on questions about causal assessment and analyses the status of manipulation. It is argued that manipulationism is trapped in a dilemma. If manipulationism is read as providing a conceptual analysis of causation, then it fails to provide a story about the methods for causal assessment. If, instead, manipulationism is read as providing a method for causal assessment, then it is at an impasse concerning causal assessment in areas where manipulations are not performed. Empirical generalisations are then reassessed, in such a way that manipulation is not taken as methodologically fundamental. The paper concludes that manipulation is the appropriate tool for some scientific (experimental) contexts, but not for all.

Export/Citation: EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
Social Networking:
Share |

Item Type: Preprint
Keywords: Causation; Inviariance under intervention; Manipulation; Variation
Subjects: General Issues > Causation
Depositing User: Federica Russo
Date Deposited: 08 Mar 2011 06:25
Last Modified: 08 Mar 2011 06:25
Item ID: 8510

Monthly Views for the past 3 years

Monthly Downloads for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item