PhilSci Archive

The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area

Sergeyev, Yaroslav (2016) The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Communications in Nonlinear Science and Numerical Simulation, 31 (1-3). pp. 21-29.

[img] Text
Koch.pdf

Download (414kB)

Abstract

The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be infinite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes constructed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed.


Export/Citation: EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
Social Networking:
Share |

Item Type: Published Article or Volume
Creators:
CreatorsEmailORCID
Sergeyev, Yaroslavyaro@dimes.unical.it0000-0002-1429-069X
Keywords: Koch snowflake, fractals, infinite perimeter, finite area, numerical infinities and infinitesimals, supercomputing
Subjects: Specific Sciences > Complex Systems
Specific Sciences > Cognitive Science > Computation
Specific Sciences > Cognitive Science > Concepts and Representations
Specific Sciences > Mathematics
Specific Sciences > Cognitive Science > Perception
Depositing User: Prof. Yaroslav Sergeyev
Date Deposited: 30 Sep 2024 21:08
Last Modified: 30 Sep 2024 21:08
Item ID: 23936
Journal or Publication Title: Communications in Nonlinear Science and Numerical Simulation
Publisher: Elsevier
Official URL: https://doi.org/10.1016/j.cnsns.2015.07.004
DOI or Unique Handle: 10.1016/j.cnsns.2015.07.004
Subjects: Specific Sciences > Complex Systems
Specific Sciences > Cognitive Science > Computation
Specific Sciences > Cognitive Science > Concepts and Representations
Specific Sciences > Mathematics
Specific Sciences > Cognitive Science > Perception
Date: 2016
Page Range: pp. 21-29
Volume: 31
Number: 1-3
URI: https://philsci-archive.pitt.edu/id/eprint/23936

Monthly Views for the past 3 years

Monthly Downloads for the past 3 years

Plum Analytics

Altmetric.com

Actions (login required)

View Item View Item