Werndl, Charlotte
(2009)
The Formulation and Justification of Mathematical
Definitions Illustrated By Deterministic Chaos.
[Preprint]
Abstract
The general theme of this article is the actual practice of how definitions are justified and formulated in mathematics. The theoretical insights of this article are based on a case study of topological definitions of chaos. After introducing this case study, I identify the three kinds of justification which are important for topological definitions of chaos: natural-world-justification, condition-justification and redundancy-justification. To my knowledge, the latter two have not been identified before. I argue that these three kinds of justification are widespread in mathematics. After that, I first discuss the state of the art in the literature about the justification of definitions in the light of actual mathematical practice. I then go on to criticize Lakatos’s account of proof-generated definitions—the main account in the literature on this issue—as being limited and also misguided: as for topological definitions of chaos, in nearly all mathematical fields various kinds of justification are found and are also reasonable.
Monthly Views for the past 3 years
Monthly Downloads for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |