PhilSci Archive

On Empirical Generalisations

Russo, Federica (2011) On Empirical Generalisations. [Preprint]

[img]
Preview
PDF - Draft Version
Download (360Kb) | Preview

    Abstract

    Manipulationism holds that information about the results of interventions is of utmost importance for scientific practices such as causal assessment or explanation. Specifically, manipulation provides information about the stability, or invariance, of the (causal) relationship between (variables) X and Y: were we to wiggle the cause X, the effect Y would accordingly wiggle and, additionally, the relation between the two will not be disrupted. This sort of relationship between variables are called 'invariant empirical generalisations'. The paper focuses on questions about causal assessment and analyses the status of manipulation. It is argued that manipulationism is trapped in a dilemma. If manipulationism is read as providing a conceptual analysis of causation, then it fails to provide a story about the methods for causal assessment. If, instead, manipulationism is read as providing a method for causal assessment, then it is at an impasse concerning causal assessment in areas where manipulations are not performed. Empirical generalisations are then reassessed, in such a way that manipulation is not taken as methodologically fundamental. The paper concludes that manipulation is the appropriate tool for some scientific (experimental) contexts, but not for all.


    Export/Citation:EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
    Social Networking:

    Item Type: Preprint
    Keywords: Causation; Inviariance under intervention; Manipulation; Variation
    Subjects: General Issues > Causation
    Depositing User: Federica Russo
    Date Deposited: 08 Mar 2011 01:25
    Last Modified: 08 Mar 2011 01:25
    Item ID: 8510
    URI: http://philsci-archive.pitt.edu/id/eprint/8510

    Actions (login required)

    View Item

    Document Downloads