Chen, Eddy Keming (2019) Quantum States of a TimeAsymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence. [Preprint]

Text
IPHEmpirical Eq.pdf  Draft Version Available under License Creative Commons Attribution No Derivatives. Download (251kB)  Preview 
Abstract
What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the timeasymmetry of the universe. The natural choice is given not by a wave function (representing a pure state) but by a density matrix (representing a mixed state).
I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with a fundamental density matrix. The Past Hypothesis is compatible with infinitely many initial wave functions, none of which seems to be particularly natural. However, once we turn to density matrices, the Past Hypothesis provides a natural choicethe normalized projection onto the Past Hypothesis subspace in the Hilbert space. Nevertheless, the two types of theories can be empirically equivalent. To provide a concrete understanding of the empirical equivalence, I provide a novel subsystem analysis in the context of Bohmian theories. Given the empirical equivalence, it seems empirically underdetermined whether the universe is in a pure state or a mixed state. Finally, I discuss some theoretical payoffs of the densitymatrix theories and present some open problems for future research.
Export/Citation:  EndNote  BibTeX  Dublin Core  ASCII/Text Citation (Chicago)  HTML Citation  OpenURL 
Social Networking: 
Monthly Views for the past 3 years
Monthly Downloads for the past 3 years
Plum Analytics
Actions (login required)
View Item 