PhilSci Archive

Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity

Lusanna, Luca and Pauri, Massimo (2006) Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity. [Preprint]


Download (301kB)


The Hamiltonian structure of General Relativity (GR), for both metric and tetrad gravity in a definite continuous family of space-times, is fully exploited in order to show that: i) the "Hole Argument" can be bypassed by means of a specific "physical individuation" of point-events of the space-time manifold M^4 in terms of the "autonomous degrees of freedom" of the vacuum gravitational field (Dirac observables), while the "Leibniz equivalence" is reduced to differences in the "non-inertial appearances" (connected to gauge variables) of the same phenomena. ii) the chrono-geometric structure of a solution of Einstein equations for given, gauge-fixed, initial data (a "3-geometry" satisfying the relevant constraints on the Cauchy surface), can be interpreted as an "unfolding" in mathematical global time of a sequence of "achronal 3-spaces" characterized by "dynamically determined conventions" about distant simultaneity. This result stands out as an important conceptual difference with respect to the standard chrono-geometrical view of Special Relativity (SR) and allows, in a specific sense, for an "endurantist" interpretations of ordinary physical objects in GR.

Export/Citation: EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
Social Networking:
Share |

Item Type: Preprint
Lusanna, Luca
Pauri, Massimo
Additional Information: To appear in the book "Relativity and the Dimensionality of the World", A. van der Merwe ed., Springer Series "Fundamental Theories of Physics".
Keywords: Achronal 3-spaces in GR - Distant simultaneity - Endurantism - Hole Argument - Non-inertial frames
Subjects: Specific Sciences > Physics > Relativity Theory
Depositing User: Prof. Massimo Pauri
Date Deposited: 06 Dec 2006
Last Modified: 07 Oct 2010 15:14
Item ID: 3032
Subjects: Specific Sciences > Physics > Relativity Theory
Date: November 2006

Monthly Views for the past 3 years

Monthly Downloads for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item