Ellerman, David (2014) On Concrete Universals: A Modern Treatment using Category Theory. [Preprint]
|
PDF
ConcreteUniversalsInCT.pdf - Accepted Version Download (189kB) |
Abstract
Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals along with a new concept to abstractly model the functions of a brain.
Export/Citation: | EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL |
Social Networking: |
Item Type: | Preprint | ||||||
---|---|---|---|---|---|---|---|
Creators: |
|
||||||
Keywords: | concrete universals, category theory, set theoretic paradoxes, heteromorphisms, adjoint functors | ||||||
Subjects: | Specific Sciences > Cognitive Science Specific Sciences > Mathematics General Issues > Models and Idealization General Issues > Realism/Anti-realism |
||||||
Depositing User: | David Ellerman | ||||||
Date Deposited: | 20 Oct 2014 15:38 | ||||||
Last Modified: | 20 Oct 2014 15:38 | ||||||
Item ID: | 11069 | ||||||
Subjects: | Specific Sciences > Cognitive Science Specific Sciences > Mathematics General Issues > Models and Idealization General Issues > Realism/Anti-realism |
||||||
Date: | 2014 | ||||||
URI: | https://philsci-archive.pitt.edu/id/eprint/11069 |
Monthly Views for the past 3 years
Monthly Downloads for the past 3 years
Plum Analytics
Actions (login required)
View Item |