PhilSci Archive

Can gravity account for the emergence of classicality?

Bonder, Yuri and Okon, Elias and Sudarsky, Daniel (2015) Can gravity account for the emergence of classicality? [Preprint]

WarningThere is a more recent version of this item available.
[img] PDF
DecoEP13.pdf - Submitted Version

Download (163kB)

Abstract

A recent debate has ensued over the claim in Pikovski et al. (2015) that systems with internal degrees of freedom undergo a universal, gravity-induced, type of decoherence that explains their quantum-to-classical transition. Such decoherence is supposed to arise from the different gravitational redshifts experienced by such systems when placed in a superposition of two wave packets at different heights in a gravitational field. Here we investigate some aspects of the discussion with the aid of simple examples. In particular, we first resolve an apparent conflict between the reported results and the equivalence principle by noting that the static and free fall descriptions focus on states associated with different hypersurfaces. Next, we emphasize that predictions regarding the observability of interference become relevant only in the context of concrete experimental settings. As a result, we caution against hasty claims of universal validity. Finally, we dispute the claim that, at least in the scenarios discussed in Pikovski et al. (2015), gravitation is responsible for the reported results and we question the alleged ability of decoherence to explain the quantum-to-classical transition. In consequence, we argue against the extraordinary assertion in Pikovski et al. (2015) that gravity can account for the emergence of classicality.


Export/Citation: EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
Social Networking:
Share |

Item Type: Preprint
Creators:
CreatorsEmailORCID
Bonder, Yuribonder@nucleares.unam.mx
Okon, Eliaseokon@filosoficas.unam.mx
Sudarsky, Danielsudarsky@nucleares.unam.mx
Keywords: Time dilation; Gravitational redshift; Decoherence; Classicality, Quantum-to-classical transition; Equivalence principle.
Subjects: Specific Sciences > Physics > Quantum Mechanics
Specific Sciences > Physics > Relativity Theory
Depositing User: Dr. Elias Okon
Date Deposited: 17 Sep 2015 11:46
Last Modified: 08 Jan 2016 12:28
Item ID: 11680
Subjects: Specific Sciences > Physics > Quantum Mechanics
Specific Sciences > Physics > Relativity Theory
Date: 16 September 2015
URI: https://philsci-archive.pitt.edu/id/eprint/11680

Available Versions of this Item

Monthly Views for the past 3 years

Monthly Downloads for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item