Pedersen, Arthur Paul and Wheeler, Gregory
(2014)
Demystifying Dilation.
[Preprint]
Abstract
Dilation occurs when an interval probability estimate of some event E is properly included in the interval probability estimate of E conditional on every event F of some partition, which means that one's initial estimate of E becomes less precise no matter how an experiment turns out. Critics maintain that dilation is a pathological feature of imprecise probability models, while others have thought the problem is with Bayesian updating. However, two points are often overlooked: (i) knowing that E is stochastically independent of F (for all F in a partition of the underlying state space) is sufficient to avoid dilation, but (ii) stochastic independence is not the only independence concept at play within imprecise probability models. In this paper we give a simple characterization of dilation formulated in terms of deviation from stochastic independence, propose a measure of dilation, and distinguish between proper and improper dilation. Through this we revisit the most sensational examples of dilation, which play up independence between dilator and dilatee, and find the sensationalism undermined by either fallacious reasoning with imprecise probabilities or improperly constructed imprecise probability models.
Monthly Views for the past 3 years
Monthly Downloads for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |